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A deep learning aided bone
marrow segmentation of
quantitative fat MRI for
myelofibrosis patients
Humera Tariq1*, Lubomir Hadjiiski1, Dariya Malyarenko1,
Moshe Talpaz2, Kristen Pettit2, Gary D. Luker1, Brian D. Ross1

and Thomas L. Chenevert1*

1Department of Radiology, University of Michigan, Ann Arbor, MI, United States, 2Department of
Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI, United States
Purpose: To automate bone marrow segmentation within pelvic bones in

quantitative fat MRI of myelofibrosis (MF) patients using deep-learning (DL) U-

Net models.

Methods: Automated segmentation of bone marrow (BM) was evaluated for four

U-Net models: 2D U-Net, 2D attention U-Net (2D A-U-Net), 3D U-Net and 3D

attention U-Net (3D A-U-Net). An experienced annotator performed the

delineation on in-phase (IP) pelvic MRI slices to mark the boundaries of BM

regions within two pelvic bones: proximal femur and posterior ilium. The dataset

comprising volumetric images of 58 MF patients was split into 32 training, 6

validation and 20 test sub-sets. Model performance was assessed using

conventional metrics: average Jaccard Index (AJI), average Volume Error (AVE),

average Hausdorff Distance (AHD), and average Volume Intersection Ratio (VIR).

Iterativemodel optimization was performed based onmaximizing validation sub-

set AJI. Wilcoxon’s rank sum test with Bonferroni corrected significance

threshold of p<0.003 was used to compare DL segmentation models for test

sub-set.

Results: 2D segmentationmodels performed best for iliac BMwith achieved scores

of 95-96% for the VIR and 87-88% for AJI agreement with expert annotations on

the test set. Similar performance was observed for femoral BM segmentation with

slightly better VIR but worse AJI agreement for U-Net (94% and 86%) versus A-U-

Net (92% and 87%). 2D models also exhibited lower AVE variability (8-9%) and ilium

AHD (16 mm). The 3D segmentation models have shown marginally higher errors

(AHD of 19-20 mm for ilium and 10-12% AVE-SD for both bones) and generally

lower agreement scores (VIR of 91-93% for ilium and 89-91% for femur with 85-

86% AJI). Pairwise comparison across four U-Nets for three metrics (AHD, AJI,

AVE) showed that AJI and AHD performance was not significantly different for 3D

U-Net versus 3D A-U-Net and for 2D U-Net versus 2D A-U-Net. Except for AVE,

for majority of performance metric comparisons 2D versus 3Dmodel differences

were significant in both bones (p<0.001).
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Conclusion: All four tested U-Net models effectively automated BM

segmentation in pelvic MRI of MF patients. The 2D A-U-Net was found best

overall for BM segmentation in both femur and ilium.
KEYWORDS

myelofibrosis, proton density fat fraction (PDFF), pelvic MRI, in-phase (IP), proximal
femur, posterior ilium, segmentation, U-Net
1 Introduction

Myelofibrosis (MF) is a chronic malignancy characterized by clonal

proliferation of hematopoietic stem cells. Hallmark features of MF

include bone marrow (BM) fibrosis with reticulin or collagen deposits,

heterogeneous expression of inflammatory cytokines, anemia, and

enlargement of the liver and spleen (hepatosplenomegaly) (1, 2). BM

aspirates from ilium with needle biopsies are currently used for clinical

MF patient management to assess systemic inflammation, progressive

fibrosis and changes in composition. However, these procedures are

painful, select limited tissue volume, subject to histopathological

sampling errors, and provide inadequate assessment of BM

heterogeneity (3, 4). BM heterogeneity measurement in MF patients

constantly pose a challenge in hematopathology (3). A typical MF

needle biopsy samples small fraction of the area visualized by a pelvic

MRI examination which covers >200 cm2 of bones encompassing iliac

wings, femoral heads, trochanter, and proximal femoral shafts. The

non-invasive MRI holds potential for comprehensive MF disease

monitoring (3, 5, 6) at multiple anatomic bone marrow sites

increasing patient comfort for repeated examinations, anatomic

coverage and diagnostic accuracy.

Unlike limited biopsy access, MRI affords large volume

coverage for more extensive BM survey that is critical for

accurate evaluation of disease heterogeneity at MF primary site

(3) and corresponding treatment efficacy during longitudinal

monitoring (4–6). Non-invasive assessments of spatially

heterogeneous BM pathologies would benefit from the

development of robust BM MRI protocols and quantitative

imaging biomarkers (QIBs) (7). Quantitative fat MRI is being

investigated to assess progressive fibrosis, or reduction in blood

cell production due to replacement of normal fat content by cancer

cells in MF patients (5). Pre-clinical MF studies (8, 9) also

investigate imaging biomarkers to establish quantitative

thresholds for comprehensive monitoring of BM disease

progression, heterogeneity and therapy response (6, 10). Several

promising QIBs are currently investigated for MF bone marrow

assessment (5, 8, 9). Proton density fat fraction (PDFF) measures fat

content, T2* assesses fibrosis and iron content, apparent diffusion

coefficient (ADC) reflects cellular density and microstructural

changes, magnetization transfer ratio (MTR) measures the

amount of free water within tissue, providing information about
02
tissue composition and pathology, and magnetic resonance

elastography (MRE) evaluates soft tissue stiffness, indicating the

degree of fibrosis.

Manual delineations of BMwithin MF patients’ pelvic bones is a

major MRI QIB analysis bottleneck both for clinical and pre-clinical

studies as they are time-consuming and irreproducible due to

varying acquisition parameters, contrasts and intra- and inter-

observer biases (11–13). Manual bone annotations are pivotal for

detailed regional assessment of QIB histograms, e.g., in the posterior

ilium versus proximal femur versus lumber vertebrae. However,

they substantially slow down the analysis and are known to

introduce inaccuracies due to operator training/bias (11, 12)

which consequently have limited clinical acceptance of MF QIBs

to date. The annotated data-sets available for training automated

BM segmentation models are usually small and protocol-specific

(11, 13) presenting a challenge for generalization (14).

The Standard U-Net deep learning (DL) models use coarse-to-

fine training strategy, facilitated by skip connections that enable

accurate segmentation and reproducible boundary delineation

(15, 16) and therefore have shown promise for automating

segmentation of quantitative imaging applications with small

annotated training sets (14). The latest studies for assessment of

spatial distribution of PDFF in vertebral BM also adopted U-Net

models (11–13). An Attention U-Net (A-U-Net) enhances the

standard U-Net by integrating attention gate mechanisms (17),

which focus on relevant regions improving segmentation accuracy,

especially for small or complex structures. Our group has recently

successfully applied 2D Attention-U-Net (A-U-Net) for tibia

segmentation of a preclinical model of myelofibrosis (12). The

present study sought to evaluate the viability of 2D and 3D U-Net

segmentation models to accurately localize femoral and ilium BM

regions on in-phase (IP) image volumes of MF patients.
2 Materials and methods

2.1 MRI data acquisition and preparation

A single center MRI study for IRB-consented MF subjects was

performed using standard imaging protocol. All MF patient MR

images were acquired using clinical mDIXON-QUANT protocol
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with images reconstructed on a 3T scanner including quantitative

PDFF maps (Figure 1). Patient demographics and image counts for

each bone site are available in Supplementary Table S1. Typical pelvic

MRI scanned volume comprised 57 axial slices (3 mm thick) within

400x400 mm2 FOV with image size of 288x288 voxels. An expert

annotator performed manual segmentations of proximal femoral and

posterior iliac bones using in-phase (IP) Dixon MR images. Amongst

four Dixon contrasts (IP, OP, PDFF, T2*), IP was deemed the most

appropriate for manual annotation as it provided good soft tissue

versus cortical bone contrast largely independent of marrow fat

content and thus was most consistent among subjects (Figure 1).

Expert annotations were only performed for the inferior (proximal

femur) and superior (posterior iliac) sub-volumes. These annotations

served as a reference standard in DL aided segmentation.

The original MF patient’s pelvic MRI volume did not provide a

fixed number of images in each bone due to inconsistent patient

positioning. The selection of sub-volumes for the pelvic bone sites

therefore requires expert knowledge to determine the first and last

image for each bone site. A single expert performed the systematic

selection of the first and last slice of sub-volume to reduce the

processing time. The expert used the most posterior point of the

ilium as a reference, and themost superior slice and the most inferior

slice of the segmentation were 1 cm and 3 cm from the reference

point. For the femur, the top of the femur head was selected as the 1st

slice, and the last inferior slice was the last slice of the femur sub-

volume. The MF patient’s proximal femur region extended across

14–32 images while posterior ilium spanned 11–14 images.
Frontiers in Oncology 03
2.2 Segmentation workflow

The BM segmentation model development and evaluation

workflow is illustrated in Figure 2. The 58 MF patient MRI dataset

was split into 55% (32/58) training, 10% (6/58) validation and 34%

(20/58) test sub-sets respectively. Independent reviewer subjectively

scored the fat content of the femoral and iliac bone marrow (BM) by

inspecting PDFF maps. The training and validation subsets were

selected by independent reviewer to include balanced samples of low

to high BM fat content. The pelvic bone IP images and corresponding

manual annotations were used iteratively to build separate U-Net

models for segmentation of proximal femoral BM and posterior iliac

BM. All models were developed, evaluated and tested on NVIDIA

RTX A6000 GPU with 48 GB of memory and Pytorch library

(version 2.3.0+cu118).

We compared segmentation performance of four model

architectures (2D and 3D U-Net and attention (A)-U-Net) for

each of the bone sites (Figure 2). The models were first trained by

minimizing the average Jaccard index (AJI) loss to obtain all

candidate DL models. The model hyperparameters were fine-

tuned and the four best models were selected for each bone site

using the validation dataset and maximizing AJI for optimization

(Supplementary Figures S1, S2). The optimized models were then

deployed to the held-out test set and the automated segmentations

were compared to the reference annotations. Results of best model

deployment on the test dataset (i.e. assessment metrics for

agreement with manual annotations) were recorded and compared.
FIGURE 1

(A) In-phase (IP) pelvic MRI of myelofibrosis (MF) patient with low bone marrow fat content for axial slice through ilium (top) and femur (bottom). (B)
Corresponding quantitative proton-density fat-fraction (PDFF) maps shown on 0 to 100% color scale. (C) Similar IP MRI of MF patient with relatively high fat
content with (D) associated PDFF maps. Note, only IP images were used for segmentation by expert annotator and DL models.
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AJI metrics smoothness and stability were used for optimized

model selection in DL-aided segmentation to aid generalizability and

reliability (18, 19). Training and validation plots for four U-Net models

in each bone (femur and ilium) along with brief description are

provided in Supplementary Figure S1 (2D U-Net) and

Supplementary Figure S2 (3D U-Net). 2D and 3D U-Net models

differ from each other in terms of training time and hyperparameters,

as summarized in Supplementary Table S2. Due to the difference

between data premise of (3D) volume versus (2D) image input, U-Net

models utilized distinct sample size, hyperparameters, weight updates

(iterations) and training times. For 2D segmentation models, varying

number of slices was allowed both for training and testing. To enforce

consistent femoral sub-volume for 3D segmentation models,

replication of the most inferior image with its associated mask was

used as needed resulting in consistent femoral sub-volume of size

288x288x24 voxels. Superior iliac sub-volume needed inclusion of 2 to

3 existing iliac images resulted in consistent sub-volume size of

288x288x16 voxels for 3D models. The added replicate images were

excluded from the downstream 3D model performance evaluation.
2.3 Post-processing

To improve segmentation and eliminate contouring errors for

performance evaluation, post-processing was performed for hole filling

and spurious noise removal after U-Net segmentation (e.g.,

Supplementary Figure S3). First, voxel discontinuities have been
Frontiers in Oncology 04
detected using nested contouring approach and seeded region

growing was used to fill in the small holes. Selection of left and right

bone regions have been made through connected component analysis

and noise removal performed separately for left and right regions. The

segmentations were visualized in 3D Slicer V4.11 and saved as meta-

image header (MHD) format.
2.4 Performance evaluation metrics

Model performance was assessed on region-based and boundary-

based overlap metrics. Region based overlap included average (over

subjects) Jaccard Index (AJI), average Volume Intersection Ratio (VIR)

and average Volume Error (AVE), while the boundary-based overlap

was represented by average Hausdorff Distance (AHD). These metrics

were chosen to ensure comprehensive performance analysis based on

complementary measures of agreement (overlap and intersect) and bias

(14, 18, 19). All metrics were calculated for individual slices of each

patient MRI, and then averaged over the patients The inter-model

variability for the performance metrics were assessed using standard

deviation (SD). The F1-score was used to measure test’s accuracy (20,

21), similar to DICE coefficient (Supplementary Materials). The relevant

performancemetrics calculations and definitions are summarized below.

Jaccard Index: The Jaccard Index was defined as the ratio of the

intersection of the predicted segmentation mask and the ground

truth mask to their union. The Jaccard Index for a single slice or

volume was calculated as
FIGURE 2

Deep learning (DL) segmentation optimization workflow. The training and validation sub-sets (with sizes are listed in parenthesis) were used for
iterative model optimization at two bone sites (left workflow arm) based on average Jaccard Index (AJI) metrics. The optimal DL models were
deployed for all sub-sets, including test. The segmentation performance was evaluated using volume difference and contour agreement metrics,
including AJI, average Volume Error (AVE), Volume Intersection Ratio (VIR) and average Hausdorff distance (AHD), The top left inset shows example
of expert annotations for femoral (left) and iliac (right) BM sub-volumes.
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  Jaccard   Index =  
vr ∩ vp
vr ∪ vp

where vr and vp were the pixels/voxels of the segmentation mask

drawn by expert as reference standard and predicted by U-Net,

respectively. Additionally, the Jaccard index could be described

using the concepts of true positives (TP), false positives (FP), and

false negatives (FN):

True Positives (TP): The number of correctly predicted pixels/

voxels of the target class.

False Positives (FP): The number of pixels/voxels incorrectly

predicted as the target class.

False Negatives (FN): The number of pixels/voxels that were the

target class but were not predicted as such.

Jaccard   Index   =  
TP

FP + TP + FN

Volume Intersection Ratio: The volume intersection ratio for the

segmentation of a single scan was calculated as

Volume   Intersection  Ratio =  
vr ∩ vp

vr

where vr and vp   were defined as above.

Volume Error: The VE quantifies the difference between reference

and predicted mask volumes relative to the reference and is

calculated as

Volume Error (VE) = 100 ∗ (
vr − vp
vr

  )

where vr and vp   are defined above. A positive value of volume

error indicates under-segmentation (FN), and a negative value

indicates over-segmentation (FP) by U-Net models.

Hausdorff Distance:

In our MRI analysis, each slice contains a left-right pair of

segmentation (predicted, P, and reference, R) contours

corresponding to the left and right bones on slice i :

LP(i), LR(i) : the pair of  set of  contour points for left bone on slice i

RP(i),RR(i) : the pair of  set of  contour points for right bone on slice i

Using our notation, the Hausdorff Distance is computed

separately for each bone on every slice i. For left bone it is

expressed as follows:

dLH(i) = max
p∈LP(i)

min
r∈LR(i)

d(p, r),   max
r∈LR(i)

min
p∈LP(i)

d(p, r)

� �

where d(p, r)   is the Euclidean distance between contour points

p and r.

Similarly, for right bone Hausdorff distance becomes:

dRH(i) = max
p∈RP(i)

min
r∈RR(i)

d(p, r),   max
r∈RR(i)

min
p∈RP(i)

d(p, r)

� �
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Since each slice provides both left and right contours, we define

the representative Hausdorff distance for a slice as the maximum

(worst-case) value between the two:

dmax
H (i) = max dLH(i),   d

R
H(i)

� �
For a patient with N slices, the overall performance is summarized

by two metrics:

Average  Hausdorff  Distance   (AHD) =
1
N
  oN

i=1d
max
H (i)

Median Hausdorff Distance (MEDIAN _AHD)

= median  dmax
H (i)     i = 1, 2,… :Nj g :f
2.5 Metric distribution analysis for model
comparison

To assess the performance difference between 2D and 3D models,

the pair-wise Wilcoxon rank sum test for metric comparison among

AHD, AJI and AVE was performed. The performance metrics

distributions were visualized using violin plots. All violin plots used

kernel density estimation (KDE) for smoothing with lower bandwidth

(0.3) to capture finer details (peaks and valleys) in test data results. The

violin plots were generated in Python. Bonferroni correction was applied

to adjust significant p-value thresholds for multiple-comparisons from

initial significance level (a) 0.05 to the significant threshold p<0.003 for
each U-Net model performance metric comparison test (22).
3 Results

The eight selected U-Net models reasonably mimicked the

expert annotations from training data and generalized well on test

data in both 2D and 3D for two bone-sites with good agreement

VIR (90-96%) and AJI (85-88%) scores. Multi-facet evaluation of

model performance on the validation sub-sets, from visual

assessments to quantitative performance metrics and statistical

details helped choose a preferred U-Net model for BM

segmentation of the studied pelvic bone sites (proximal femur

and posterior ilium). Additional details about models’ selection

are included in the Supplementary Materials.
3.1 Qualitative segmentation evaluation

An example of best selected models that adequately followed the

reference contours and successfully localized the femoral and iliac

BM is illustrated in Figure 3. The bone contours learned by U-Net

models were largely consistent with reference outlines with minor

variation around the boundaries. The model contours were slightly
frontiersin.org
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more deviant in femoral BM as compared to iliac BM where

regional overlay fully covered the reference iliac contours except

in 3D A-U-Net (Figure 3D, bottom).

An example of large segmentation errors observed for the

studied data set is shown in Figure 4 for a single test MF patient

with challenging metal artifact due to a hip implant. Femoral bone

(top) BM segmentations in Figure 4C follow reference contours

relatively well but also miss some true BM pixels causing false

negatives (FNs). The iliac bone (bottom) segmentations by all U-

Net models also largely overlap with expert annotations but incur

few false positives (FPs) outside the reference boundaries. This

example showed that U-Net models largely trained on symmetric

bones exhibited the ability to generalize well for a single-side bone
Frontiers in Oncology 06
segmentation. Additional examples of segmentation errors

observed primarily for the marginal slices of imaged bone sub-

volume are illustrated in Supplementary Figure S3. We also

observed that denoising post-processing affected less than 4% of

total segmentation volumes and was apparently required more

often for 3D than for 2D models and for femur versus ilium,

likely reflecting limited training set size for the bone site anatomy.
3.2 Quantitative performance evaluation

Tables 1 and 2 systematically compare region and contour

agreement and error scores (AJI, AVE, VIR, AHD and
FIGURE 4

Segmentation model comparison for femoral BM (top) and iliac BM (bottom) for a challenging test patient (with hip implant artifact) (A) 2D U-Net (B)
2D A-U-Net (C) 3D U-Net (D) 3D A-U-Net. The reference contours are green and model segmentation contours are red. Yellow arrows point at
examples of false negative (FN) and false positive (FP) areas.
FIGURE 3

Segmentation model comparison for femoral BM (top) and iliac BM (bottom) on a test set (A) 2D U-Net (B) 2D A-U-Net (C) 3D U-Net (D) 3D A-U-
Net. The reference contours are green and model segmentation contours are red.
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MEDIAN_AHD) for proximal femur and posterior iliac BM

segmentation across training, validation and test sets after

denoising post-processing. This analysis confirms the moderately

better performance of 2D U-Net models over 3D U-Net models

which otherwise were not obvious from visual inspection of

segmentations. As expected, validation and testing performances

were always lower than the corresponding training performances in

all metrics, except femur AVE and AHD.
Frontiers in Oncology 07
Table 1 illustrates that the slice-wise 2D AHD for all four U-Net

models was relatively high in femoral BM (26–32 mm) with wide

range of standard deviations (SD=4-9 mm). Median AHD for test

set varied less between 2D and 3D U-Net models (5.7-6.2 mm)

indicating comparable performance for directed boundary distance

in femur. This confirmed the likely source of higher 2D AHD values

from marginal slices in the femur volume. In femoral BM, both

AVE and SD(AVE) were lower for 2D versus 3D model
TABLE 2 Performance metrics [mean ± standard deviation (SD)] for posterior ilium segmentation with different tested U-Net models.

Bone-Site Posterior Ilium

DL Models Dataset AJI% VIR % AVE% AHD (mm) MEDIAN_AHD (mm)

2D U-Net

Training 90.3 ± 1.5 96.4 ± 1.1 -4.5 ± 5.2 9.6 ± 4.0 5.1

Validation 89.4 ± 1.1 96.5 ± 1.7 -7.3 ± 7.4 10.1 ± 3.0 5.5

Test 87.0 ± 3.6 95.7 ± 2.6 -10.4 ± 11.5 18.1 ± 10.7 6.8

2D A-U-Net

Training 91.0 ± 1.5 96.0 ± 1.3 -1.5 ± 5.0 8.9 ± 2.6 4.4

Validation 89.4 ± 1.2 95.6 ± 1.9 -4.6 ± 5.6 15.0 ± 6.8 5.6

Test 88.0 ± 2.4 95.5 ± 1.8 -7.5 ± 9.0 16.1 ± 8.2 5.7

3D U-Net

Training 88.0 ± 1.8 93.4 ± 2.4 -0.2 ± 6.6 12.7 ± 4.0 6.3

Validation 86.8 ± 2.0 94.0 ± 2.8 -3.8 ± 7.4 18.9 ± 11.1 8.9

Test 85.0 ± 5.6 93.0 ± 6.0 -4.3 ± 12.0 20 ± 13.0 8.4

3D A-U-Net

Training 87.8 ± 2.1 91.5 ± 3.2 6.0 ± 6.8 14.3 ± 6.3 6.9

Validation 87.6 ± 1.9 92.3 ± 2.7 2.7 ± 6.5 16.1 ± 7.5 6.1

Test 85.1 ± 4.7 90.6 ± 5.3 3.5 ± 10.7 19.1 ± 10.3 6.8
The values in bold indicate performance metrics for the independent test set.
TABLE 1 Performance metrics [mean ± standard deviation (SD)] for proximal femur segmentation with different tested U-Net models.

Bone-Site Proximal Femur

DL Models Dataset AJI% VIR % AVE% AHD (mm) MEDIAN_AHD (mm)

2D U-Net

Training 89.1 ± 2.0 94.3 ± 1.5 0.7 ± 5.5 29.7 ± 7.1 5.1

Validation 88.5 ± 1.8 93.6 ± 2.3 0.6 ± 8.0 31.4 ± 5.3 5.6

Test 85.5 ± 6.7 93.3 ± 2.2 0.2 ± 8.0 28.4 ± 8.9 5.7

2D A-U-Net

Training 89.0 ± 1.4 92.5 ± 1.6 6.0 ± 5.0 28.5 ± 6.5 5.4

Validation 88.3 ± 2.2 92.2 ± 3.0 5.0 ± 9.0 32.0 ± 3.7 5.1

Test 86.9 ± 2.5 91.5 ± 3.5 5.0 ± 9.0 26.8 ± 9.3 6.2

3D U-Net

Training 87.8 ± 2.0 93.0 ± 2.0 2.4 ± 6.4 26.7 ± 6.3 5.8

Validation 86.0 ± 3.0 91.3 ± 3.0 2.9 ± 10.0 28.3 ± 6.9 6.8

Test 85.7 ± 2.3 91.0 ± 3.1 5.2 ± 10.2 25.5 ± 9.0 6.2

3D A-U-Net

Training 87.8 ± 2.1 91.6 ± 2.1 7.3 ± 6.4 26.9 ± 7.0 5.6

Validation 86.1 ± 3.0 89.6 ± 3.4 10.3 ± 7.7 29.7 ± 5.7 6.7

Test 84.9 ± 4.0 89.0 ± 5.0 11.6 ± 10.8 25.8 ± 9.5 5.8
The values in bold indicate performance metrics for the independent test set.
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segmentations. e.g. (AVE: 0.2-6% versus 2-12% with SD 5 – 9%

versus 6-11%). Interestingly, the mean values of contour-distance

(AHD) decreased for the test set as compared to training set for 2D

models (e.g. from 27-28 mm versus 29–30 mm). The AHD for 3D

U-Net models (26 mm) were slightly lower than for 2D models and

similarly lower than training AHD (27 mm) and similar SD (9-

10 mm).

Table 1 further shows that 2D U-Net achieved marginally higher

VIR on the test set compared to the 2D A-U-Net in proximal femur

(93% versus 92%) while the trend was reverse for AJI (86% versus

87%). The 2D models agreement metrics (AJI, VIR) reflected similar

performance across training, validation and test sets (AJI: 86-89%,

VIR: 92-94%), consistently better than for 3D models (AJI: 85-88%,

VIR: 89-93%). The relatively small standard deviations (SDs) of 2-3%

were observed for 2D A-U-Net and 3D U-Net but roughly doubled

from training to test set for agreement measures of 2D U-Net and

3D A-U-Net. Improvement in agreement and lower variability

between 2D and 3D models for training, test and validation set

demonstrated that 2D models marginally outperformed the 3D

models for femur segmentation.

Table 2 summarizes the performance of four iliac U-Net models

using overlap and boundary metrics. The ilium contour errors are

surprisingly lower in comparison to femur (2D Ilium AHD: 9-18 mm,

2D femur AHD: 26-32 mm). Contrary to femur, no anomalous trends

on test versus training set were observed in AHD of iliac U-Net models

with bothmean (16–20mm) and SDs (8–11mm) increasing for the test

set. Table 2 shows that 2D U-Net and 2D A-U-Net training, validation

and testing for iliac segmentation models were consistent in both AJI

and VIR and small performance decline (3-5%) was observed from

training to validation and test (test AJI: 87–88%, test VIR: 95-96%). Test

2D segmentation errors for U-Net and A-U-Net in iliac bone site

ranged (AVE: 7–10%, AHD: 16–18 mm). The 3D iliac models also

attained higher AJI (85– 88%) and differed from each other only in VIR

by 3% (e.g. test VIR: 90% versus 93%). Comparison of 2D versus 3D

posterior ilium segmentations from Table 2, shows that the 3D training,

validation and test accuracy were also higher for 2D iliac models (2D

AJI: 87–91% versus 3D AJI: 85–88%, 2D VIR: 95–97%, versus 3D VIR:

91–94%).

Tables 1 and 2 allow comparison between the two BM bone-sites.

In both bone-sites, the performance of 2D U-Net and 2D A-U-Net

were satisfactory and close (2D AJI: 87-91%, 2D VIR: 91-96%).

Differences in agreement accuracy between bones indicated more

consistent performance in ilium (e.g. 2D iliac VIR: 95–96% versus

2D femur VIR 91-94%). Finally, comparing the 3D model

segmentation performance between Tables 1 and 2 to analyze bone-

site impact on 3D training, validation and testing data revealed that the

AJI was similar for 3D U-Net and 3D A-U-Net in both femur and

ilium (3D AJI: 85-88%). 3Dmodels VIR performance declinedmore in

femur as compared to ilium (4% versus 2% decline).

Except for 3D A-U-Net, all ilium segmentation models had a

negative AVE bias indicating tendency to over-estimate volume

compared to expert segmentations. In contrast, femur model

segmentation AVE bias was largely positive consistent with the

tendency to underestimate BM volume. The volume contour error

(MEDIAN_AHD) for all four U-Net models attained consistent
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range in both pelvic bones (femur: 5–7 mm, ilium: 5-9 mm).

Overall higher AVE-SD and AHD variability in 3D models further

confirmed lower performance of 3D models compared to 2D U-Net

and 2D A-U-Net (2D AVE SD: 2.5% versus 3D AVE SD: 3.5%, 2D

AHD SD: 3–11 mm versus 3D AHD SD: 5-13 mm).
3.3 Metric distribution analysis

Figures 5 and 6 for femur and ilium provided further insight

into the distribution shape, mean, and range of three most error-

sensitive performance metrics (AJI, AVE and AHD) for the test data

with all four selected U-Net models in each bone site.

The distribution’s shape and width of violin plots revealed

subtle differences in variability and performance consistency,

particularly between 2D and 3D models and between U-Net and

A-U-Net configurations. Multiple distribution modes were resolved

for 3D and 2D model performance metrics for femur, likely

reflecting the higher susceptibility for error at the bone margins

due to inconsistencies of image volumes.

The comparison of AJI violin plots of femoral bones (Figure 5)

and iliac bones (Figure 6) indicated uniformly high performance

with maximum density around 90% for all four U-Net models in

both bone-sites. Femoral bone metric distributions (Figure 5)

showed comparable performance for 2D versus 3D models with

marginally narrower distributions (less variability for 2D A-U-Net

AJI (range: [85%,95%]). Most of 2D U-Net and A-U-Net AJI had

clustered around 86% with just 2-5% narrow error bars. The femur

metric distributions are complex and multi-modal likely indicating

limitations of small test data set.

The low mean errors for both 2D and 3D U-Net models for AVE

demonstrated generally strong agreement with reference volume.

Both 2D models performed better than 3D with respect to AVE

(2D femoral AVE range: [-20, 20], 2D ilium AVE SD: [-30, 10] versus

3D femoral AVE range: [-20, 35], 3D ilium range: [-25, 30]). Iliac

bone metric distributions (Figure 6) followed the similar trends of

higher AJI and lower AVE SD with notably narrower AHD,

particularly for 2D A-U-Net model.

All four U-Net models AHD distribution in for femur versus ilium

(Figures 5, 6) exhibited consistent trend of high data density at higher

AHD values (> 20 mm) for femur and at lower AHD (< 18 mm) for

ilium, confirming better performance for ilium than femur. The mean

values being higher than the maximum width pointed out the presence

of outliers, likely for the bone margins.

Figure 7 depicts the results of Wilcoxon rank sum test in the

form of grouped bar plot for p-values in femoral bone and iliac BM

respectively. Each metric group thus consisted of six bars

representing the six unique comparisons, with a total of 18

comparisons for the three metric groups. Notably, non-significant

p-values above the threshold were observed for 6 comparisons in

femur and 7 in iliac segmentation models. The AJI and AVEmetrics

were most sensitive to the differences between the models There was

no significant difference in 3D A-U-Net versus U-Net performance

for iliac and femoral BM segmentation for AJI and AHD. Ilium

models also showed that 3D U-Net and 3D A-U-Net are not
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significantly different. Except for AHD, the differences between 2D

and 3D models were significant. Combined with absolute

performance metric values, the significant differences between

other models helped identify the overall most effective model for

MF bone marrow segmentation as 2D A-U-Net.

Supplementary Table S3 indicated that the proximal femur and

posterior ilium (U-Net and A-U-Net) 2D models exhibited stronger
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performance with F1 scores ranging between 89% and 90%. Close

F1-scores for 2D models (~2% difference), indicated that these

models achieved a similar balance between precision and recall in

each bone-site. This suggested consistent accuracy and reliability in

BM segmentation. Iliac 2D U-Nets had lower SD (0.02-0.03)

suggesting more consistent performance across different test runs

than for femoral bone. In comparison to 2D, the 3D models showed
FIGURE 6

Distribution of AJI, AVE and AHD for iliac segmentation test data. Black error bars represent one standard deviation (SD) from the mean while
colored triangles correspond to data ranges. The metric distribution is color-coded in the legend. The left axis is shared for AJI and AVE (%), while
right axis is for AHD (mm).
FIGURE 5

Distribution of AJI, AVE and AHD for femoral segmentation test data. Black error bars represent one standard deviation (SD) from the mean while
colored triangles correspond to data ranges. The metric distribution is color-coded in the legend. The left axis is shared for AJI and AVE (%), while
right axis is for AHD (mm).
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lower F1-score in both bones (Femur: 87% versus 89%, Ilium 87%

versus 90%).

Overall, compared to 3D segmentation models, clear

performance enhancement was observed for 2D A-U-Net in

ilium, while 2D models in femur showed better agreement (AJI,

VIR, F1, AVE-SD) but slightly higher contouring errors (AHD) and

lower precision (Supplementary Table S3).

Supplementary Figure S4 illustrates Bland-Altman agreement

analysis for mean fat fraction (FF) for expert versus preferred DL

segmentation model (2D A-U-NET) for the test set. This analysis

confirms good agreement (LOA<3%) between FF quantifications

for expert versus model segmentations.
4 Discussion

The focus of our study was to find the best U-Net models to

automate the BM segmentation in two pelvic bones (proximal femur

and posterior ilium) for MF patient Dixon MRI. We developed,

validated and compared four distinct U-Net models based on 2D and

3D U-Net and A-U-Net to identify superior models for each pelvic

bone site. All eight independently validated U-Net segmentation

models in our study showed strong agreement with reference BM

segmentations. Overall, the optimized segmentation models in each

bone achieved adequate performance and overlap accuracy of

boundary delineation for complex and granular segmentation tasks

on training, validation and test sets. Our 2D models had higher F1-

scores compared to the 3D models (2D: 89-90% versus 3D: 86-88%),

good AJI (2D: 87-88% versus 3D: 85%-86%) and excellent VIR

(2D: 96% versus 3D: 89-93%). All models demonstrated low

segmentation errors and consistently reproduced the reference BM

volumes (AVE bias between -11% and 12%). Ilium models were
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predominantly under-segmenting, while femur models were prone to

over-segmentation. Higher variability was observed for 3D AVE

versus 2D AVE at both bone sites. Our BM segmentation results

suggested that the 2D A-U-Net performed better on average and

provided more reliable predictions for both pelvic bone segmentation

where the training set contained variable coverage of the femoral

shaft for MF patients.

Interestingly, 3D segmentations exhibited comparable

performance versus 2D in boundary match (AHD) between models

and reference for femur but markedly higher deviations and variability

for ilium. The statistical evaluation of femoral and pelvic models

reflected that 2D models were more robust than their peer 3D

models. Our study further found that AJI was the most stable metric

to compare alternative 2D and 3D U-Net BM segmentation models for

both bone-sites. Moreover, femoral segmentation showed greater

absolute contour mismatches (AHD=26-28 mm) than iliac model

segmentations ((AHD=16-20 mm)) reflecting that different bones

require training distinct segmentation models. In other words, a DL

model trained on a single bone-site would not optimally segment every

bone. In our case, the iliac BM voxels occupied larger area with more

diverse orientations as compared to femoral BM voxels on individual

images but had smaller scanned sub volume (400 versus 735 training

images) which is a likely reason for different performance of U-Net

models on different bones.

Our best 2D A-U-Net (femur and iliac) segmentation model

performed comparable to 3D U-Net lumbar vertebra segmentation

model described in the recent quantitative PDFF MRI study (11).

The vertebral segmentation study involved 30 healthy training and

12 testing subjects, which were comparable to our training and

testing sets (training:32, testing:20). Our validation set AJI achieved

substantial gain in both pelvic bones (femur and ilium) with an

approximate increase of 8% to 10% compared to reported lumbar
FIGURE 7

(A, B) p-values of pairwise comparison of AHD, AJI and AVE for UNET models (color-coded in the legend) for segmentation performance on a test
dataset. A red dashed line in p-value plots represented the Bonferroni-corrected significance threshold p<0.003.
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vertebral AJI. Our mean F1-score on the test set were remarkable

close to the cited vertebral F1-score (dice similarity) of 86-90%. The

precision-recall trend in pelvic bones and vertebral bones also

looked similar. However, the vertebral U-Net model training

configuration (hyperparameters) and validation methodology did

not include tuning and optimization. Our optimized 2D U-Net

models also outperformed another Dixon lumbar vertebra

segmentation study on two test sets (annotated by different

observers) in both AJI and dice similarity with substantial 10%

advancement in AJI and 5% increase in F1-score (13). In addition to

different U-Net training and optimization approaches, a probable

reason for difference in observed segmentation performance could

be that vertebral bodies inter slice spatial locations on sagittal

images were subject to change while both femur and iliac spatial

coordinates remained consistent in all images. Importantly, the

achieved agreement with the manually annotated reference for the

test set in our study exceeds the reported inter-observer agreement

by 15% (13).

Our present study confirmed U-Net models’ potential for

accurate BM segmentation as found in previous studies.

Furthermore, it revealed the utility of IP image training for better

model generalization for BM diseases with variable fat content for

patient population like MF. Practical considerations about DL aided

segmentation workflow optimization for both 2D and 3D U-Net

models along with comprehensive segmentation performance

evaluation and statistical analysis will also benefit other

quantitative MRI studies of bone marrow disease. In addition to

automated segmentation, the insights gained by our study include

separate U-Net model utility for individual bone sites, empirical

evidence of 2D U-Net preference over 3D U-Net for varying patient

positioning with small, annotated training set, substantial difference

in overlap and boundary performance metrics and practical

workflow to find single best DL model for each pelvic bone-site.

This segmentation automation will save about 20 minutes of expert

time per subject/time point and will likely improve repeatability and

remove expert-dependent bias (11, 12). Our previous study in

murine model of MF using similar DL segmentation models

indicated significantly higher inter-observer reproducibility and

test-retest repeatability by automated segmentation (12).

Our study had several limitations. First, this was a single center

rare disease (MF patient) study in specific bone-sites (proximal

femur and posterior ilium) that may limit the segmentation model’s

applicability (22, 23). However, this study has the largest patient

cohort reported to date for MF rare disease and proposed use of IP

images for segmentation, makes this approach less dependent on

relative BM fat content. Second, all training, validation and test

subsets were acquired on a single scanner with uniform scan

protocol which further limits the direct generalization of the

models for different acquisition protocols. Small datasets with

limited and biased annotations are prevalent in imaging research

(24). Our study also utilized a small MF data set with a single expert

annotation and did not assess inter-observer reproducibility.

Therefore, manual quality check for independent test sets, multi-

reader studies and correction of new cases would be required for
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comprehensive evaluation. Alternatively, model retraining and

advancement in segmentation workflow automation would be an

option to further reduce the manual annotation efforts. Another

limitation was the absence of segmentation ground truth which was

partially resolved by training U-Net models (25). Single expert

delineations were considered reliable as a reference for our

application, although they might not capture all relevant details

due to human perception limitations. Even repeated annotations

from the same expert may be inconsistent and might limit DL

model performance. Furthermore, expert intervention would be

required to manually define sub-volumes for the model application

to new data at femur and ilium sites, which limits full workflow

automation. This step can be streamlined in future applications.

Another important technical issue identified during this study was

inconsistency of patients positioning during MRI acquisition,

resulting in image volume variability affecting the 3D U-Net

model performance (26). By their nature, 2D U-Net segmentation

models are less sensitive to patient positioning and thus would be

preferred for pelvic BM MRI studies.

Future work will apply the best developed models to advance

segmentation automation in the ongoing MF studies by leveraging

limiting annotated data and extensive un-annotated data. The best

DL models will be used to generate pseudo labels for expert review

and adjustment. The combined annotated and pseudo-labeled data

can be used iteratively to retrain the model, continuously enhancing

its accuracy and reliability. This semi-supervised setting may

outperform traditional transfer learning and, in some cases, self-

supervision. It will also reduce dependency on extensive manual

labeling to accelerate the segmentation efficiency and throughput

(27, 28). The derived segmentations will be applied to quantitative

PDFF maps to measure longitudinal changes in MF bone marrow.

We also plan to use these segmentations for transfer to other

quantitative MRI contrasts (e.g., ADC) at multiple imaging time

points (currently 5–7 time points per patient). The improved

automation in segmentation workflow is vital for timely

development, validation and implementation of quantitative

biomarkers and design therapeutics strategies in MF patients’

treatment response.
5 Conclusion

This study developed, validated and tested independent U-Net

models to effectively segment BM in quantitative PDFF MRI (IP

volumes) of MF patients. The best selected models automatically

detected, and segmented BM in pelvic bones (proximal femur and

posterior ilium) and showed strong agreement with reference BM

segmentations. The comparative analysis revealed that 2D U-Net

and 2D A-U-Net out-performed their peer 3D models for BM

segmentation in patients’ target pelvic bones. 2D A-U-Net model

performance was more robust in comparison to other DL models in

both femur and ilium. Overall, selected U-Net models

demonstrated promising performance to accelerate segmentation

and accurately localize BM regions for future patient studies. The
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developed BM segmentation models lay the foundation to assess

heterogeneity and spatial distribution of the PDFF in pelvic bones

which enhances QIB precision. The U-Net based segmentation

automates the bone marrow delineation with improved accuracy to

facilitate future clinical adoption of MRI for MF patients.
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