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A cancer stem cell (CSC) is an immortal cell that is capable of self-renewal,

continuous proliferation, differentiation into various cancer cell lineages, metastatic

dissemination, tumorigenesis, maintaining tumor heterogeneity, and resistance to

conventional treatments. Targeted therapies have made huge advances in the past

few years, but resistance is still a major roadblock to their success, in addition to their

life-threatening side effects. Progressive treatments are now available, including

immunotherapies, CRISPR-Cas 9, sonodynamic therapy, chemodynamic therapy,

antibody–drug nanoconjugates, cell-based therapies, gene therapy, and ferroptosis-

based therapy, which have replaced surgery, chemotherapy, and radiotherapy for

cancer treatment. The challenge is to develop targeted treatment strategies that are

effective in eradicating CSCs, as they are resistant to anticancer drugs, causing

treatment failure, relapse, and recurrence of cancer. An overview of the fundamental

characteristics of CSCs, drug resistance, tumor recurrence, and signaling pathways

as well as biomarkers associated with their metastatic potential of CSC is elucidated

in this review. The regulatory frameworks for manufacturing and conducting clinical

trials on cancer therapy are explicated. Furthermore, we summarize a variety of

promising nanocarriers (NCs) that have been used directly and/or synergistic

therapies coupled with the therapeutic drug of choice for the detection, targeting,

and imaging of CSCs to surmount therapeutic resistance and stemness-related

signaling pathways and eradicate CSCs, hence alleviating the limitation of

conventional therapies. Nanoparticle-mediated ablation therapies (NMATs) are

also being argued as a method for burning or freezing cancer cells without

undergoing open surgery. Additionally, we discuss the recent clinical trials testing

exosomes, CRISPR/Cas9, and nanodrugs, which have already received approval for

several new technologies, while others are still in the early stages of testing. The

objective of this review is to elucidate the advantages of nanocarriers in conquering

cancer drug resistance and to discuss the most recent developments in this field.
KEYWORDS

cancer stem cells, signaling pathways, biomarkers, nanocarriers, exosomes,
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1 Introduction

The American Cancer Society estimates that cancer is the second

leading cause of death in the United States, and the number of cancer

cases is projected to increase to 2,041,910 in 2025, with cancer deaths

expected to reach 618,120 (1). CSCs are vicious and can be a

significant contributing factor to cancer treatment failure (2).

Cancer stem cells (CSCs) are a small subset of cancer cells with

regeneration capabilities and excessive tumorigenic potentials,

involved crucially in tumor growth, progression, invasion, and

metastasis (2, 3). Tumors are heterogeneous and contain both

differentiated tumors and undifferentiated cancer stem cells (4).

Numerous conventional modalities including surgery,

chemotherapy, and radiotherapy are available for treating a wide

range of malignancies (5, 6). Studies have revealed that CSCs have

inherent drug resistance to conventional modalities as well as

developmental plasticity (7, 8), allowing CSCs to differentiate into

mature progeny (9). Moreover, differentiated cancer cells can undergo

a stem cell-like transformation (10). Conventional treatments

primarily target the tumor but often fail to eliminate drug-resistant

CSCs due to the overexpression of anti-apoptotic proteins, ATP

binding cassette (ABC) transporters, enhanced DNA damage

response, elevated DNA repair, increased survival signaling,

epithelial–mesenchymal transition (EMT) induction, epigenetic

mechanism, hypoxia and low reactive oxygen species (ROS) level

(11, 12), increased quiescence, increased autophagy, detoxifying

enzymes (ALDH1), and signaling pathways (Wnt/b-catenin, Notch,
hedgehog, Hippo, and PI3K/Akt, JAK/STAT), which led to drug

resistance and tumor recurrence (12–15). The tumor tissue has an

extracellular pH of 6.8 (acidic), favoring metalloproteinases, activating

several signaling pathways, and serving as a blockade for many

anticancer drugs that accentuate the malignancy and aggressiveness

of cancer cells (16–18). Despite the availability of many treatment

options, resistance to treatments still occurs, causing the cancer to

recur, a phenomenon explained by CSC, imposing an innovative

outlook for cancer treatment (11, 14).

The nanocarriers (NCs) used in cancer treatments are usually in

the range of 20–200 nm, allowing them to circulate more quickly and

absorb more readily into cells (19, 20). By virtue of their enhanced

permeability and retention (EPR) effect, these NCs passively

extravasate leaky tumor vessels and accumulate in tumors (21),

allowing medications to be delivered to cancer cells and avoiding

contact with healthy cells (21, 22). NCs are on the horizon as a novel

breakthrough in targeted therapy. They provide altered therapeutic

possibilities over conventional approaches and are impeccably able to

modulate drug delivery and accumulate at target sites specifically to

treat tumor-targeting CSCs (23–26). Biomedical researchers have

increasingly embraced nanotechnology over the past decade and

focused on the nanomaterial-loaded drug delivery (NDD) strategy

targeting CSCs based on their markers (27), hence perceived by means

of cell imaging, immunotherapy, multimodal synergistic therapies,

siRNA delivery, and targeted cancer therapy (28–30). NDD via

endocytosis bypasses the efflux pump, resulting in intracellular

accumulation in CSCs (31, 32). The co-delivery of anticancer drugs,
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multiple drug resistance modulators, and CSC-targeting ligands using

NDD could boost the specificity of CSC to surmount drug resistance

(33–35). In addition to providing a comprehensive understanding of

CSCs, our goal is to present a summary of recent cancer nanotherapies,

both basic and applied, as well as new treatments that are currently

being researched and hoped to overcome conventional treatment

limitations. As innovative anticancer strategies, different approaches

to diagnosis and therapy will be discussed, highlighting their current

status in the clinical context. In this review, we introduce the treatment

modalities, involving drug-loaded inorganic NCs, antibody–drug

conjugates polymer-based NCs, self-assembling protein NCs,

exosomes, and MXene, which have been reported to interact with

tumor-associated stem cells, as well as with CSC-related signaling

pathways, and are being used as diagnostic and therapeutic agents. The

review describes the advances in technologies to reduce CSCs,

including photothermal therapy (PTT) and nanoparticle-mediated

ablation therapies (NMATs), and bioengineered exosomes’ role in

antitumor therapies in order to encounter the prevailing complications

of therapy resistance. Understanding themerits and limitations of these

treatments offers new perspectives for clinical practice and

groundbreaking research.
2 Cancer stem cells

2.1 Characteristics

A number of studies suggest that CSCs not only are responsible

for tumor growth, maintenance, and resistance to chemotherapy

and radiotherapy but also contribute to cancer recurrence after

treatment since they can regenerate the tumor (10, 14, 36).

However, non-CSCs are more differentiated and less likely to

cause tumor growth or recurrence (37). CSCs may be resistant to

therapy by activating survival pathways, remaining in quiescent

states, increasing drug efflux, impairing apoptosis, and repairing

DNA damage more efficiently (11, 12). A significant feature of CSCs

is their capability to modify the surrounding stroma by secreting

proteins and molecular components such as extracellular matrix

(ECM) proteins, which helps in maintaining the CSCs in a dormant

state to regulate their fate, plasticity, and resistance against

conventional therapies (37–39). Their self-renewal capacity can

lead to uncontrolled differentiation with transformed cellular and

molecular phenotypes, resulting in the formation of heterogeneous

primary and metastatic tumor cells that are resistant to treatment

and contribute to tumor recurrence (38, 40). The major

characteristics of CSCs include (2, 41–45) the following:
• self-renewal and differentiation properties,

• presence of specific surface markers for identification,

• ability to generate after transplantation,

• resistance to chemotherapy and radiotherapy,

• initiation of a new tumor through pre-existing CSCs,

• altered expression of transcription factors, receptors, and

signaling pathways,
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• ability to divide symmetrically into two CSCs or one CSC

and one daughter cell,

• ability to thrive in hypoxic microenvironments,

• plasticity, which is the ability to adapt to new environments

following phenotypic transition, and

• increased mobility, migratory, and invasive properties.
2.2 Chemoresistance of drug and self-
renewal ability

The Darwinian notion of survival of the fittest applies to cancer

cells attaining drug-resistant traits at molecular levels for survival

(12, 39, 46, 47). Numerous in vitro and in vivo examinations have

shown that conventional therapies induce CSCs, which later

contribute to tumor relapse and therapy resistance (48). CSCs

depend on multiple pathways for chemoresistance and self-

renewal (10, 49). Thus, targeting these pathways can guide us to a

strategic mechanism to overcome resistance. Notch1 signaling plays

a key role in enhancing trastuzumab resistance in breast cancer cell

lines BT474, SK-BR3, and MCF-7 cells; its inhibition, either genetic

or pharmacological, enhances the sensitivity of these cells to the

drug, i.e., making them more responsive to the drug’s effect (12).

The Notch activity was boosted in both bulk and breast cancer

stem-like cells in ER+ and HER2+ breast cancer cell lines upon

treatment with tamoxifen or trastuzumab drugs, respectively (50).

Knocking down Notch triggers significant growth arrest in these

cells, leading to loss of stem-like characteristics such as self-renewal,

tumor recurrence, resistance to drugs, and EMT (50). Significant

molecular alteration was observed in breast cancer upon treatment

of g-secretase inhibitors, i.e., tamoxifen or letrozole, i.e., an

aromatase inhibitor (reversible non-steroidal imidazole-based

inhibitor) (12). As a first-line treatment for glioblastoma

multiforme (GBM), humanized monoclonal anti-VEGF

antibodies (bevacizumab) were effective in reducing tumor

formation (12). The clinical benefit, however, lasted for a short

time due to the development of resistant lineages and the

dominance of VEGF-VEGFR2-Neuropilin-1 autocrine signaling

over time, resulting in tumor relapses (51, 52). Glioblastoma

CSCs (CD133+/Prominin-1) induced by radiotherapy can increase

resistance by activating DNA checkpoints and repair pathways.

Therefore, co-treatment with checkpoint inhibitors (Chk1 and

Chk2) and radiotherapy increased the radiosensitization of

glioblastoma CSCs (53). CSCs often confiscate pluripotent or

oncofetal drivers, as they share critical features of embryonic stem

cells for the expression of transcriptional factors such as SALL4,

NANOG, KLF4, MYC, OCT4, and FOXM1 and signaling pathways

such as Hedgehog, Notch, Hippo, Wnt/b-catenin, and TGF-b (54,

55). Lin28B (RNA-binding proteins that affect stem cell

maintenance, metabolism, and oncogenesis) has been identified as

an oncofetal circulator CSC marker and a crucial therapeutic target

for hepatocellular carcinoma recurrence (56, 57). These oncofetal

stem cell markers are not expressed by normal stem cells, so they

serve as prime targets for therapy (12). Multiple cellular processes
tiers in Oncology 03
such as increased DNA damage and repair, entering into a dormant

state, quick drug efflux, and anti-apoptotic protein overexpression,

are mechanisms that lead to drug resistance (58, 59). Therefore, the

removal of CSCs has become a prime target among the scientific

fraternity. Nanocarriers have been proven a promising tool to

deliver chemotherapeutic drugs at high dosages and release them

to their target to control the CSCs, leading to overcoming the

resistance and recurrence of CSCs (58).
2.3 CSC markers and challenges
encountered in biomarker identification

Different cancers have distinct molecular and genetic profiles,

which influence the markers expressed by CSCs (60). CSC markers

mimic those of normal stem cells, resulting in difficulties in

differentiated and targeted CSCs. CSC markers express differently

in diverse microenvironments including inflammation, hypoxia,

and cell–cell interaction, prompting the CSC features and marker

expression (61). CSCs are also capable of sustaining genetic and

epigenetic changes, which can alter their marker properties,

depending on the mutational tumor sites and their evolutionary

pathway (62, 63). In order to ensure a successful therapy, somatic

stem cells (SSCs) should not experience any side effects; if we

understand how CSCs and SSCs differ in their origin, self-renewal

mechanism, and signaling pathways, we will be able to target CSC

populations more effectively, protecting healthy cells and

minimizing side effects.

CSC targeting strategies have proved to be difficult due to

phenotypic plasticity in tumors, which allows non-CSCs to

acquire CSC traits, complicating CSC targeting strategies (39, 64).

This necessitates the use of specific cell surface markers detected on

CSCs for better results (38). Different markers can be expressed by

CSCs depending on the tissue from which they originate (4, 11).

Some of the markers associated with CSCs are cell surface markers,

signaling pathways, transcription factors, and drug transporters, as

well as genes, proteins, enzymes, and miRNA, which are responsible

for self-renewal, immune evasion, metastasis, and treatment

resistance (65) (Table 1, Figure 1A). The CSC-specific surface

markers include CD24, CD26, CD44, CD133, CD166, aldehyde

dehydrogenase (ALDH), and Ep‐CAM (also called CD326 or

epithelial‐specific antigen/ESA) (61, 111, 112). The markers like

CD24, CD34, CD44, CD133, CD166, and ALDH1 were used for the

identification of CSCs in solid bulk tumors (61, 112). Common

stem cell markers include CSC-specific markers such as CD34,

CD44, CD123, CD133, c-kit, ABCG2, and ALDH, which have been

reported in a wide range of malignancies (113, 114). CSCs are also

intrinsically regulated by stemness-related transcription factors,

such as OCT-4, SOX2, KLF4, c-MYC, STAT3, and NANOG, as

well as epigenetics and epi-transcriptomics, which are important for

stemness maintenance and plasticity (112). Figure 1A presents

markers specific to cancer stem cells in different types of cancer

(13, 104–110), and these markers are primarily useful for targeting

CSCs for therapeutic purposes.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1499283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumbhakar et al. 10.3389/fonc.2025.1499283
TABLE 1 CSC biomarkers and their diverse role in various cancer types.

Biomarkers Type of cancer Role of CSCs References

CD44+ Ovarian cancers, breast cancer, colon cancer, gastric cancer,
prostate cancer, lung cancer

Cell survival, cellular motility, cell–cell interactions and
signaling, cell proliferation, EMT regulation, cytoskeletal
changes, stemness, tumor metastasis and progression

(34)
(66)
(67)
(68)
(69)
(70)

CD133+ Kidney cancer, brain cancer, liver cancer, pancreatic cancer,
colon cancer, gastric cancer, lung cancer, breast cancer,
cervical cancer, prostate cancer

Tumorigenesis, metastasis, tumor recurrence, therapeutic
resistance, mainstream lung cancer marker

(67)
(68)
(70)
(71)
(72)
(73)
(74)

CD90+ Gastric cancer, liver cancer, esophageal squamous
carcinoma, lung cancer, skin cancer, brain cancer,
pancreatic cancer

Cell proliferation, metastasis, angiogenesis, prognostic marker,
cell–cell and cell–matrix interactions

(68)
(75)
(76)

CD166+ Gastric cancer, ovarian cancer, prostate cancer, breast
cancer, head and neck cancer, liver cancer, lung cancer,
melanoma, colorectal cancer, esophageal cancer,
bladder cancer

Metastasis, apoptosis evasion, cancer initiation, invasiveness,
melanoma cell clustering, activation of tumorigenic signaling
pathway, cell adhesion, tumor progression, hematopoiesis

(68)
(77)
(78)
(79)
(80)
(81)

CD24+ Liver cancer, ovarian cancer, prostate cancer, breast cancer,
esophageal squamous cell carcinoma, lung cancer,
pancreatic cancer

Cancer progression, tumorigenesis, tumor evasion, cell
proliferation and invasion, prognostic and diagnostic marker,
tumor resistance and tumor recurrence, metastasis,
immune evasion

(75)
(82)
(83)
(84)

NANOG Ovarian cancers, liver cancer, breast cancer, lung cancer,
colorectal cancer, leukemia, prostate cancer, brain cancer,
gastric cancer, head and neck cancer, pancreatic cancer,
cervical cancer

Metastasis, chemoresistance, stemness, invasiveness, self-
renewal, tumorigenesis, prognostic marker, initiation and
sustainability of tumor, drug resistance, pluripotency

(34)
(85)
(86)
(87)
(88)

OCT4 Ovarian cancers, gastric cancer, glioma, acute myeloid
leukemia, bladder cancer, prostate cancer, rectal cancer,
melanoma, liver cancer, esophageal squamous
cell carcinoma

Tumorigenesis, tumor progression, stemness, pluripotency,
cancer stem cell maintenance, chemoresistance, drug
resistance, stem cell differentiation and self-
renewal, angiogenesis

(34)
(68)
(89)
(90)
(91)

SOX2 Ovarian cancers, gastric cancer, head and neck cancer, lung
cancer, breast cancer, medulloblastoma, skin cell carcinoma,
bladder cancer, pancreatic cancer, cervical cancer,
colorectal cancer

Prognostic marker, stemness, self-renewal, cell proliferation,
drug resistance, tumor initiation, progression and
aggressiveness, metastasis, EMT enhancement, therapeutic
target, prospective biomarker, tumorigenicity, chemoresistance

(34)
(68)
(86)
(92)
(93)
(94)

EpCAM Liver cancer, colorectal cancer, breast cancer, ovarian
cancer, pancreatic cancer, gallbladder cancer, thyroid
cancer, endometrial cancer, lung cancer

CSC self-renewal and differentiation, tumor progression and
survival, chemotherapeutic resistance, therapeutic strategy,
molecular biomarker, cell adhesion and migration, cell–cell
interactions, prognostic marker, angiogenesis, tumorigenicity,
cancer initiation

(75)
(95)
(96)
(97)
(98)

ALDH1A1 Lung cancer, ovarian cancer, breast cancer, liver cancer,
esophageal cancer, gastric cancer, cervical cancer, stomach
cancer, pancreatic cancer, thyroid cancer, prostate cancer,

Tumor initiation, progression, invasion, and migration, cancer
cell proliferation, adhesion, extravasation, micrometastasis, self-
renewal and differentiation, drug and chemoresistance

(70)
(77)
(99)
(100)
(101)

LGR5 Gastric cancer, colon cancer, colorectal cancer,
glioblastoma, breast cancer, ovarian cancer,
adenocarcinoma, thyroid cancer

CSC identification, cancer initiation, recurrence and
therapeutic resistance, tumor initiation, progression, metastasis,
CSC proliferation and self-renewal, EMT, CSC biomarker

(68)
(86)
(102)
(103)
F
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CSC, cancer stem cell; EMT, epithelial–mesenchymal transition.
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2.4 CSC signaling pathways and FDA-
approved drugs as inhibitors

The recurrence of CSCs is due to their resistance to existing

conventional therapies, along with their high potential for metastasis

and invasiveness (115). CSC signaling pathways are aberrantly

activated in cancer, which govern self-renewal, cell proliferation,

invasion, metastasis, and angiogenesis (44). The CSC transformation

from a normal cell is due to accretions of genetic alterations, tumor

suppressor genes, epigenetic modification [including (epi)

methylation, demethylation, mutations, and rearrangements in the

stem/progenitor pool (niche) and differentiated cells], and tumor

microenvironment stimulation through extracellular signals (61,

112) A new challenge in cancer treatment is selecting the signaling

networks that facilitate self-renewal, proliferation, and differentiation

in CSCs that regulate tumorigenesis process. Most common CSCs

associated with oncogenic cascades comprise Wnt/b-catenin
(Figure 1B), phosphoinositide 3 kinase (PI3K)/AKT/mTOR

(Figure 1C), hedgehog (Figure 1D), Notch (Figure 1E), NF-kB
(Figure 1F), TGF-b/SMAD (Figure 1G), JAK/STAT (Figure 1H),

and peroxisome proliferator-activated receptors (PPARs) (Figure 1I)

(61, 116, 117). The effectiveness of small molecule inhibitors in

cancer treatment is still challenged by minimal and short response

values/duration, systemic toxicity, CSC biomarkers, and drug

resistance (118). Currently, the Food and Drug Administration

(FDA) has approved approximately 88 small molecule inhibitors

for the treatment of cancer after clinical trials (118). The inhibitors

that underwent clinical trials and target major pathways are

implicated in the CSC pathway (Figure 2).

2.4.1 Wnt/b-catenin
The Wnt/b-catenin signaling cascade plays a key role in CSC

biology, leading to self-renewal, uncontrolled cell proliferation, and

differentiation (124). The dysregulation in Wnt/b-catenin signaling

has been documented in a wide range of malignant cancers such as
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leukemia, colon, epidermal, breast, and cutaneous carcinoma (125,

126). Numerous methodologies have been upgraded for targeting

Wnt/b-catenin cascade involving small molecules (ICG-001, PRI-

724, E7386), which inhibit the interaction between TCF/LEF1 and

b-catenin, thereby interrupting self-renewal property of CSC (124).

Recent investigations used monoclonal antibodies (mAbs) against

Wnt ligands and their subsequent receptors as a target for CSC-

based therapy (127). The Wnt/B catenin signaling pathway targets a

wide range of small molecules, including Wnt974, Wnt-C59,

ONC201, Niclosamide, XAV939, Chelerythrine, FH535, IWR-1,

IC-2, JIB-04, DTX and SFN, PP, OXT-328, AD, and Ts (Figure 2)

(45, 128–135). Specifically, these compounds inhibit CSC

progression/population, suppress self-renewal ability, attenuate

CSC-mediated chemoresistance, and deregulate CSC markers and

genes, resulting in drug resistance and compounding its sensitivity

(45, 136–138).
2.4.2 Hh signaling
Hh signaling contributes significantly to various stages of cell

development; mutation at any stage of the sonic hedgehog (Shh)

pathway can lead to the advancement of numerous cancers such as

melanoma, rhabdomyosarcoma, medulloblastoma, and basal cell

carcinoma, as well as breast, pancreas, lung, liver, and prostate

cancers (58, 139). Aberrant Hh signaling promotes CSC self-

renewal and resistance to treatment and its hyperactivation

(mutations/deregulation), which leads to tumorigenesis (41).

Studies have shown that inhibiting the aberrantly active Hh

pathway in non-small-cell lung cancer (NSCLC) using a Hh

antagonist led to a significant reduction in cell viability and

malignancy (140). CSC progression can be inhibited by small

molecules including glasdegib, sonidegib, vismodegib, ciclesonide,

cyclopamine, and GANT61 by suppressing Hh signaling (45, 64,

141–145) (Figure 2). These small molecules inhibit CSC marker

expression, self-renewal and mammosphere formation, and CSC

proliferation and survival (45, 64, 141–145).
FIGURE 1

(A) Cancer stem cell markers in different types of cancer (13, 104–110). A schematic illustration of signaling pathways involved in cancer stem cells.
(B) Wnt/b-catenin: targets include Wnt/Frizzled complexes, b-catenin/TCF, and CK1a. (C) PI3K/AKT: targets include PI3K complex, AKT1/2/3, and
mTORC1/2. (D) Hedgehog: targets include SHh-Ptch interaction, SMO, and GLI. (E) Notch: targets include Notch and g-secretase. (F) NF-kB: targets
include IKKa/b/g and NF-kB-inducing kinase (NIK). (G) TGF/SMAD: targets include TGF-b1/b2/b3, TbRI/II, and Smad3/4/5. (H) JAK/STAT: targets
include JAK1/2/3 and STAT1/2/3/4/5. (I) PPAR: targets include PPARa/g/d signaling pathways. Adapted and modified using BioRender for illustrative
purposes with permission from Chu et al. (2) (Copyright 2024).
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2.4.3 Notch signaling
Notch signaling regulates cell-to-cell communication right from

embryogenesis, cellular proliferation, differentiation, and even in

apoptosis (146), also crucial for neural stem cell survival, immune

regulation, colorectal epithelial maturation, breast development, and

normal hematopoiesis (41). The Delta-like ligand 4 (Dll4) is one of

the Notch signaling ligands that contribute to malignancy

progression (147). There have been numerous reports of

mutations of the Notch gene, including those of Dll4, which have

been implicated in the growth of different types of gynecological

tumors (148). Inhibitors of Notch act on N1ICD, g-secretase, Hes-1,

Hey-1, and Notch ligands to treat cancer and prevent recurrence (45,

149). Several pharmaceutical drugs, including MK-0752, PF-

03084014, RO4929097, DAPT, and Quinomycin A (Figure 2)

reduce the mammosphere formation, strike tumor regeneration,

impede CSC growth, induce CSC differentiation, and decrease

drug resistance in reverse, increasing drug sensitivity (45, 149–152).

2.4.4 TGF-b/SMAD
The tumor cells secrete interleukin-33 cytokine, which causes

myeloid cell differentiation into macrophage and consequently
Frontiers in Oncology 06
stimulates TGF-b signals to reach cancer stem cells, resulting in

the progression of malignant tumors and drug resistance (153).

TGF-b serves as a significant target commonly for multiple

malignant tumors (breast, lung, liver, colon, among others) and

found to be involved in the initial developmental stage and

maintenance of CSCs (154, 155). Few inhibitors that address the

unmet clinical necessities in cancer immunotherapies targeting

TGF-b/SMAD signaling pathway are galunisertib (LY2157299)

(156), vactosertib (TEW-7197) (157), LY2109761 (158),

LY3200882 (159), MDV6058 (PF-0695229), GFH018 (160), YL-

13027 (157), AGMB-129 (ORG-129) (161), SH3051, Trabedersen

(AP 12009) (157), fresolimumab (GC1008) (162), AVID200 (163),

ABBV-151 (164), SRK-181 (165), and bintrafusp alfa (M7824)

(166). The inhibitor shown in Figure 2 blocks the TGF-b/SMAD

pathway (164, 167–172).
2.4.5 PPAR
The PPAR pathway activation (comprising PPARa, PPARd, and

PPARg subtypes) involves the binding of G-protein-coupled receptors

to its respective ligand, which leads to the induction of translocation of

nuclear receptor protein PPAR responsible for gene expression
FIGURE 2

An overview of a few cancer stem cell (CSC)-targeted therapeutic agents that have been approved or are undergoing clinical trials. Adapted and
modified with permission from PS Kharkar (Copyright 2020, American Chemical Society) (45, 119–123).
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(173–176). The PPARs are involved in cell proliferation modulation,

apoptosis, cell survival (stimulatory or inhibitory effects on cancer

progression), EMT process regulation, and stem cell-like properties of

CSCs (116). PPARb/d also regulates tumor angiogenesis in vivo and in

vitro in CSCs by the promotion of proangiogenic factors such as VEGF

and interleukin-8 (IL-8) (177). PPARa and PPARb/d regulated CSCs

for metabolic reprogramming in GBM, lung cancer, and mouse

mammary gland carcinoma, suggesting its association with CSC

metabolism (178). A clinical trial is being conducted with

efatutazone and metformin, which target the PPAR signaling

pathway (Figure 2) and have antiproliferative, anticancer stem cell

activity, maintenance of chemosensitivity, apoptosis, and reverse

chemotherapy resistance and reduce migration and metastasis of

cancer cells (179, 180).

2.4.6 JAK/STAT
JAK/STAT signaling plays a crucial role in the development of

multiple cancers and is directly associated with growth, metastasis,

and progression whereas indirectly linked to the immune

surveillance modulation and is activated during the recruitment

and activation of JAK by the cytokine receptors (181, 182). The

receptor tyrosine is then phosphorylated by JAK followed by the

recruitment of STAT proteins (182, 183). The phosphorylation of

STAT results in the translocation of its dimers to the cell nucleus for

DNA binding to initiate the transcription of target genes (184). The

JAK protein consists of JAK1–3 and Tyk2, whereas the STAT family

comprises STAT5a, STAT5b, STAT1-4, and STAT6. In the case of

high-grade gliomas, JAK1/2-STAT3 along with a hypoxia-induced

pathway utilizing hypoxia-inducible factor 1a (HIF-1a) TF has

been reported for enhancing the self-renewal capability of glioma

stem-like cells (178, 181, 185). The antitumor molecules Pacritinib,

fedratinib, tofacitinib, baricitinib, abrocitinib, filgotinib, oclacitinib,

peficitinib, upadacitinib, deucravacitinib, and delgocitinib (186–193)

have garnered interest as potential candidates for modulating the

JAK/STAT pathway (Figure 2) and were found to be effective in

reducing cell proliferation and viability, promoting apoptosis and

obstructing invasion (189, 194).

2.4.7 PI3K/Akt
PI3K/Akt is an intracellular phosphatidylinositol kinase, while

the mTOR pathway comprises a regulatory subunit p85 along with a

catalytic subunit p110 having serine/threonine (Ser/Thr) kinase and

phosphatidylinositol kinase (195, 196). The three isoforms of Akt

(Akt1-3) are directly activated by PI3K (197). The mTOR complex is

a downstream target gene with two multiprotein complexes

(mTORC1 and mTORC2) (198, 199). mTORC2 phosphorylates

the Ser473 residue of Akt (200), resulting in Akt activation (178).

This pathway can be activated by various mechanisms including

insulin-like growth factor (IGF)/IGFR, ErbB, and fibroblast growth

factor (FGF)/FGFR signaling (116, 201). The PI3K/AKT/mTOR

pathway is crucial for the growth of cancer cells, involved in the

cell cycle, proliferation, quiescence, migration and invasion of CSCs,

and therapeutic resistance (178, 202, 203). Clinical analysis of

multiple small molecules dysregulating PI3K/AKT/mTOR pathway,

including buparlisib (BKM120), pictilisib (GDC-0941), idelalisib,
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alpelisib (BYL719), serabelisib, taselisib (GDC-0032), gedatolisib

(PF05212384), voxtalisib (SAR245409/XL765), MK2206,

capivasertib (AZD5363), perifosine, uprosertib (GSK-2141795),

aspirin, rapamycin, everolimus, temsirolimus, metformin,

onatasertib (CC223), sapanisertib, and vistusertib (AZD2014) (204–

207) (Figure 2) are found to reduce tumor progression and improve

chemotherapy treatment efficacy (46, 47, 208–219).

2.4.8 NF-kb
NF-kb is a rapid inducible TF along with five different proteins,

namely, RelB, NF-kb1, NF-kb2, p65, and c-Rel (220). The major

physiological function of NF-kb is p50-p65 dimer (221). The activity of

NF-kb complex is regulated by canonical and non-canonical signaling

pathways (220, 222). Cytokines involved in tumor-promoting

inflammation including TNF-a, IL-1, IL-6, COX2, iNOS, and

MCP1, and factors like Cyclin E, Cyclin D, and proto-oncogen c-

Myc are accountable for the activation of the NF-kb pathway resulting

in the cancer cell proliferation (160, 178, 223, 224). The NF-kb
pathway is involved in the stimulation, EMT, invasiveness,

angiogenesis, apoptosis prevention, and metastasis of CSCs (160,

184). The NF-kB signaling cascade is reported to be targeted using

ferulic acid, vanillic acid, curcumin, resveratrol, nobiletin, trilobatin,

apigenin, cirsiliol, scutellarein, acacetin, chalcone 2, luteolin,

anthocyanidin, ginsenoside Rg-3, chlorogenic acid, quercetin,

dehydroxymethylepoxyquinomicin (DHMEQ), nepalolide A, and

parthenolide (Figure 2), ensuring interruption in tumor growth and

proliferation, considering low toxicity to healthy cells (224–239).
3 CRISPR/Cas9 technology for cancer
therapy

CRISPR/Cas9 (Clustered regularly interspaced short

palindromic repeat)/CRISPR-associated protein 9) is a

revolutionary genome-editing tool that can be used to regulate

endogenous gene expression by both gene insertion and knockout

relying on the Cas9 protein and the guide RNA (gRNA), making it a

very powerful and versatile tool (240, 241). The suppression of

oncogenes or upregulation of tumor suppressor genes can improve

targeted therapy by confronting drug resistance and improving

immunotherapy with CRISPR/dCas9 (242). This tool has been used

to treat a wide variety of cancers and has demonstrated prominent

outcomes (243–246). Researchers using CRISPR/Cas9 technology

have recognized novel genes for cancer treatment such as

suppression of NAD kinase (NADK activates pentose phosphate

pathway involved in cancer survival) or ketohexokinase (KHK

suppression leads to elevated fructose metabolites intricate in liver

cancer progression) and inhibit tumor growth (245). Chen and co-

authors discovered that alisertib is more effective when HASPIN

(histone H3-associated protein kinase) is inhibited through

CRISPR/Cas9 in breast cancer (247). Protein-L-isoaspartate (D-

aspartate) O-methyltransferase (PCMT1) promotes ovarian

carcinogenesis through FAK-Src activation (248). Accordingly,

many tumor-associated genes (oncogenes, drug-resistant genes,

tumor suppressor genes, immune evasion genes, and metabolic
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reprogramming genes) are targeted through CRISPR-Cas9, for

instance, KRAS, p53, EGFR, PTEN, Nestin, BRAF, HASPIN

FGFR, FAK, BRCA gene, PIK3CA, VEGFR, HER2, LDHA,

NADK, ALK, NOTCH1, PD-L1, ABCB1, TERT, and LGALS2

(190, 242, 245, 247–254). In 2016, Sichuan University’s West

Society China Hospital recruited its first patient to test the

effectiveness of CRISPR/Cas9 in cancer therapeutics (255). The

use of CRISPR-edited T cells in a phase I clinical trial in patients

with non-small-cell lung cancer has been demonstrated to be safe in

human subjects with advanced non-small-cell lung cancer (256).

The most significant barrier to clinical CRISPR/Cas9 applications is

the lack of efficient and safe delivery systems (242). The delivery

system must overcome many physical barriers, in addition to high

encapsulation and biocompatibility, to deliver CRISPR/Cas9

components to the target, thereby attaining precise and effective

treatment (242). There has been increasing attention to the

application of non-viral vectors that rely on nanotechnology for

anticancer cargo delivery (257). In addition to polymers, lipids,

porous silicon, and mesoporous silica, have been used to treat

different cancers because of their low immunogenicity, high

biocompatibility, and ideal cargo delivery capabilities (242). Zhen

et al. (258) injected nude mice with long-circulating pH-sensitive

cationic liposomes targeted to splicing HPV16 E6/E7 cervical

cancer cells, causing them to undergo apoptosis by inactivating

them, thus inhibiting tumor growth without causing significant

toxicity (258). In another study, multistage delivery nanoparticle

(MDNP)/dCas9-miR-524 was administered to mice bearing MDA-

MB-231 and LN-229 tumors, resulting in the significant

upregulation of miR-524 expression (259). This upregulated

expression then interferes with multiple signaling pathways

associated with tumor proliferation, causing significant tumor

growth retardation. MDNP was used to deliver CRISPR/Cas9,

providing optimal efficiency in communicating with tumor tissues

even in the face of multiple physiological barriers (259). Liu and

colleagues discovered a nanoCRISPR system based on

semiconductor polymers (SPs) that enables near-infrared (NIR)

photoactivatable gene editing to advance the delivery proficiency of

CRISPR and to improve cancer treatment effectiveness (259). This

nanoCRISPR system can deliver sgRNA and generate heat using the

photothermal effect when the NIR laser is irradiated (259). A

localized heat event causes the dissociation of single-stranded

DNA from single-stranded RNA to trigger sgRNA release,

allowing precision cancer therapy using CRISPR (260).
3.1 Clinical trials of the CRISPR/Cas9
system for cancer therapy

We focused on published and ongoing clinical trials involving

the CRISPR/Cas9 system’s capability of treating cancer. Phase I

trials involving TALEN and CRISPR/Cas9 targeting HPV16 and

HPV18 E6/E7 identifiers are underway to evaluate the safety and

efficacy of the treatment for patients with HPV (+) CIN (261). In

parallel, NCT04976218 specifies a phase I trial to evaluate CAR-

EGFR-TGFR-KO T cells engineered through CRISPR/Cas9 to
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target TGF-b receptor II in previously treated EGFR-positive

tumor cells (262). The CRISPR/Cas9 technology was used to

knock out CD5 in CT125A cells (NCT04767308), a novel CAR

T-cell therapy currently being tested in patients with relapsed/

refractory CD5+ hematopoietic malignancies (263). The knockout

of the PD-1 and TCCR genes using CRISPR/Cas9 was evaluated for

safety, feasibility, in vivo persistence, and antitumor response in

multiple solid tumor patients with mesothelin-positive cells (264).

NCT03747965 is also associated with the CRISPR-engineered PD-1

gene knockout mesothelin-targeting CAR T-cell therapy for the

treatment of neoplastic mesothelin-positive tumors in colorectal

cancer (265). A trial evaluating the safety of PD-1 knockout T cells

in patients with advanced esophageal cancer was completed and

registered with identifier NCT03081715 (266). An alternative study

identified as NCT05066165 aims to evaluate the activity and safety

of NTLA-5001 in patients with acute myeloid leukemia following

first-line or later treatment (267). NCT04035434 aims to investigate

the safety and effectiveness of allogenic CRISPR/Cas9-engineered

CTX110 T cells in patients with relapsed or refractory B-cell

malignancies (268). C70-directed allogeneic CRISPR/Cas9-

engineered CAR T-cell (CTX130) therapy in relapsed or

refractory T-cell malignancies is being evaluated in another phase

I study (NCT04502446) (269). Using premade allogeneic T cells

from healthy donors (NCT05037669), a phase I study aims to

evaluate the feasibility and safety of administering premanufactured

allogeneic T cells that express CD19-targeting CAR knockouts

targeting HLA class I, HLA class II molecules, and endogenous

TCRs via CRISPR gene editing of beta-2 microglobulin, CIITA, and

the T-cell receptor alpha chain (270). Phase I of the CTX120 study

(NCT04244656) is evaluating the efficacy and safety of anti-BCMA-

engineered T cells in patients with relapsed or refractory multiple

myeloma (271). An open-label phase I study called COBALT-RCC

(NCT04438083) wi l l assess the e fficacy , sa fe ty , and

pharmacokinetics of CRISPR/Cas9-engineered T cells (CTX130)

in patients with advanced, relapsed, or refractory renal cell

carcinoma (272). NCT03166878 is a phase I/II study evaluating

the efficacy and safety of UCART019 gene-edited allogeneic CD19-

targeting CAR T cells in patients with relapsed or refractory CD19+

leukemia and lymphoma (273). Allogeneic gene-edited dual-

specificity CD22, CD20, or CD19 CAR T cells are undergoing a

phase I/II trial (NCT03398967) for treating patients with relapsed

or refractory leukemia or lymphoma (274). Allogeneic TT52CAR19

T cells (NCT04557436), modified by CRISPR, are being studied in

an open-label trial to treat relapsed or refractory CD19+ B-cell acute

lymphoblastic leukemia in children (275). Trials utilizing CRISPR/

Cas9-mediated CCR5 deletion of hematopoietic stem cells in HIV-1

and acute lymphoblastic leukemia patients have been partially

successful (NCT03164137), which emphasizes a need for more

efficient disruption of CCR5 in lymphocytes (276).
4 Regulatory landscape for nanodrug

Nanopharmaceutical development from the manufacturing to

scale-up provisions may benefit from the 5R concept, which
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involves “right target/efficacy”, “right tissue/exposure”, “right

patients”, and “right safety”, as proposed (277). Conventional

drugs modified into nanoscales for targeted delivery can also be

modified in terms of their pharmacokinetics, biodistribution, and

toxicokinetic properties; as a result, they foster concerns over

quality, safety, and efficacy (278). A number of regulatory

authorities worldwide have developed guidelines/frameworks for

nanopharmaceuticals in an attempt to ensure transparent,

consistent, and predictable regulatory pathways considering safety

as well as toxicity (279). Regulatory agencies in their respective

jurisdictions include the US FDA, European Medicines Agency

(EMA), and Central Drugs Standard Control Organisation, India

(CDSCO) (278). The agencies have established guidelines for

clinical trials, dossier submissions, and pharmacovigilance as a

means of protecting public health (280). Participation by the US

FDA is envisioned to establish a science-based approach to the

regulation of nanomaterial-based products, build regulatory science

knowledge, and facilitate the practice of nanomaterials in regulatory

agencies (281). A number of nanodrugs have been developed and

approved by the US FDA in collaboration with the National

Nanotechnology Initiative (NNI) and Nanotechnology

Characterization Laboratory (NCL), which may advance

effectiveness and safety measures (281, 282). The EMA is also

working to develop regulatory guidelines for the evaluation of

nanomedicine products with the European Technology Platform

on Nanomedicine (ETPN) and the European Nanomedicine

Characterisation Laboratory (EU-NCL) (283). Nanotechnology

products are regulated by the FDA and EMA as part of the

Innovation Task Force (ITF), an international, multidisciplinary

group that includes precise, regulatory, and legal expertise (283).

India’s national regulatory authority oversees drug approvals and

post-marketing surveillance through the CDSCO, an agency under

the Ministry of Health & Family Welfare (284). Nanodrugs

approved by the FDA for cancer treatment have different targets

including protein synthesis, DNA damage, immunostimulation,

microtubule, and hormone inhibition (284). The approved drugs

include lipid-based nanoformulation metallic nanoparticles,

polymer–drug conjugate drug-targeted antibodies, recombinant

viruses, and herbal nanoparticles (285). The FDA- or EMA-

approved drugs are DaunoXome® , Marqibo® , Doxil® ,

Aurimmune®, AuNPs®, Eligard®, SMANCS, Kadcyla®, Ontak ®,

Gendicine®, Abraxane®, and nanoformulated curcumin (278, 284,

286). An overview of some FDA-approved nanodrugs is depicted

in Table 2.
5 Nanocarrier-mediated drug delivery
to CSCs

Nanocarrier used to treat CSCs specifically offers great

possibilities. CSC targeting nanocomposite is premeditated based

on the notion of ligand–receptor interaction, as tumor tissues

express numerous biomarkers distinctively from normal tissues

(329–331). The common surface markers between CSCs and
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normal stem cells protect the latter from the damaging effects of

chemotherapeutic agents, despite their similarity in surface markers

(10). In addition to enhancing drug accumulation in CSCs, it also

protects normal stem cells from therapy-based side effects (332).

Compounding the drugs has another advantage in eliminating

CSCs due to retrogressive drug resistance, constrained self-

renewal, and promotion of differentiation (333, 334).

Nanocarriers are colloidal systems with particle sizes below 1,000

nm (335) and were customized in the range of 10 and 200 nm

(mainly for drug delivery) (336) to allow the NCs entry into blood

vessels within the tumor (123). NCs are modulated with ligands

using peptides, antibodies, small molecules, immunotherapeutics,

and chemotherapeutics as well as natural polysaccharides that

target receptors of CSCs displaying specific binding efficiency and

subjected to both preclinical and clinical studies (337) (Table 3). A

schematic illustration of the ability of ligand-modified NC to target

cancer cells is shown in Figure 3. A wide range of nano-vehicles

mostly enter the cytoplasm over the nucleus where anticancer drugs

are highly effective (375). A drug molecule internalizing in the

cytosol is unlikely to interact with a subcellular target; therefore,

nanoparticle design and optimization are essential to allow cellular/

nuclear targeting (376). As a result of leaky tumor vasculatures and

poor lymphatic drainage, nanoparticles are more likely to

accumulate in tumors than in normal tissues (377). A passive

targeting strategy relies on the EPR effect, while active targeting

includes targeting tumor cells via ligand-modified nanocarriers that

interact with specific receptors (378). Numerous efficient ligands

including folic acid, aptamers, hyaluronic acid, biotin, transferrin,

peptides, antigens, antibodies, siRNA, small molecules, and FDA-

approved drugs (378) have been widely discovered for selective

cancer cells and CSCs, reducing localized toxicity, modulating

tumor microenvironment, and overcoming blood–brain barrier

and drug resistance (Figure 3). Kim et al. designed a dual-

molecule liposome loaded with doxorubicin and DNA aptamers

for the differentiation and targeting of breast tumor cell spheroids

and CSCs; one aptamer targets the surface marker mucin 1 antigen

(MUC1; a transmembrane glycoprotein) on breast tumor cells,

while the other targets the CSC marker glycoprotein CD44

antigen (379). Cho examined CBP4, a small peptide that exhibits

an affinity for CD133, a biomarker of glioblastoma cancer stem cells

(380) conjugated with gold nanoparticles demonstrating fluorescent

signals, was used in glioblastoma imaging and diagnosis. Another

study found that topoisomerase inhibitor SN-38 conjugated

nanoparticles packed with anti-CD133 antibodies bound

efficiently to overexpressing CD133 cells (CD133Ab-NP-SN-38)

in HCT116 colon cancer cells (381), showing cytotoxicity and

inhibiting colony formation when compared with non-targeted

nanoparticles (NP-SN-38) (381). An in vivo study in HCT116

xenograft nude mice (Figures 4A–D) demonstrated that

CD133Ab-NP-SN-38 inhibited tumor growth and delayed tumor

recurrence (381). Researchers have developed a polymeric chitosan-

coated nanoparticle encapsulated with doxorubicin capable of

binding specifically to CD44 receptors, thereby eliminating

CD44+ cancer stem-like cells and reducing tumor size and

cytotoxicity without causing systemic toxicity (382).
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TABLE 2 An overview of different types of nanocarriers targeting CSC-specific markers/pathways and the characteristics of their shapes, sizes, and loading abilities, along with applications, advantages, and
limitations of nanotherapeutic strategies.
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TABLE 2 Continued

Type Size Structure Entrapment Drug Advantages Limitations Applications References
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of NPs efficiency
(%)

loading
(%)
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CSC, cancer stem cell; NPs, nanoparticles; HA, hyaluronic acid; ROS, reactive oxygen species; QDs, quantum dots; CNT, carbon nanotube.
i
,

e

e

a

i

s

t

i

https://doi.org/10.3389/fonc.2025.1499283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumbhakar et al. 10.3389/fonc.2025.1499283
TABLE 3 Clinical trials involving nanodrug-based products approved by the FDA and EMA.

Name Material description Effective against Advantages References

Onivyde® (Merrimack) Liposomal irinotecan Pancreatic cancer Effective delivery to tumor spot; minor
systemic toxicity due to side effects

(338, 339)

DepoCyt© (Sigma–Tau) Liposomal cytarabine Lymphomatous meningitis Effective delivery to tumor spot; minor
systemic toxicity due to side effects

(340)

Doxil® PEGylated STEALTH® liposomes
composed of MPEG-DSPE, HSPC,
and CHO

Karposi’s sarcoma Effective delivery to tumor spot; minor
systemic toxicity due to side effects

(341, 342)

Caelyx™ PEGylated liposomal doxorubicin
composed of MPEG-DSPE,
HSPC, CHO

Kaposi’s sarcoma, multiple
myeloma, ovarian and breast
cancer, head and neck cancer

Longer circulation time and better off-
target profiles

(341, 343)

Marqibo® (Onco TCS) Liposomal vincristine Acute lymphoblastic leukemia Effective delivery to tumor spot; minor
systemic toxicity due to side effects

(339)

Myocet® (190 nm) Liposome-encapsulated
doxorubicin citrate

Metastatic breast cancer Effective delivery to tumor spot; minor
systemic toxicity due to side effects

(341)

DaunoXome® (Galen) Daunorubicin citrate encapsulated in
non-PEGylated liposomes composed
of DSPC and CHO (2:1)

Karposi’s sarcoma Longer circulation time, enhanced
tumor uptake

(283)

Ontak® (Eisai Inc.) Engineered protein combining IL-2
and diphtheria toxin

Pancreatic cancer, cutaneous T-
cell lymphoma

Lysosomal escape; specificity of
targeting T cells

(339)
(344)

Abraxane®/ABI-
007 (Celgene)

Albumin-bound
paclitaxel nanoparticles

Ovarian cancer; multiple
myeloma, breast cancer, NSCLC,
pancreatic cancer

Improved solubility; improved delivery
to tumor site

(341)
(339)

Liposome Prostate cancer

Protein nanoparticles Kaposi’s sarcoma; ovarian cancer;
metastatic breast cancer

Eligard (Tolmar) Liposome Leuprolide acetate
and polymer

ALL Longer circulation time, precise
drug delivery

(283)

Lipo-Dox Liposome liposomal doxorubicin Malignant hypothermia Reduced systemic toxicity of free drug (341)

Oncaspar (Baxalta U.S.) Liposome pegaspargase ALL Better protein stability, selective
targeting of leukemic cells

(345)

Ryanodex
(Eagle Pharmaceuticals)

Liposome dantrolene sodium Breast cancer,
pancreatic adenocarcinoma

Higher dose administration at a
faster rate

(346)

EndoTAG-1
(SynCore Biotechnology)

Lipid-based nanoparticle
with paclitaxel

Non-small-cell lung cancer,
breast cancer

Cancer cytotoxicity and
cytostatic potency

(347) (348)

Tecemotide (Merck KGaA) Lipid-based nanoparticles with
MUC1 antigen

Advanced solid tumors, lung,
biliary, bladder, or
pancreatic cancers

sMUC1 or ANA biomarkers elevated (349)

MM-302
(Merrimack
Pharmaceuticals)

Lipid-based nanoparticles with
doxorubicin hydrochloride

Solid tumor malignancies MM-302 failed to validate benefits over
the control, hence not approved

(350)

Nanoplatin (NanoCarrier) Polymer-based nanoparticles
with cisplatin

Renal and rectal cancer,
ovarian cancer

Longer blood circulation, enhanced
accumulation in tumor tissues, tumor
growth inhibition

(351)

CT-2106 Polymer-based poly(L-glutamic
acid) nanoparticles

Melanoma Longer plasma half-life, less renal
clearance, and good solubility

(352)

CRLX101 (Cerulean) Polymer-based nanoparticles with
cyclodextrin-camptothecin

Melanoma Increased distribution to tumor tissues
with good tolerability

(352–354)

Taxoprexin
(Luitpold Pharmaceuticals)

Lipid-based nanoparticles
with paclitaxel

Breast and brain metastases Less toxicity and enhanced
tumor response

(355)

Allovectin-7® (Vical) VCL-1005 plasmid Melanoma Effective for melanoma stage III/IV (356)

(Continued)
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TABLE 3 Continued

Name Material description Effective against Advantages References

NKTR-102
(Nektar Therapeutics)

Polymer-based nanoparticles
with irinotecan

Pancreatic cancer Significant advance in patient’s
survival rate

(357)

MAGE-A3+AS15 (GSK) Lipid-based nanoparticles with
human melanoma-associated antigen
A3 protein

Esophageal and gastroesophageal
junction adenocarcinoma

Market withdrawal of MAGE-
A3 immunotherapeutic

(358)

NC-6004 (NanoCarrier) Polymer-based nanoparticles
with cisplatin

Non-small-cell lung tumor, breast
tumor, gastric tumor

Effective antitumor potency (359)

SP1049C Polymeric micelle with Pluronics®

L61/F127
Sarcoma, advanced lung and liver
metastases hepatocellular
carcinoma, head and neck
squamous cell carcinoma

Multi-pathway pro-apoptotic inhibition (360

Lipoplatin Polymeric micelle PEGylated cisplatin
liposomal platinum
drug formulations

Breast cancer Benefits chemotherapy-resistant patients (352)

NBTXR3 (Nanobiotix) Inorganic nanoparticles with
hafnium-oxide nanoparticle

Breast, colorectal, and lung tumor Boosts tumor efficacy, reducing toxic
effects on healthy tissue, non-surgical
endoscopic drug delivery for pancreatic
cancer patients

(361, 362)

NK-105 (NanoCarrier) Polymer-based nanoparticles
with paclitaxel

Metastases in the brain Effective tumor size reductions,
progression-free survival was
not achieved

(363–365)

FCE28068/PK1 Polymer–drug conjugate with DOX–
polymer conjugate

Ovarian, fallopian tube, or
peritoneal cancer

Efficacious against cancer with minimal
side effects

(366)

2B3-101 Liposome glutathione PEGylated
liposome with
doxorubicin hydrochloride

Liver and breast tumor Prevents tumor growth and
survival prolongation

(367)

XYOTAX
CT-2103 (CTI BioPharma)

Poly(L-glutamic acid) with paclitaxel Primary or metastatic liver cancer Increased tumor eradication efficacy
while reducing toxicity to
healthy tissues

(368)

Thermodox® Polymer–drug conjugate PEG
with doxorubicin

Breast tumor, ovarian tumor,
pancreatic tumor, non-small cell
lung tumor

Effective treatment 25 times greater
than doxorubicin (unapproved)

(352)

FCE28069/PK2 Polymer–drug conjugate
galactosamine-N-(2-hydroxypropyl)
methacrylamide doxorubicin

Metastatic pancreatic cancer Asialoglycoprotein receptor-mediated
active targeting of liver cancer

(369)

Genexol-PM Polymeric micelle PEG-P(D,L-lactide)
with paclitaxel/
carboplatin/gemcitabine

Acute myeloid leukemia MTD increased by threefold, without
triggering hypersensitivity

(352)

NK911 Polymeric micelle doxorubicin-
conjugated poly-aspartic acid/
polyethylene glycol

Breast cancer EPR effect causes antitumor activity (352)

CPX-351 (Vyxeos™) Liposome daunorubicin+cytarabine Ovarian tumor, advanced non-
small-cell lung tumor, DOX-
resistant breast cancer

Well tolerated and leads to
morphologic remission

(370)
(371)

EndoTAG® Liposome with paclitaxel (DOTAP,
DOPC, PTX (50:47:3)

Epithelial ovarian carcinoma Phase II trial showed good efficacy and
survival in triple-negative breast cancer
and advanced pancreatic cancer

(370)
(371)

SPI-77 Liposome PEGylated liposomal
formulation of cisplatin

Gastric, ovarian, and lung cancer,
non-small-cell lung cancer

Phase III clinical trials were not
conducted due to inactive
antitumor activity

(352)

PTX–LDE (paclitaxel-lipid
core nanoparticle)

Liposome with paclitaxel (135 mg
cholesteryl oleate, 333 mg egg PC,
132 mg Miglyol 812 N, 60 mg PTX, 6
mg cholesterol)

Solid tumors and
hematological malignancies

Tumor arrest with minimal side effects (370, 372)

(Continued)
F
rontiers in Oncology
 13
 frontiersin.org

https://doi.org/10.3389/fonc.2025.1499283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumbhakar et al. 10.3389/fonc.2025.1499283
5.1 PLGA NCs

Poly(lactic-co-glycolic acid) (PLGA) is widely employed for the

preparation of drug-loaded NCs due to its biodegradable properties

and several applications in biomedical compounds (155). PLGA

NCs are employed as a paclitaxel carrier in the case of ovarian

cancer stem cells (378, 383). PEGylated poly(lactic-co-glycolic acid)

carriers containing salinomycin (SAL-NP) and CD133 aptamers

(Ap-SAL-NP) efficiently stopped the progression of CD133+
Frontiers in Oncology 14
osteosarcoma cancer stem cells (384). Jin et al. demonstrated that

GE11 peptides conjugated with PLGA NCs can deliver the

conjugated anticancer agent, curcumin, to cells expressing EGFR

receptor (EGFR) in vitro and in vivo (385). When these curcumin-

loaded NCs were applied to breast cancer cells and tumor-bearing

mice, the signaling of phosphoinositide 3-kinase was reduced,

cancer cell viability was diminished, drug clearance from the

bloodstream was attenuated, and tumor growth was reduced

(385). After being delivered in the form of GE11-Cur-NPs, Cur
TABLE 3 Continued

Name Material description Effective against Advantages References

Lipusu® Liposome with paclitaxel (72 g PC,
10.8 cholesterol in ethanol)

Gastric and ovarian malignancies,
non-small-cell lung cancer

Antitumor efficacy with lower toxicity
on bone marrow, lower cardiotoxicity

(371, 373)

MRX34 Liposome with miR-34a
(DOTAP, cholesterol)

Refractory advanced solid tumors Subset of patients with resistant solid
tumors showed antitumor activity

(371, 374)
DSPC, distearoyl phosphatidylcholine; DOPC, dioleoyl phosphatidylcholine; DOTAP, dioleoyl trimethylammonium-propane; PTX, paclitaxel; PC, phosphatidylcholine, poly(ethylene glycol)-b-
poly(D,L-lactide); MTD, maximum tolerable dose; EPR, enhanced permeability and retention; miRNA-34, microRNA-34; MAGE A3, melanoma antigen family A3; DOX, doxorubicin; MUC1,
mucin 1; ANA, antinuclear antibodies; ALL, lymphoblastic leukemia; NSCLC, non-small-cell lung cancer; IL-2, interleukin-2; CHO, cholesterol; HSPC, fully hydrogenated phosphatidylcholine;
MPEG-DSPE, N-(carbonyl-methoxy(polyethylene glycol)-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt; FDA, Food and Drug Administration; EMA, European
Medicines Agency.
FIGURE 3

A schematic diagram showing that an array of nanocarriers modified with targeting ligands can, however, specifically attach to tumor cells’
receptors, permitting localized drug delivery or endocytosis. An illustration of active and passive targeting in antitumor nano-delivery systems.
Passive targeting is achieved by delivering nanocarriers into tumor tissues via leaky tumor blood vessels, where they accumulate due to enhanced
permeability and retention (EPR) effects. Illustration showing the ability of targeted cancer cells to absorb nanocarriers and their accumulation in
tumors that exhibit tumor suppression. Image created with BioRender.com.
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rapidly accumulates within MCF-7 cells, suggesting active receptor-

mediated endocytosis as well as passive uptake through the cell

membrane (385). Pancreatic CSCs are inhibited by anthothecol-

encapsulated PLGA NCs (Antho-NCs) through the inhibition of
Frontiers in Oncology 15
the sonic hedgehog pathway (386). Antho-NCs established show a

therapeutic role demonstrated by reduced cell motility, migration,

and invasion by upregulating E-cadherin and obstructing N-

cadherin and Zeb1 (386). The antagonistic effect of Antho-NCs
FIGURE 4

(A, B) CD133-positive (CD133+) cell was targeted with topoisomerase inhibitor SN-38-loaded nanoparticles conjugated with anti-CD133 antibody to
resolve chemotherapy failure. HCT116 overexpress CD133 glycoprotein, which was efficiently bound by anti-CD133 antibody-conjugated SN-38-
loaded nanoparticles (CD133Ab-NP-SN-38) demonstrated by the in vivo study. The tumor size depiction in mice treated with CPT11 (irinotecan, DNA
topoisomerase I inhibitor) as control group, SN-38 nanoparticles (NPs), and CD133Ab-SN38 NPs in HCT116 xenograft model. This CD133Ab-NP-SN-
38 combination thwarted tumor growth and hindered recurrence in xenograft model. Reprinted with permission from Ning et al. (381) (Copyright
2016, American Chemical Society). (C) CD44-overexpressing breast cancer stem cells (CSCs) were eradicated via chitosan-modified poly(ethylene
glycol) (PEG)–poly(propylene glycol) (PPG)–PEG micelle crosslinking loaded with doxorubicin (DOX) in comparison with the free DOX application.
DOX-loaded micelles facilitated increased DOX cytotoxicity on cancer stem cell (CSC)-expressing MCF7 breast tumor mouse model exhibiting
CD44+ overexpression by six times compared to (D) normal tissue. Enhanced permeability and retention (EPR) effect of conjugated nanoparticles
caused them to accumulate in tumor tissues more than they did in normal tissues. In addition, no noticeable systemic side effects were observed.
Reused for illustrative purposes with permission from Rao et al. (382) (© 2015, American Chemical Society).
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on pluripotency-maintaining factors and stem cell markers

indicates that they are blocking CSC generation, disrupting Gli

binding to DNA, and inhibiting Gli transcription (386). The dual

inhibition of AKT and mTOR by nimbolide-loaded PLGA

nanocarriers induces mesenchymal-to-epithelial transition in

pancreatic cancer stem cells (387).
5.2 PLGA-PEG copolymer NCs

PLGA-PEG has been employed for the simultaneous delivery of

various chemotherapeutic drugs for colorectal cancer therapy and lung

cancer treatment (254). Dhar et al. (388) created prostate-specific

membrane antigen (PSMA) targeting NCs using Pt(IV)-encapsulated

PLGA–poly(ethylene glycol) (PEG)-functionalized controlled-release

polymers for targeting cisplatin delivery to prostate CSCs (388). FA-

modified NCs encapsulating CDDP and paclitaxel (PTX) exhibited

superior targeting and antitumor efficacy against M109 cells (389).

Cisplatin-encapsulating maleimide-polyethylene glycol-poly(D,L-lactic-

co-glycolide) (mal-PEG-PLGA) in synergy with a CD44 monoclonal

antibody produced via electrospray technique was effective at inhibiting

ovarian cancer cell proliferation compared with cisplatin in free form

and PLGA without CD44-conjugated NPs (390). Core-shell NCs

fabricated using double emulsification of an amphiphilic copolymer,

methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-

PLGA), were employed for simultaneous delivery with hydrophilic

doxorubicin (DOX) and hydrophobic paclitaxel (TAX) (391). Despite

the same concentrations of DOX and TAX, NCs suppressed tumor cell

growth more efficiently than both on their own in A549, B16, and

HepG2 cells (391). The authors suggested that DOX intercalates DNA,

thereby interfering with transcription, which interrupts tubulin

synthesis. The treatment also degrades microtubules, subsequently

reducing microtubule content in tumor cells (391).
5.3 PLA-PEG NCs

Polylactic acid (PLA) is a biodegradable polymer as declared by

the FDA, and it is found to be completely excreted through

metabolism. Fabricated docetaxel (DTX) PLA NCs targeting lung

cancer stem-like cells (CSLCs), on administration, indicated

observable inhibition in tumor growth and anti-metastatic efficacy

(392). Studies have shown that encapsulating salinomycin (SAL) in

PLA NCs improved its pharmacokinetics and biodistribution

profile, demonstrating efficacy against chemo-resistant cancer

cells and CSCs (393). Also, when administered to Ehrlich ascites

carcinoma (EAC) tumor-bearing mice, SAL: DOX co-loaded NCs

caused significant tumor regression and complete inhibition of

cancer recurrence (393, 394). Ahmadi-Nouraldinvand and

colleagues designed PLA-PEG-based NCs, namely, PLA-chitosan-

PEG-folic acid (COPA), PLA-chitosan-PEG-glucose (COPB),

COPA and COPB (COPAB), and chitosan-PLA-PEG-FA/Glu/

VEGF/siRNA/PTX (NCsAB/siRNA/paclitaxel for efficient siRNA
Frontiers in Oncology 16
and paclitaxel drug delivery to MCF-7 cells (395). The author

opined that the release of siRNA and paclitaxel nanocarrier was

favorable due to the acidic environment of tumor tissues (395).

Curcumin and bortezomib, both slightly water-soluble anticancer

drugs, were loaded as a complex (curc-BTZ) into methoxy-poly

(ethylene glycol)-block-polylactic acid (mPEG-b-PLA) diblock

copolymers, which demonstrated induced cytotoxicity in HeLa,

MCF-7, and MDA-MB 231 cells (396).
5.4 Hyaluronic acid NCs

HA is an anionic, non-sulfated glycosaminoglycan that exhibits

biocompatibility, biodegradability, and non-immunogenic properties,

making it an excellent candidate for conjugating different drugs in

cancer treatment (397). HA-functionalized NCs co-delivering

camptothecin (CPT) and curcumin (CUR) (HA-CPT/CUR-NCs)

exhibit synergistic anticancer effects, making HA-CPT/CUR-NCs a

promising approach for colon cancer-targeted therapy (398).

Inhibitory effects of naproxen nanoparticles coated with hyaluronic

acid (HA) are demonstrated in breast cancer stem cells through

modifications in the GSK-3b-related COX-independent pathway,

providing a controlled release of naproxen, leading to apoptosis

(399). An effective binding of HA (HA-eNCs) to CD44-enriched

B16F10 cells was observed when all-trans-retinoic acid (ATRA)-

encapsulated cationic albumin functionalized with HA (HA-eNCs)

was applied to CSCs overexpressing CD44, triggering targeted

delivery of drugs to eradicate CSCs (400).
5.5 Liposomes

Liposomes are characterized by self-accumulated vesicles

consisting of a bilayer of lipids that completely encircles an

internal aqueous phase (401). Liposomes can be a drug carrier to

both hydrophilic and hydrophobic molecules, which is its major

advantage (402). Using anti-CD44 antibodies, Wang et al. delivered

liposomal NCs loaded with Dox and triple fusion (TF) genes

consisting of the herpes simplex virus truncated thymidine kinase

(HSV-ttk), renilla luciferase (Rluc), and red fluorescent protein

(RFP) (403). As a result, non-invasive molecular imaging

techniques were developed for monitoring and evaluating

targeting efficacy and gene therapy in hepatocellular carcinoma

(HCC) cells (403). CD133+ glioma stem cells undergo selective

apoptosis and differentiate into non-stem-cell lineages following

administration of dual-modified cationic liposomes (DP-CLP) with

survivin siRNA and paclitaxel (404).
5.6 Gold nanocarriers

Gold nanocarriers (AuNCs) are known to lack the ability to

induce adverse and acute toxicity; due to their unique optical
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properties, remarkable biocompatibility, easy turning of

physicochemical properties, and surface chemistry (405, 406), they

have been considered as a potential contrast agent in in vivo imaging

(407). AuNCs conjugated with the antimetabolite 5-fluorouracil (5-

FU) and CD133 antibody could enhance specific targeting by AuNPs

and therefore reduce non-specific binding, thus reducing the

possibility of systemic side effects in colorectal cancer CSCs (408).

Gold nanoparticles were modified by modifying their surfaces with 6-

mercapto-1-hexanol so that protoporphyrin IX and folic acid could

be conjugated simultaneously for improved internalization through

photochemical processes (409). The results showed that when

compared to conventional photodynamic therapy, selective

phototoxicity was increased in cancer cells (409). A combination of

5-aminolevulinic acid (5-ALA)-bound AuNCs and photodynamic

therapy (PDT) decreased the invasion of cutaneous squamous cell

carcinoma cells and the migration potential of the cells (410).
5.7 Micelles

Self-assembling nanomicelles (10–100 nm) are colloidal

dispersions with a hydrophobic core and a hydrophilic shell (411).

Boosted tumor suppression and apoptosis in vivo were observed in

H460 human lung cancer cells and CSCs with the application of

phenformin-loaded micelles (Phen M) along with gemcitabine-

loaded micelles (Gem M) (412). The development of poly(styrene-

b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid

(PLGA) by double emulsions loaded with covalently bound

temozolomide (TMZ) and/or RG7388 (idasanutlin) to CD133

aptamer, resulting in the possibility of targeting glioblastoma CSCs

in combination with simultaneous diagnostic imaging, has been

demonstrated (413). Ghosh and Biswas developed Pluronic P105

micelles loaded with doxorubicin and PTX loaded with dextran

stearate were used to target melanoma folate-positive B16F10 cells

and breast cancer cells (414).
5.8 Polymeric NCs

Polymeric NCs (PNCs) are hydrophilic cores that are

surrounded by a polymeric substance with a size range of 1–

1,000– nm used by Sun et al. to target gastrointestinal CSCs

(415). NanoCurcTM, a polymer-encapsulated curcumin

nanoparticle formulation, significantly enhanced brain CSC

treatment by augmenting curcumin’s bioavailability and

encouraging apoptosis, cell cycle arrest, growth reductions, and

clonogenicity in brain CSCs with a reduction in CD133+ population

of brain tumors (58). A study demonstrated efficient delivery

of salinomycin to the EGFR−overexpressing osteosarcoma

CSCs and cancer cells, which led to a reduced CSC population on

osteosarcoma cells and CSCs by EGFR aptamer-bound,

salinomycin-loaded polymer-lipid hybrid nanocarriers (EGFR-

SNCs) (416).
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5.9 Dendrimers

A dendrimer is defined as a three-dimensional macromolecule

with multiple polymeric branching having the capability of

structural modifications (417). Dendrimers are studied for their

application in drug and gene delivery including poly(propylene

imine) (PPI), poly−L−lysine (PLL), polyamidoamine (PAMAM),

polyglycerol, poly(etherhydroxylamine) (PEHAM), and poly(ester

amine) (PEA) (418). A temozolomide-loaded polyamide-amine

dendrimer in a PAMAM delivery system was developed to

explore its potential in targeting melanoma cells in vitro (419). Li

et al. targeted CD44+ gastric cancer cells with hyaluronic acid-

modified polyamidoamine dendrimer G5-entrapped gold NCs

bound to the METase gene, resulting in repressed tumor growth

of gastric cells (420). The study of Kesharwani et al. (421) utilized a

CD44-targeted G4 PAMAM dendrimer combined with HA,

followed by 3,4-difluorobenzylidene curcumin (CDF) for targeting

MiaPaCa-2 and AsPC-1 cells. HA-PAMAM-CDF increased the

cytotoxicity and antitumor activity in MiaPaCa-2 cells compared to

AsPC-1 cells (421).
5.10 Quantum dots

Quantum dots (QDs) are semiconductor nanocarriers with

excellent fluorescence properties and have been shown to possess

significant imaging, sensing, and therapeutic advantages for cancer

treatment in its earliest stages (422). QDs conjugated to anti-HER2

were used for immunolabeled breast and lung cancer cells and

showed superior performance in a panel of lung cancer cells with

differential HER2 expression, suggesting that they may be a useful

tool for the identification of cancer biomarkers at an early stage

(423). A study of QDs using EGFR mutation-specific antibodies

showed superior effectiveness and sensitivity to traditional mainstays

in determining patients’ disease status and therapeutic decisions

(424). Researchers have demonstrated the performance of QD-based

miRNA nanosensors for detecting point mutations in mir-1962a2,

which is abnormally expressed in NSCLC patients’ lung tissues

(425). To study the cytotoxicity pathway in hepatocellular

carcinoma HepG2 cells, Nguyen et al. (426) synthesized a

cadmium telluride quantum dot (CdTe-QD) method, which

exhibited apoptosis in HepG2 cells following improved caspase-3

activity, poly ADP-ribose polymerase (PARP) cleavage, and

phosphatidylserine externalization. Moreover, augmented activity

of Fas levels and caspase-8 markers for extrinsic apoptosis

pathway were also observed due to CdTe-QDs (426).
5.11 Nanodiamonds

Nanodiamonds (NDs) possess properties like biocompatibility

and efficient drug delivery capability, making them a crucial

nanoparticle-based vehicle (427). Nanodiamonds upon cracking

form very-small-sized semi-octahedral carbon structures with
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crystallographic surfaces and sharp edges (428). Their surfaces can

be used with small molecules, imaging agents, therapeutic

biomolecules, genetic material, and targeting ligands, i.e., by a

wide range of biological and chemical agents (429, 430).

Chemoresistance was overwhelmed in hepatic cancer cell lines

when an epirubicin-nanodiamond complex (EPND) was

prepared, exhibiting enhanced efficiency compared with the

original epirubicin (431). The dissociation of epirubicin from ND

can be trigged by intracellularly charged protein molecules (431). It

was found that micropinocytosis is crucial for the uptake of EPND,

while inhibitors of clathrin-mediated endocytosis may weaken the

uptake of EPND (431).
5.12 Carbon nanotubes

Carbon nanotubes consist of crystalline graphene; express

exceptional properties like solubility in water, membrane

penetration, discrimination of tumor retention, high drug loading

capacity, less toxicity, and Raman properties; and are important for

nanotechnology and clinical research (432–438). Research has

shown that carbon nanotube-mediated thermal treatment can

ablate both bulk breast tumors and breast cancer stem cells,

impacting tumor growth, proliferation, and recurrence (439). A

multimodal single-walled carbon nanotube (SWCNT)

functionalized with CD44 antibodies established selective anti-

CD44 targeting, providing effective therapy against breast CSCs

(440). Distearoylphosphatidylethanolamine–hyaluronic acid

(DSPE-HA) nanotubes were synthesized with a single coupling

point in order to yield SWCNTs (DSPE-HA SWCNTs) with high

dispersion and biocompatibility for targeting CD44-overexpressing

cells (441). They developed novel drug delivery systems for

epirubicin (EPI) using DSPE-HA SWCNTs as carriers, i.e., EPI-

SWCNTsDSPE-HA (441). A549/Taxol cells and tumor spheroids

were treated with EPI-SWCNT-DSPE-HA complexes for efficacy

testing. It was found that EPI-SWCNT-DSPE-HA significantly

increased intracellular EPI accumulation via CD44 receptor-

mediated endocytosis in multidrug-resistant cancer cells (441).
6 Extracellular vesicles

6.1 Cellular exosomes: sources and
structures

Extracellular vesicles (EVs) are lipid bilayer NCs found in the

cytoplasm with diameters ranging from 30 to 2,000 nm, comprising

sugars, nucleic acids, proteins, and lipid biomolecules (382). The

smallest EVs ascended from multi-vesicular endosomes. Stem cells,

cancer cells, immune cells, nerve cells, and other cell types secrete

exosomes, which are found in saliva, amniotic fluid, tears, breast

milk, platelets, plasma, red blood cells (RBCs), cerebrospinal fluid,

bronchial fluid, synovial fluid, intestinal epithelium, nerve, urine,

semen, lymph, bile, and stomach acid, are illustrated in Figure 5A

(443–445). The plasma membranes of EVs begin budding inward,
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forming early endosomes that later develop into late endosomes

after maturation and multivesicular bodies (MVBs) with

intraluminal vesicles (ILVs) (446). Plasma membranes and MVBs

fuse to release exosomes; microvesicles are delivered by direct

budding of the plasma membrane externally (447). EVs have

plenty of cargos, such as proteins, nucleic acids, metabolites, and

lipids (448). EVs are uptaken by recipient cells via various processes

including endocytosis, ligand–receptor interaction, and direct

fusion as shown in Figure 5B (442).
6.2 Exosomes in antitumor therapy

In recent years, naturally secreted exosome vesicles have

attracted significant attention as drug delivery vehicles due to their

similarities with liposomes (449). A nanometric exosome is easily

transported between cells; a lipid bilayer membrane protects

bioactive molecules from degradation in the extracellular

environment (449–451). Several advantages of exosomes have been

demonstrated, including their ability to combat CSCs, lower

immunostimulatory, extensive circulation time, and eminent

loading efficacy, making them ideal as nanocarriers for drug

loading and/or delivery (452, 453). Cheng and co-workers isolated

exosomes from healthy hepatoma cells and transfected them using

lentivirus expressing p120ctn; as a result, hepatocellular carcinoma

cells formed fewer colonies, decreased proliferation, and inhibited

migration (454). Furthermore, the exosomes with p120ctn

expression reduced the tumor growth in in vivo hepatocellular

carcinoma xenograft mice (454). It was also observed that

exosome p120ctn did not impact PI3A/Akt or MEK/ERK

pathways; however, STAT3 phosphorylation was vividly decreased

in hepatocellular carcinoma cells, suggesting that the exosome

p120ctn disables STAT3 to impede the hepatocellular carcinoma

cell proliferation, metastasis, and expansion of the respective CSCs

(454). Hu et al. (360, 455) reported that the exosomes secreted by

stromal fibroblasts promote the reversion of phenotype and

attainment of CSC characteristics in differentiated colorectal

cancer cells by triggering Wnt signaling (360, 455). The in vitro

and in vivo experiments suggested that inhibition of Wnt release

using the porcupine inhibitor LGK974 curtailed the drug resistance

in differentiated colorectal cells and possibly impacted CSC stemness

(360, 455). Interestingly, a recent study determined that the

migration and invasion of M2 macrophage-modulated colorectal

cancer cells are controlled by M2 macrophage-derived exosomes,

expressing higher levels of miR-21-5p and miR-155-5p, which are

crucial to exosome-mediated colorectal cancer cell migration and

invasion (456). Lin et al. (457) introduced that exosomal miR-21-5p

derived from bladder cancer cells reversed phosphatase and tensin

homolog instigation of the PI3K/AKT pathway in macrophages; in

contrast, it induced STAT3 expression to promote the M2-polarized

differentiation of tumor-associated macrophages (457). The secreted

exosomal miR-21a-5p from the M2 macrophage induced the

differentiation and proliferation of pancreatic cancer stem cells by

targeting KLF3 for attenuating the stemness of pancreatic cancer

(458). Moreover, downregulation of miR-21a 5p in M2macrophage-
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induced EVs reduced the expression of Nanog/Oct4 and reduced

sphere formation, colony formation, migration, invasion, and anti-

apoptosis potency of pancreatic CSCs both in vitro and in vivo (458).

The authors focused on miR-21-5p mediated KLF3 downregulation

and targeted the differentiation ability of pancreatic stem cells (458).

Unique miRNA has been found in prostate cancer exosomes

resulting from cancerous stem cells and non-cancerous stem cells

(459). Moreover, future cancer cell spread environments are

prepared using CSC-derived exosomes (460).

The ability of NCs to induce autophagy has been reported for

silver nanomaterials and carbon- and silicon-based nanomaterials

(461–463). Pfeffer (464) reported the release of exosomes in certain

cell types regulated by Rab27A (464) and Rab27B GTPases and

their cognate effector proteins. As a next step, Chen et al. (465)

investigated the impacts on parental cells subsequently preventing

the exosomal release factor by impeding Rab27a-dependent

exosome secretion (465). Downregulation of self-created exosome

secretion (Rab27a) from metastatic hepatocellular carcinoma

(MHCC97H) inhibited the migration, chemotaxis, and invasion

of intrahepatic and lung metastasis via the MAPK/ERK signaling

pathway, thereby targeting EMT (465). One of the most notable

advantages of exosome-mediated doxorubicin delivery is its

dramatic reduction in cardiotoxicity, which is commonly

associated with doxorubicin in clinical applications (466). Yong

et al. developed biocompatible tumor cell exosome-sheathed

PSiNPs (E-PSiNPs) that can be exocytosed by tumor cells for

targeted cancer chemotherapy (467). DOX was conjugated to

luminescent porous silicon nanoparticles (PSiNPs, 150 nm)

(DOX@PSiNPs) and incubated with H22 hepatocellular

carcinoma tumor resulting in engulfment of exosome-sheathed

(DOX@E-PSiNPs) (467). The DOX@E-PSiNPs enable them to

enrich in vivo in both tumor cells and CSCs, resulting in DOX

uptake by CSCs with eventual eradication of the CSCs (467) and

facilitating the effectiveness in destroying subcutaneous, orthotopic,

and metastatic cancer. The schematic illustration of nanocarrier
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design and its application in eradicating CSCs is presented in

Figure 6A. Further, intravenous injections of free DOX, DOX@

PSiNPs, and DOX@E-PSiNPs were used to determine whether

DOX@E-PSiNPs penetrate deeply into tumors in xenograft mice

of H22 hepatocellular carcinoma. The confocal microscopy images

showed widespread distribution of DOX@E-PSiNPs in complete

tumor sections after 24 h (Figure 6B), while DOX@PSiNPs and free

DOX were mostly accumulated around the blood vessels as

evidenced by FITC-CD31-labeled endothelial cells. A white line

delineates the gap between the DOX distribution in blood vessels

and the tumor parenchyma (467).
6.3 Clinical trials of exosomes in cancer
therapy

The European Union, Australia, and the United States have

regulatory frameworks for manufacturing and conducting clinical

trials, but there may be a need for guidelines dedicated to EV-based

therapeutics (468). Exosomes have shown promising results in vitro

and in animal models, indicating that they can be used to target

CSCs; some clinical trials have already achieved significant results

(469). Ascite (Aex)-derived exosomes together with granulocyte–

macrophage colony-stimulating factor (GM-CSF) have been tested

in a phase I clinical trial for the immunotherapy of colorectal cancer

(470–472). This combinational immunotherapy shows the

induction of beneficial tumor-specific antitumor cytotoxic T

lymphocyte response, but not in the case of Aex alone, indicating

the feasibility and better tolerance capability of patients with

colorectal cancer (473). An intradermal and subcutaneous

immunization of stage III/IV melanoma patients with autologous

dendritic cell exosomes pulsed with melanoma-associated antigens

family (MAGE 3) peptides was shown in a phase I trial (474).

Exosome administration in these patients has proven to be safe and

feasible, despite neither CD4+ nor CD8+ T cells specific to MAGE3
FIGURE 5

(A) Schematic depiction for sources of exosome: stem cells, cancer cells, immune cells, nerve cells, saliva, platelets, red blood cells (RBCs), breast
milk, cerebrospinal fluid, intestinal epithelium, and urine, among others. (B) The generalized structure of exosomes and overview describing the
biogenesis of exosomal stem cells and cargos and consequent intake of exosomes by recipient cells. (1) Fusion with target recipient cell, (2)
endocytosis, and (3) interaction with specific receptors on cell surface and internalization. Source: Vakil et al. (442). Image was modified and
recreated using BioRender.com.
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being detected in peripheral blood (474, 475). In a phase I study

conducted by Morse et al. (476), patients with advanced non-small-

cell lung cancer showed improved immune response and tumor

progression after receiving dexosome (DC-derived exosomes

loaded with the MAGE tumor antigens) immunotherapy. Pulsed

dendritic cell EVs activated cytotoxic T cells against a growing

tumor in immune-competent mice (477–479). According to Viaud

et al. (480), dendritic cell-derived exosomes promote natural killer

cell activation and result in anti-metastatic effects, which may be

related to NKG2D ligands and IL-15Ralpha. Clinical regressions

observed in the first phase I trial using peptide-pulsed Dex

(dendritic cell-derived exosomes) were attributed to reduced T-

cell response (481, 482). Phase II trials showed that IFN-g-DC-
derived exosomes were capable of boosting antitumor immunity in

advanced non-small-cell lung cancer patients following phase I and

preclinical trials (475). EVs generated by pulsed DCs, rather than

those made by MHC class I and II peptides, induced the activation

of B cells and promoted tumors (483, 484). When tumor EVs are

combined with appropriate immune-stimulating adjuvants, their

immune-inhibitory effect can be suppressed, enabling them to

stimulate antitumor responses in advanced ovarian cancer (485–

488). Further, antitumor vaccines have been developed using

plasmid DNA and recombinant viruses that contain antigens

fused to phosphatidylserine-binding domains of milk fat globule

epidermal growth factor-factor VIII proteins (MFGE8, also known

as lactadherin) (489, 490). This protein facilitates the binding of

fusion proteins to EVs, making it a potential antitumor vaccine. An

ongoing phase I clinical trial tests whether plant exosomes can

deliver curcumin to colon tumors (491).
Frontiers in Oncology 20
7 Nanoparticle-mediated ablation
therapies

Chal lenges s t i l l ex is t in des igning and assess ing

nanoformulation-mediated therapies that focus on CSCs. A

prospect to address the constraint in CSC eradication is ablation

therapy by means of heat or freezing kills the cancer cells, which

causes necrosis and targets CSCs to undergo a cell death pathway

(492–494), but was found to be limited due to their possible

mutation to non-tumor tissues (495). Li et al. attempted NMATs

to deliver uniform heat/freezing (concentrated to projected lesions)

exposure to the solid tumor, protecting surrounding healthy tissues

(496). An advanced NMAT cancer treatment, for instance,

photothermal therapy, has been established and has become

advanced against CSCs. PTT involves the killing of CSCs using

high temperatures through NIR (493). NMATs are capable of

penetrating deeper into regional tumor tissues to destroy CSCs

(497). Nanocarriers like gold nanocarriers, carbon nanocarriers,

MXenes, and iron oxide magnetic nanocarriers can produce high

temperatures to convert absorbed energy into localized heat in

tumors (439; 498–502).
7.1 Gold nanocarrier coupled with PTT

PTT has been demonstrated using nanospheres, nanocages,

nanoshells, nanorods, and nanostars that exhibit surface plasmon

resonance (SPR) in the NIR region, hence producing heat (503, 504).

The findings of Atkinson et al. (505) on local hyperthermia delivered
FIGURE 6

(A) The exosome-encapsulated porous silicon nanoparticles (E-PSiNPs) and DOX@E-PSiNP preparation as antitumor drug carriers are shown in
schematic diagram. After incubation, DOX@E-PSiNPs are endocytosed into cancer cells, localized to multivesicular bodies (MVBs), and form
autophagosomes. Exocytosis of DOX@E-PSiNPs occurs upon fusion of MVBs with cell membranes. A systemic injection of DOX@E-PSiNPs in tumor-
bearing mice resulted in strong anticancer activity displaying accumulation in both cancer cells and cancer stem cells (CSCs) and penetrating deeply
into tumor tissues. (B) Florescent images showing the localization of both DOX and CD31-labeled tumor blood vessels in tumors isolated from H22
tumor-bearing mice at 24 h after intravenous infusion of DOX alone, DOX@PSiNPs, and functional exosome-encapsulated DOX-PSiNPs (DOX@E-
PSiNPs) at DOX dosage of 0.5 mg/kg; scale bar, 200 µm. A wide distribution of DOX@E-PSiNPs was evident after treatment; conversely, DOX and
DOX@PSiNPs accumulated mostly around blood vessels as evidenced by stronger co-localization with FITC-CD31-labeled endothelial cells. A white
line outlines the gap between the DOX distribution in blood vessels and the tumor parenchyma. Reused for illustrative purposes with permission
from Yong et al. (467) (Copyright 2019, source: Tumor exosome-based nanoparticles are efficient drug carriers for
chemotherapyNature Communications).
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by Au nanoshells eliminated radio-resistant breast cancer stem cells,

resulting in a reduction of tumor size and preventing the increased

percentage of ALDH+ (505). Rastinehad et al. (506) tested gold

nanoshells with PTT on prostate cancer and observed tumor

reduction in 94% of patients without side effects (506). Tian et al.

(507) fabricated the hollow gold nanospheres with CD271

monoclonal antibody to target osteosarcoma CSCs through PTT,

causing cytotoxicity of osteosarcoma CSCs, resulting in apoptosis and

DNA double-strand breaks (507). An investigation found that the

synergistic combination of PTT and gold nanocages through the

recognition of the sigma-2 ligand SV119 has the ability to eradicate

breast CSCs (498). Using gold nanostars loaded with retinoic acid

(RA) and dendritic polyglycerol (GNS-dPG) with multiple

attachment sites of HA is effective in targeting CSCs (508). Liang

and colleagues demonstrated that CSCs could be eradicated by means

of a gold nanostar-based approach coupled with PTT and when

modified with CD44v6 monoclonal antibodies are effective against

gastric CSCs (499). The gold nanostar (GNS)-based PEGylated along

with CD44v6 monoclonal antibody-conjugated nanoprobes (GNS-
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PEG-CD44v6, a test group) showed tremendous stability and

biocompatibility (499). The investigators tested the synthesized

GNS-PEG-CD44v6 (taken as the test group) to selectively eliminate

gastric cancer stem cells (GCSCs), for which the CD44+-expressing

spheroid colonies were incubated with the test group and GNS-PEG

(taken as the control group), along with untreated GCSCs for

comparison. Laser irradiation (1.5 W/cm2) was then applied to all

groups for 5 min. The test group showed deteriorated colonies, in

contrast to the control and untreated groups, under laser irradiation

as represented in Figure 7A (499). In vivo photoacoustic (PA)

imaging of a gastric tumor was carried out using a NIR laser (720

nm) with moderate energy to identify neovascularization and have a

high PA contrast effect on the tumor. GNS-PEG-CD44v6 was tested

and found to induce a steady upsurge in signal within 4 h. There was

a strong signal fortification close to the stomach in subcutaneous

tumors, indicating a gradual accumulation of GNS-PEG-CD44v6 and

identifying the vascular system. PA images attained before and after

injection (0, 2, 4, and 24 h) with GNS-PEG-CD44, GNS-PEG-

CD44v6 (the first and third rows depict a subtumor, while the
FIGURE 7

(A) A comparison of microscopy descriptions of gastric cancer stem cell (GCSC) spheroid colonies treated with GNS-PEG-CD44v6 and GNS-PEG
irradiated for 24 h with near-infrared (NIR) laser (790 nm, 1.5 W/cm2, 5 min) showing damaged spheroid colonies in NIR irradiated GNS-PEG-
CD44v6. (B) Photoacoustic (PA) images attained before and after injection (0, 2, 4, and 24 h) with GNS-PEG-CD44, GNS-PEG-CD44v6 (the first and
third row depict a subtumor, while the second and fourth display orthotopic tumor taken as test group), and GNS-PEG (the fifth row denotes a
subtumor taken as control). Observation of (C) deionized water and (D) GNS in a tube exposed to NIR radiation (790 nm, 0.3 W/cm2, 3 min) using
infrared microscopic imaging. On NIR laser irradiation, subcutaneous GC tumors are shown (E) without and (F) with injections of GNS-PEG-CD44v6.
An injection of GNS-PEG-CD44v6 was administered to a nude mouse of GC subcutaneous xenograft (G) with and (H) without laser exposure (790
nm, 0.3 W/cm2, 3 min). (I) Growth curves of GC tumors exposed to NIR laser treatment (790 nm, 0.8 W/cm2, 5 min), which were additionally treated
with GNS-PEG-CD44v6, GNS-PEG, and PBS, along with the untreated control group. (J) Treatment-induced survivability rate (%) was assessed for
GC tumor-bearing mice after 8 weeks in comparison to controls. Reused for illustrative purposes with permission from Liang et al. (499) (Copyright
2015, Ivyspring International Publisher, source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493535/).
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second and fourth display orthotopic tumor), and GNS-PEG (the

fifth row denotes a subtumor) are presented in Figure 7B. The GNS

enhanced the vessel signals and made them accumulate in the

perivascular spaces and diffuse into the adjacent tumor tissues after

which the signal was found to reduce nearly at 24 h. Correspondingly,

GNS-PEG-CD44 doses resulted in parallel agglomeration, but the

effects were less pronounced than GNS-PEG-CD44v6 (Figure 7B).

Control PA signals did not show any robust enhancement, and in

intravascular signals, only a slight increment was observed in 2–4 h

(Figure 7B). Furthermore, GNS-PEG-CD44v6 was tested for its

ability to selectively target GCSCs expressing CD44, with high

efficiency of photothermal conversion and photothermal ablation

(499). GNSs provided an attractive candidate for photothermal

agents due to their significant heating capabilities (509, 510), thus

overriding CSCs’ resistance to photodynamic therapy and general

photothermal treatment. The investigators tested the potential of

using GNS-PEG-CD44v6 as a smart imaging probe to detect GCSCs

in gastric cancer (GC) using infrared microscopic imaging 499). After

GNS-PEG-CD44v6 exposure, subcutaneous tumors from GC

xenograft mice were irradiated with NIR lasers. Figures 7C–F show

that the temperature of the treated tumor site significantly increased

within 3 min after laser irradiation, and the color changed from blue

to red as demonstrated by infrared imaging. Despite the absence of

GNS-PEG-CD44v6 injection or laser irradiation, the infrared

imaging signal did not change color, showing no apparent

temperature variation when the temperature was increased

(Figure 7E). In the xenograft mice, the tumor volume was

unchanged (Figure 7G), while necrotic areas were observed in

treated tumor tissues (Figure 7H), which may perhaps be due to

the sharp structural features of nanostars, making it a more efficient

photothermal transducer (511). An analysis of tumor growth curves

from four groups after treatment with GNS-PEG-CD44, GNS-PEG,

and PBS, respectively, as well as control groups without treatment. As

a result of the GNS-PEG-CD44v6 treatment, the tumor volumes of

the treated group showed a significant statistical difference and

reduced after two weeks of therapy (Figure 7I). While GNS-PEG,

based on passive targeting therapy, had negligible effect on tumor

growth, the untreated groups and PBS groups plus NIR laser did not

exhibit any significant therapeutic effect. Figure 6H illustrates the

survival time of mice treated with GNS-PEG-CD44v6 was

significantly longer than in control mice treated with GNS-PEG,

PBS, or untreated (Figure 7J). This results from the fact that

nanoprobes targeting GCSCs can extend tumor-bearing mice's

survival time. A new study used aptamers conjugated with gold

nanorods to specifically target prostate cancer stem cells in

combination with NIR (512). Peng and Wang tailored gold

nanorods with anti-CD133 monoclonal antibodies to selectively

target and destroy CD133+ cells in glioblastoma cell lines in

response to the laser beam (513).
7.2 Carbon-based NCs with PTT

Carbon-based NCs with robust NIR absorption, thermal

conductivity, ease of fabrication, and superior biocompatibility are
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a great choice for CSC-targeted therapy (514). Wang and colleagues

found that carbon nanotubes (CNTs) coupled with CD133

monoclonal antibodies after NIR light exposure potentially reduced

self-renewal and tumorigenesis of cancer stem cells in glioblastoma

(515). The combination of organoselenium-modified CNTs with

PTT successfully destroyed CSCs producing reactive oxygen

species, resulting in apoptosis (516). A study reported that PTT

with Multiwalled Carbon Nanotube (MWCNTs) eliminated both

differentiated cells of tumor and tumor regression of breast cancer

stem cells in vivo by necrotizing and destroying the CSCs (439). The

transient receptor potential vanilloid family type 2 (TRPV2)-

PEGylated carbon nanohorn (PCNH) was found to reduce cancer

stemness in the presence of NIR irradiation (517) by activating Ca2+

influx, hence altering intracellular Ca2+ overload, which has been

shown to cause apoptosis with TRPV2 overexpression. The human

colorectal (HT-29) tumor growth reduction with the laser-driven

TRPV2–PCNH was also experimented on nude mice (517), and the

results are shown in Figures 8A–M. TRPV2–PCNH suppresses

cancer stemness when exposed to NIR irradiation, contributing to

intracellular Ca2+ overload that induces apoptosis (517). As shown in

Figure 5, the researchers subcutaneously administered tumor

xenograft mice with HT-29 colorectal cells or their TRPV2-

overexpressing derivatives into their flanks in order to evaluate the

effects of anticancer phototherapy. The xenograft mice were divided

into groups: PBS as blank control, PBS+laser as laser control, PCNH

as non-targeted nanoparticle control, PCNH+laser as non-targeted

phototherapy control, TRPV2–PCNH as targeted nanoparticle

control, and TRPV2–PCNH+laser as targeted phototherapy groups.

Mice of both cell lines (HT-29 or transfected TRPV2 HT-29 cells)

were intraperitoneally injected with 5 mg/kg doses of nanocomplexes

every other day. Following 24 h of treatment, the mice were subjected

to 5-min laser exposure (1W, ~50 mWmm−2) to the right side of the

tumor on days 2, 6, 9, 13, and 16 (Figure 8A). Thermographic

infrared imaging of body surface temperatures was performed during

laser irradiation (Figure 8B). HT-29–TRPV2 tumors from the group

treated with TRPV2–PCNH+laser were the only ones to attain

temperature levels above 52°C (activation threshold for TRPV2)

(Figure 8C). Laser-irradiated PCNH or TRPV2–PCNH NPs

reduced the rate of HT-29 (Figure 8D) and HT-29-TRPV2

(Figure 8E) tumor growth in mice compared with those receiving

PBS. TRRV2–PCNH+laser suppressed HT-29–TRPV2 tumors more

than any other treatment group, indicating that TRRV2–PCNH

targets TRPV2-overexpressing cells selectively. A similar effect was

observed in the TRRV2–PCNH+laser group in comparison with

non-targeted phototherapy and blank control. HT-29–TRPV2

tumors exposed to laser irradiation were significantly smaller than

tumors on the opposite flanks of the same mice without laser

irradiation, whereas no effects of laser irradiation on HT-29

xenografts were observed (Figure 8F). The ability of laser-driven

TRPV2–PCNH nanoparticles to regulate cancer stemness was

evaluated via immunohistochemistry staining of Ki-67 and CD133,

which are proliferation and stem cell markers, respectively. Laser

irradiation resulted in significantly lower expression of both Ki-67

(Figure 8G) and CD133 (Figure 8H) markers in HT-29-TRPV2

tumor tissues. RT-qPCR investigation showed a decrease in mRNA
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FIGURE 8

(A) A tumor xenograft model was established in mice on day 8 with the inoculation of HT-29 control cells and transfected TRPV2. The treatments
PBS, PCHN, and TRPV2–PCNH were administered intraperitoneally (i.p.) on day 0 and administered every other day until day 16. Near-infrared (NIR)
laser of 1,064 nm (1 W to 50 mW mm−2) was applied for 5 min to the right side of tumor on days 2, 6, 9, 13, and 16. (B) A thermographic infrared
camera was used to monitor the surface temperature of the body during laser irradiation. (C) A laser-induced increase in temperature was observed
in mice with HT-29 or HT-29–TRPV2 tumors after nanocomplex injection and measured at 24 (h) Tumor volume measured in (D) HT-29 and (E)
HT-29-TRPV2 in different treatment groups with/without NIR laser exposure. A significant reduction in tumor volumes was observed in nude mice
bearing HT-29–TRPV2 following TRPV2–PCNH+laser treatment. (F) Tumor-bearing nude mice with HT-29 and HT-29–TRPV2 photographed on
day 16 (black arrows indicating irradiated tumors). Xenograft models overexpressing TRPV2 and TRPV2–PCNH+laser inhibit tumor reinitiation.
Immunohistochemical analysis showed that expressions of (G) Ki-67 and (H) CD133 expressions were documented to reduce with TRPV2–PCNH
+laser in primary tumor sections of xenografts overexpressing TRPV2. (I) The RT-qPCR analysis of tumors with TRPV2 overexpression from mice
treated with TRPV2–PCNH and laser irradiation exhibited declines in mRNA of stemness-associated markers (Nanog, ALDH1, CD133, CD44, and
CD9). (J) Methodology followed that of Yu et al. (517) for tumorigenesis experiments involving resection, isolation, re-implantation, and tumor
initiation investigation. (K) The cells isolated from xenograft tumors showed reduction in tumor proliferation following TRPV2–PCNH+laser
treatment in comparison with PBS and TRPV2–PCNH tested groups. (L) TRPV2–PCNH+laser irradiation in osteosarcoma cell line (U2OS)
demonstrated reduced b-catenin expression as demonstrated by immunostaining images (Hoechst specifies nuclei, mCherry specifies TRPV2, and
Alexa488 specifies b-catenin). (M) Western blotting illustrated downregulated non-phosphorylated and total b-catenin expression and upregulated
PKCa expression in MCF7–TRPV2 cells with TRPV2–PCNH+laser treatment. b-Actin was used as a control for normalization. Reused for illustrative
purposes with permission from Yu et al. (517) (Copyright 2020, Nature Communications, source: Photothermogenetic inhibition of cancer stemness
by near-infrared-light-activatable nanocomplexes - PubMed (nih.gov)).
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levels of stemness-associated markers as a result of the laser

irradiation effect on mouse tumor tissues tested with PCNH or

TRPV2–PCNH NPs (Figure 8I). The resection of HT-29–TRPV2

tumors after treatment, following digestion and transplantation into

nude mice (Figure 8J), resulted in aggressive tumor formation (100%)

in non-irradiated tumors in contrast to less tumor growth (20%) in

irradiated tumors (Figure 8K). The phototherapeutic efficacy of

TRPV2–PCNH may improve drug resistance and inhibit cancer

stemness. The U2OS osteosarcoma cells overexpressing TRPV2

when receiving TRPV2–PCNH+laser resulted in downregulated b-
catenin (associated with carcinogenesis) expression in contrast to the

non-laser-treated TRPV2–PCNH and control group (Figure 8L). To

describe the mechanism, the authors examined laser-induced effects

on protein kinase (PKCa), which in combination with Ca2+

phosphorylate b-catenin ultimately led to its reduced expression

(518). The expression of protein kinase (PKCa) was upregulated in

TRPV2-transfected MCF7 (breast cancer) cells following

phototherapy revealed through Western blotting expression

(Figure 8M). The non-phosphorylated and total b-catenin
expressions in TRPV2-transfected MCF7 cells were reduced,

whereas both protein expression levels were unchanged in MCF7

control (without TRPV2 transfection) (Figure 8M). Yu et al. (517)

validated that Ca2+ influx induced by TRPV2–PCNH+laser

stimulates PKCa, leading to downregulated Wnt/b-catenin
signaling and related genes.
7.3 MXene with PTT

MXenes are 2D layered transition metal carbides with nitrides

or carbonitrides and display robust absorption of NIR beam,

causing hyperpyrexia in order to ablate tumors efficiently (519,

520). In situ growth of CdS on an ultrathin Nb2C nanosheet

(MXene) produces M/CdS, which is then modified with CSCs

targeting HA to form the nano-lymphatic (M/CdS-HA) material

(502). HA-mediated tumor targeting and NIR-II (1,064 nm) laser

irradiation targets the “nano-lymphatic” toward the tumor region,

which reduces the tumor interstitial pressure (TISP) via PTT

(Figure 9A). The tumor interstitial fluid pressure (TIFP) is

decreased as a result of the temperature variation, prompting CdS

to decompose the tumor interstitial fluid through pyroelectric

catalysis. As a result of the reduction in TISP and TIFP, the

“nano-lymphatic” penetrates deeper into tumors; at the same

time, pyroelectric catalysis generates ROS in deep tumor stem

cells, leading to apoptosis and necrosis due to oxidative damage.

Figure 9B illustrates the pyroelectric effect and the relationship

between temperature variation and pyroelectric current, whereby

the motion of atoms in the pyroelectric material is influenced by

temperature variation, leading to the change in polarization for a

pyroelectric field integrated into it. This PTT and pyroelectric

catalysis of M/CdS was visually illustrated via infrared thermal

imaging (ITI), which demonstrated the exceptional result under

laser irradiation at 3 min (Figure 9C) (502). The PTT effect,

pyroelectric current, and potential response under 1,064-nm NIR-

II irradiation of CdS, MXene, and MXene/CdS were evaluated and
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compared (Figure 9D). MXene and MXene/CdS displayed a

substantial increase in temperature (DT = 45°C and 52°C) in 10

min compared to CdS (Figure 9D). Unlike MXene and CdS, M/CdS

could produce significant amounts of O2 with 5 min of 1,064-nm

laser irradiation, which showed water splitting by means of

pyroelectric catalysis (Figure 9E) (502). Multicellular spheroids

(MCSs) were formed with HeLa cells grown into a culture dish

with an ultralow attachment surface. MCSs were previously treated

with genistein (Gen), an endocytosis inhibitor, to interrupt the

passage of M/CdS across the cell monolayer to study the

relationship between diffusion and transcytosis (Figure 9F). The

structural changes of MCSs with laser irradiation from day 0 to day

6 of MXene/CdS-HA/RB were first demonstrated by fluorescent

imaging, as shown in Figure 9G. Blue fluorescence indicates the

nucleus, while red fluorescence indicates the center of the MCSs,

suggesting that MXene/CdS-HA was incorporated into MCSs on

day 0 after laser irradiation. Upon laser irradiation, MCSs collapsed

progressively on days 2, 4, and 6, indicating deep damage. The

pyroelectric catalysis mechanism is presented in Figure 9H. MXene

plasmon resonance and excitation of CdS were introduced in

response to the NIR-II laser due to its large energy gap.

Pyroelectric catalysis-based water splitting produced reactive

oxygen species from the developed negative and positive oxygen

species (Figure 9H). Since CdS and MXene have different Fermi

levels (Ef) and work functions, the negative charges of CdS are

transferred to MXene to equilibrate their Ef. Schottky barriers are

formed when the energy band of CdS (n-type semiconductor) is

bent upward during equilibrium (521). The light was converted into

hyperpyrexia by MXene in combination with laser irradiation. The

temperature variation due to the pyroelectric effect directed the

negative charge of CdS to move along the Schottky junction toward

MXene, prohibiting the backflow of negative charges (496). MXene

could also be used as a cocatalyst to improve the catalytic efficiency

of CdS. MXene could be used as a cocatalyst to enhance the catalytic

efficiency of CdS. The excited negative charge was found to react

with O2 and generated superoxide (•O2−) and hydroxyl (•OH)

radicals, and the positive charge reacted with H2O to produce O2

and H+ as shown in Figure 9H (502). Lactic acid (LA) presented

enhanced catalytic activity of laser-induced M/CdS-HA and

antitumor efficacy (Figure 9I). As a result of LA overexpression in

the tumor microenvironment, pyroelectric catalysis is prevented

from interacting with positive charges, thus increasing ROS

production. MXene/CdS-HA treatment of tumor blood vessels

with/without 1,064-nm NIR-II laser exposure at various time

intervals (0, 15, and 30 min) was visualized using photoacoustic

illustration in Figure 9J. After 24 injections of M/CdS-HA, the blood

perfusion remained very low without laser irradiation. The blood

perfusion was enhanced with increasing time of laser exposure as a

result of a decrease in TIP (502). Enhanced drug delivery from the

blood to the tumor could be achieved by reducing the pressure

difference between blood and tumor interstitial fluid, providing an

effective force for the delivery of drugs from blood into bulk tumors.

A white arrow indicates bleeding spots, which resulted from

enhanced blood flow and hyperpyrexia-induced damage; at the

same time, the enhanced blood circulation mediated by M/CdS-HA
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FIGURE 9

MXene-mediated photothermal ablation of cancer stem cells (CSCs). (A) An overview of the synthesis and use of “nano-lymphatic” (M/CdS/HA) for
increased tumor penetration, photothermal (NIR-II), and hydrodynamic therapies with the decrease in tumor interstitial pressure (TIP) via pyroelectric
catalysis. (B) Pyroelectric effect with temperature variation depicted schematically. (C) The infrared thermal image (ITI) demonstrated the excellent
photothermal effect of M/CdS under laser irradiation at 3 min and could confirm further usage for both PTT and pyroelectric catalysis (here, 0 min
was considered as control). (D) Photothermal consequence of CdS, MXene, and MXene/CdS. (E) The curves of O2 generation due to CdS, MXene,
and M/CdS under laser irradiation (1,064 nm, 1.0 W/cm2) in comparison to control. (F) The illustration of multicellular spheroid (MCS) formation and
the penetration mechanism showing increased diffusion with rise in temperature (T↑), reduction in TIP, and transcytosis in MXene+laser, MXene/CdS,
MXene/CdS+laser, and MXene/CdS+laser+genistein (Gen) treatments. (G) Confocal fluorescence imaging of MCSs on exposure with MXene/CdS-
HA/RB with NIR-II laser irradiation (1,064 nm) from day 0 to 6 (scale bar = 100 mm). (H) Representation of pyroelectric catalysis for water splitting
and induced reactive oxygen species (ROS) production in case of treatment. (I) Enhanced tumor penetration with improved blood perfusion due to
TIP reduction and induced ROS generation due to lactic acid (LA) in the tumor. (J) MXene/CdS-HA treatment of tumor blood vessels with/without
1,064-nm NIR-II laser exposure at various time intervals (0, 15, and 30 min) was visualized using photoacoustic illustration. (K) Concentration of
oxygen in tumor blood vessels treated with saline as a control and MXene/CdS-HA (with/without 2 min of 1,064-nm irradiation exposure) at various
time intervals of 0, 15, and 30 min. Reused for illustrative purposes with permission from He et al. (502) (Copyright 2021, American Chemical Society,
source: Pyroelectric Catalysis-Based “Nano-Lymphatic” Reduces Tumor Interstitial Pressure for Enhanced Penetration and Hydrodynamic
TherapyACS Nano).
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+L could increase the intratumoral oxygen (O2) content, improving

hydrodynamic therapy (Figure 9K). The saline group was shown to

exhibit hypoxia on irradiation with no significant change. M/CdS-

HA+L exhibited an increment in O2 content and contributed to the

increased blood perfusion (Figure 9K), which ultimately carried the

nanomedicine to the tumor site. By regulating TIP, nanomedicine

could effectively penetrate deeper into tumors, and the ROS

resulting from the pyroelectric catalysis could further damage

deep tumor stem cells (517).
8 Conclusion

Current cancer treatment failures are thought to be rooted in CSCs,

which are vastly resistant to conventional therapies, leading to

recurrence and metastasis. A significant amount of investigation has

promoted the practice of NCs for cancer therapy without targeting

CSCs. Our review describes various functionalized NCs, EVs, and PTT

mediated for improving CSC ablation. A major challenge in clinical

translation research for specifically targeting CSCs with modified NCs

and its outcome depends on factors involving specificity and protection.

Developing clinical applications of modified NCs against CSCs requires

multidisciplinary collaboration, as well as continuous basic and applied

research aimed at understanding their properties. A state-of-the-art

nanotechnology approach will also be required to developmore effective

strategies for eradicating CSCs. It is very likely that the NCs targeting

CSCs will attain efficacious clinical translation in the upcoming days,

allowing patients to benefit from unique treatments.
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204. Yang Q, Modi P, Newcomb T, Quéva C, Gandhi V. Idelalisib: first-in-class
PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small
lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res. (2015) 21:1537–42.
doi: 10.1158/1078-0432.CCR-14-2034

205. Suzuki Y, Enokido Y, Yamada K, Inaba M, Kuwata K, Hanada N, et al. The
effect of rapamycin, NVP-BEZ235, aspirin, and metformin on PI3K/AKT/mTOR
signaling pathway of PIK3CA -related overgrowth spectrum (PROS). Oncotarget.
(2017) 8:45470–83. doi: 10.18632/oncotarget.17566

206. Heudel P, Frenel J-S, Dalban C, Bazan F, Joly F, Arnaud A, et al. Safety and
efficacy of the mTOR inhibitor, vistusertib, combined with anastrozole in patients with
hormone receptor–positive recurrent or metastatic endometrial cancer. JAMA Oncol.
(2022) 8:1001. doi: 10.1001/jamaoncol.2022.1047
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238. Krajka-Kuźniak V, Belka M, Papierska K. Targeting STAT3 and NF-kB
signaling pathways in cancer prevention and treatment: the role of chalcones.
Cancers (Basel). (2024) 16:1092. doi: 10.3390/cancers16061092

239. Zhang X, Huang F, Liu J, Zhou Z, Yuan S, Jiang H. Molecular mechanism of
ginsenoside rg3 alleviation in osteoporosis via modulation of KPNA2 and the NF-kB
signalling pathway. Clin Exp Pharmacol Physiol. (2025) 52:e70019. doi: 10.1111/1440-
1681.70019

240. Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, et al. CRISPR/Cas9 therapeutics:
progress and prospects. Signal Transduct Target Ther. (2023) 8:36. doi: 10.1038/s41392-
023-01309-7

241. Aljabali AAA, El-Tanani M, Tambuwala MM. Principles of CRISPR-Cas9
technology: Advancements in genome editing and emerging trends in drug delivery. J
Drug Delivery Sci Technol. (2024) 92:105338. doi: 10.1016/j.jddst.2024.105338

242. Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based
delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. (2021) 176:113891.
doi: 10.1016/j.addr.2021.113891

243. Gao C, Wu P, Yu L, Liu L, Liu H, Tan X, et al. The application of CRISPR/Cas9
system in cervical carcinogenesis. Cancer Gene Ther. (2022) 29:466–74. doi: 10.1038/
s41417-021-00366-w

244. Karn V, Sandhya S, Hsu W, Parashar D, Singh HN, Jha NK, et al. CRISPR/Cas9
system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell
Int. (2022) 22:234. doi: 10.1186/s12935-022-02654-3

245. Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene
discovery. Curr Res Biotechnol. (2023) 5:100127. doi: 10.1016/j.crbiot.2023.100127

246. Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting
mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a
special focus on androgen receptor signaling. Cell Commun Signal. (2024) 22:504.
doi: 10.1186/s12964-024-01833-1

247. Chen A, Wen S, Liu F, Zhang Z, Liu M, Wu Y, et al. CRISPR/Cas9 screening
identifies a kinetochore-microtubule dependent mechanism for Aurora-A inhibitor
resistance in breast cancer. Cancer Commun. (2021) 41:121–39. doi: 10.1002/
cac2.12125

248. Zhang J, Li Y, Liu H, Zhang J, Wang J, Xia J, et al. Genome-wide CRISPR/Cas9
library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. J Exp
Clin Cancer Res. (2022) 41:24. doi: 10.1186/s13046-022-02242-3

249. Mirgayazova R, Khadiullina R, Chasov V, Mingaleeva R, Miftakhova R,
Rizvanov A, et al. Therapeutic editing of the TP53 gene: is CRISPR/cas9 an option?
Genes (Basel). (2020) 11:704. doi: 10.3390/genes11060704

250. Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, et al. Genome editing of mutant
KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein
for colorectal cancer therapy. J Control Release. (2020) 322:236–47. doi: 10.1016/
j.jconrel.2020.03.015

251. Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/cas9-edited PD-1/PD-L1
on tumor immunity and immunotherapy. Front Immunol. (2022) 13:848327.
doi: 10.3389/fimmu.2022.848327

252. Ju H, Kim D, Oh Y-K. Lipid nanoparticle-mediated CRISPR/Cas9 gene editing
and metabolic engineering for anticancer immunotherapy. Asian J Pharm Sci. (2022)
17:641–52. doi: 10.1016/j.ajps.2022.07.005
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ABC transporters ATP binding cassette transporters
Frontiers in Oncology
ABCG2 ATP-binding cassette super-family G member 2
ALA 5-aminolevulinic acid
ALDH aldehyde dehydrogenase
ALDH1A1 aldehyde dehydrogenase 1 family, member A1
ALL lymphoblastic leukemia
AML acute myeloid leukemia
ANA antinuclear antibodies
Antho-NPs anthothecol-encapsulated PLGA nanoparticles
ATRA all-trans-retinoic acid
AuNPs gold nanoparticles
BTZ bortezomib
CAP cold atmospheric plasma
CAR T cells chimeric antigen receptor T cells
Cas9 CRISPR-associated protein 9
CD cluster of differentiation
CDDP cisplatin (cis-diamminedichloroplatinum)
CDF 3,4-difluorobenzylidene curcumin
CdTe-QDs cadmium telluride quantum dots
CHO/CHOL cholesterol
CNTs carbon nanotubes
COPA PLA-chitosan-PEG-folic acid
COPAB COPA and COPB
COPB PLA-chitosan-PEG-glucose
CPT camptothecin
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
CSCs cancer stem cells
CTAB cetyltrimethylammonium bromide
CXCR4 C-X-C chemokine receptor type 4
DAPT N-[N-(3,5-difluorophenacetyl)-{{sc}}l{{/sc}}-alanyl]-S-

phenylglycine t-butyl ester
Dex dexamethasone
DLin-MC3-DMA (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-

(dimethylamino)butanoate
DMPC dimyristoyl phosphatidylcholine
DNA deoxyribonucleic acid
DOPC dioleoyl phosphatidylcholine
DOPE dioleoyl phosphatidylethanolamine
DOTAP dioleoyl trimethylammonium-propane
DOX doxorubicin
DP-CLPs dual-modified cationic liposomes
DPPC dipalmitoyl phosphatidylcholine
DPPG dipalmitoyl phosphatidylglycerol
DSPC distearoyl phosphatidylcholine
DSPG distearoyl phosphatidylglycerol
DTX docetaxel
DX dexamethasone (Dex)-associated liposomes
38
EAC Ehrlich ascites carcinoma
ECM extracellular matrix
EGFR epidermal growth factor receptor
EMA European Medicines Agency
EMT epithelial–mesenchymal transition
EPC ethyl phosphatidylcholine
EpCAM epithelial cellular adhesion molecule
EPG ethyl phosphatidylglycerol
EPR enhanced permeability and retention
ESA epithelial‐specific antigen
ESCC esophageal squamous cell carcinoma
EVs extracellular vesicles
FA folic acid
FDA Food and Drug Administration
FIH first in human
GBM glioblastoma multiforme
Gem gemcitabine
Gen genistein
GQDs graphene quantum dots
HA hyaluronic acid
HCC hepatocellular carcinoma
HER2 human epidermal growth factor receptor 2
Hh Hedgehog
HIV human immunodeficiency virus
HNSCC head and neck squamous cell carcinoma
HPV human papillomavirus
HSP heat shock proteins
HSPC fully hydrogenated phosphatidylcholine
HT human colorectal
IHC immunohistochemistry
IL-2 interleukin-2
ILVs intraluminal vesicles
IU investigational use
KLF4 Krüppel-like factor 4
LA lactic acid
LF liposomal formulation
LGR5 leucine-rich repeat-containing G protein-coupled receptor 5
LiCl lithium chloride
M/CdS MXene-cadmium sulfide
mAbs monoclonal antibodies
MAGE A3 melanoma antigen family A3
MCS multicellular spheroid
MDR multidrug resistance
MEK mitogen-activated extracellular signal-regulated kinase
MH 6-mercapto-1-hexanol
MHCC97H metastatic hepatocellular carcinoma
miRNA-34 microRNA-34
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MM multiple melanoma
Frontiers in Oncology
MMPs matrix metalloproteinases
mPEG-b-PLA methoxy-poly(ethylene glycol)-block-polylactic acid
MPEG-DSPE N-(carbonyl-methoxy(polyethylene glycol)-2000)-1,2-

distearoyl-sn-glycero-3-phosphoethanolamine sodium salt
MSPC monostearoyl phosphatidylcholine
MTD maximum tolerable dose
MTX methotrexate
MUC1 mucin 1
MVBs multivesicular bodies
MWCNTs Multiwalled carbon nanotubes
NAP naproxen
NDD nanomaterial-loaded drug delivery
NDs nanodiamonds
NIR near-infrared
NK cells natural killer cells
NMATs nanoparticle-mediated ablation therapies
NPC nasopharyngeal
NPs nanoparticles
NSCLC non-small-cell lung cancer
OCT4 octamer-binding transcription factor 4
PAMAM polyamidoamine
PARP poly ADP-ribose polymerase
PBS phosphate-buffered saline
PC phosphatidylcholine
PCNH PEGylated carbon nanohorn
PD-1 programmed cell death protein-1
PDT photodynamic therapy
PEA poly(ester amine)
PEG poly(ethylene glycol)
PEG2000-C-DMG a-(30-{[1,2-di(myristyloxy)propanoxy]carbonylamino}

propyl)-w-methoxy polyoxyethylene
PEG2000-DSPE polyethylene glycol 2000-distearoyl phosphatidylethanolamine
PEHAM polyglycerol, poly(etherhydroxylamine)
Phen phenformin
39
PLA polylactic acid
PLGA poly(lactic-co-glycolic acid)
PNPs polymeric nanoparticles
PEG poly(ethylene glycol)-b-poly({{sc}}d{{/sc}},{{sc}}l{{/sc}}-lactide)
PPI poly(propylene imine)
PpIX protoporphyrin IX
PS-b-PEO poly(styrene-b-ethylene oxide)
PSiNPs porous silicon nanoparticles
PSMA prostate-specific membrane antigen
PTT photothermal therapy
PTX paclitaxel
QD quantum dots
RA retinoic acid
RBCs red blood cells
RCC renal cell carcinoma
RNA ribonucleic acid
ROS reactive oxygen species
SA streptavidin
SAL salinomycin
SALL4 Sal-like protein 4
SAL-NP salinomycin-loaded PEGylated poly(lactic-co-glycolic

acid) nanoparticles
SCLC small-cell lung cancer
siRNA small interfering RNA
SMO smoothened inhibitors
SOX2 (sex-determining region Y)-box 2
SPR surface plasmon resonance
SWCNT single-walled carbon nanotube
TCR T-cell receptor
TGF-b transforming growth factor beta
TIP tumor interstitial pressure
TMZ temozolomide
TNBC triple-negative breast cancer
TNRPV2 transient receptor potential vanilloid family type 2
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