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Objective: To develop and validate a radiomics model based on the features of

the Dual-Energy CT (DECT) venous phase iodine density maps and effective

atomic number maps to predict Ki-67 expression levels in gastrointestinal

stromal tumors (GISTs).

Methods: A total of 91 patients with GIST were retrospectively analyzed,

including 69 patients with low Ki-67 expression (≤5%) and 22 patients with

high Ki-67 expression (>5%). Four clinical features (gender, age, maximum

tumor diameter, and tumor location) were extracted to construct a clinical

model. The venous phase enhanced CT iodine density maps and effective

atomic number maps of DSCT were used to build radiomics models. Logistic

regression was used to combine radiomics features with clinical features to build

a combined model. Finally, the optimal model’s discrimination, calibration, and

clinical decision curve were validated using the Bootstrap method.

Results: The combined model was identified as the best model, with high

predictive performance. The model’s discrimination had an AUC of 0.982 (95%

CI, 0.9603-1). The calibration test showed a Hosmer-Lemeshow test P-value of

0.99. The clinical decision curve demonstrated a probability threshold range of

15% to 98%, with a high net benefit.

Conclusion: The nomogram model combining clinical features and radiomics

(iodine density map radscore + effective atomic number map radscore) has the

highest accuracy for preoperative prediction of Ki-67 expression in GISTs.
KEYWORDS

radiomics, tomography, x-ray computed, dual-energy computed tomography,
gastrointestinal stromal tumors, iodine density map, atomic number map
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Introduction

Gastrointestinal stromal tumors (GISTs) are rare mesenchymal

tumors originating from the interstitial cells of Cajal (1, 2). GISTs can

occur anywhere in the digestive tract and exhibit histological

heterogeneity and biological diversity (3), making it challenging to

predict their malignant potential. Ki-67, a marker for cellular

proliferation, is closely associated with the malignant potential and

prognosis of GISTs (4). Conventional methods for detecting Ki-67 rely

on surgical or endoscopic fine-needle biopsy samples, which are limited

by sampling constraints and operator subjectivity, leading to inaccurate

assessments (5). Therefore, developing an reliable, non-invasive

method for preoperative Ki-67 evaluation is crucial for optimizing

individualized treatment strategies.

Dual-Energy CT (DECT), an emerging CT imaging technology

(6, 7), utilizes different energy spectra to differentiate tissues based on

their specific attenuation characteristics, offering more detailed tissue

information than conventional CT. Multi-parameter DSCT methods

—including virtual monochromatic images (VMIs), iodine density

maps, electron density maps, and effective atomic number maps—are

playing an increasingly important role in tumor evaluation (8, 9).

Radiomics allows the extraction of numerous quantitative imaging

features, and integrating DECT-based parameters with radiomics can

further enhance predictive performance.

Materials and methods

Patients

This retrospective study was approved by the institutional review

board, with a waiver of informed consent. All methods were carried out

in accordance with policies of the Nature Portfolio journals.This

retrospective study was conducted as the workflow indicated

(Figures 1, 2). Our study was approved by the institutional review

board, and the informed consent was waived. Data were collected from

patients diagnosed with GISTs through immunohistochemistry in

hospital between October 2020 and December 2023. The inclusion

criteria were as follows: (1) patients who have undergone CT scans and

are suspected of having gastrointestinal stromal tumors; (2) patients

with complete and comprehensive data and pathologically confirmed

GISTs, including Ki-67 index. The exclusion criteria include: (1) patients

without dual-energy CT examination; (2)without confirmation of GISTs

pathologically; (3) patients who received treatment before CT

examination; (4) lesions with a diameter less than 5 mm.
DECT image acquisition

DECT imaging was performed using a third-generation

SOMATOM Force CT scanner (Siemens Healthineers, Forchheim,
Abbreviations: CT, Computed tomography; GST, Gastric stromal tumors; ICC,

Intraclass correlation coefcient; LASSO, The least absolute shrinkage and

selection operator; LR, Logistic regression; ROI, Region of interest; ROC,

Receiver operating characteristic; AUC, Area under the curve.
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Germany). The scanning parameters were as follows: Tube A and

Tube B voltages were set at 100 kVp and Sn150 kVp, respectively, with

tube currents of 80 and 41 mAs. Automatic current modulation was

activated. A non-ionic contrast agent, iopamidol(Jiangsu Hengrui

Company,China), was injected. Arterial phase image acquisition was

initiated when the CT value of the abdominal aorta at the level of the

diaphragm reached 100 HU. Venous phase images were acquired in

dual-energy mode 35 seconds after the arterial phase.
CT image segmentation

We processed the dual-energy images on a Siemens workstation

(Syngo.via VB20) to obtain iodine maps and effective atomic number

maps. The venous phase CT images of all included samples were

exported in DICOM format and imported into ITK-Snap software (an

open-source software, www.itk-snap.org) for automatic delineation of

the regions of interest (ROI). After delineation, the ROIs were

corrected by an abdominal radiologist with 10 years of experience.
Image normalization and feature extraction

The images were normalized before feature extraction. Radiomics

features based on Dual-Energy CT (DECT) were extracted using the

Pyradiomics package (version 2.2.0) in Python (version 3.7) following

to the guidelines of the Image Biomarker Standardization Initiative

(IBSI) (10). The reproducibility of radiomics features was tested using

a random sample of 30 CT images, comparing automatic and manual

delineation. The intraclass correlation coefficient (ICC) was used to

evaluate the consistency of ROI delineation between the two

methods. Good consistency was defined as ICC > 0.75, and

features with ICC < 0.75 were excluded.
Feature extraction

Radiomics features were extracted using the open-source Python

package Pyradiomics (version 2.2.0) (https://github.com/Radiomics/

pyradiomics), yielding a total of 960 radiomics features from the

Volume of Interest (VOI) regions. These features included:14 shape

features, 18 first-order statistics features, 68 texture features, 860

high-dimensional features. High-dimensional features comprised:

18 first-order features derived from log-sigma transformations, 154

texture features derived from log-sigma transformations, 18 first-

order features derived from wavelet transformations, 670 texture

features derived from wavelet transformations.
Clinical model, radiomics model, and
combined model development

Univariate logistic regression analysis was performed to identify

significant features (p < 0.05), which were then included in a

multivariate logistic regression analysis to develop predictive

models. Clinical characteristics (age, gender, tumor location, and

maximum tumor diameter) were used to establish the clinical

model. From the venous phase enhanced CT iodine density maps
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and effective atomic number maps of dual-energy CT, 960

radiomics features were extracted and imported into DCPM

(V4.01, Jingding Medical Technology Co., Ltd.). Dimensionality

reduction was performed using the intraclass correlation coefficient

(ICC) and least absolute shrinkage and selection operator (LASSO)

algorithm, resulting in radscore values for the iodine density and

effective atomic number maps, which were used to develop the

radiomics model. Logistic regression was then used to combine

radiomics features with clinical features to build the combined

model. The performance of each model was evaluated using the area

under the receiver operating characteristic curve (AUC). The

calibration of each model was assessed using the Hosmer-

Lemeshow test, and the differences in AUC values between
Frontiers in Oncology 03
models were compared using the DeLong test to identify the

optimal model. Finally, the discrimination, calibration, and

clinical utility of the optimal model were validated using the

Bootstrap method.
Statistical analysis

Data analysis was performed using the R software package

(version 4.2.1) and DCPM (V4.01, Jingding Medical Technology

Co., Ltd.). Normality of continuous data was tested using the

Kolmogorov-Smirnov (K-S) test and the Shapiro-Wilk (S-W) test.

Normally distributed data were analyzed using a two-sided
FIGURE 2

Diagram shows workflow for radiomics and clinical feature.
FIGURE 1

Flowchart of patient inclusion and exclusion in this retrospective study.
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independent samples t-test. Non-normally distributed data were

compared using the Mann-Whitney U test. Categorical variables

were analyzed using Fisher’s exact test. Features with statistical

significance in univariate analysis were further subjected to binary

logistic multivariate regression analysis, with p < 0.05 considered

statistically significant. Model performance was evaluated using the

area under the receiver operating characteristic curve (AUC), and

calibration was assessed using the Hosmer-Lemeshow test. The

DeLong test was used to compare differences in AUC values

between models.
Results

Comparison between Ki-67 high and low
expression groups

Ultimately,91 patients (47 females and 44 males) with an

average age of 62.15 ± 8.86 years were selected for retrospective

analysis (Table 1). Among them, 74 GISTs were located in the

stomach and 17 were located in other parts of the gastrointestinal

tract.Patients were divided high Ki-67 expression and low Ki-67

expression groups, and clinical data were compared based on the

expression levels of Ki-67 Comparisons of clinical and radiomics

features between the two groups (Table 2). Comparisons of clinical

and radiomics features between the two groups revealed that tumor

location differed significantly in both univariate and multivariate
Frontiers in Oncology 04
logistic regression analyses. Tumor size showed statistical

significance in the univariate analysis (p < 0.05) but was not

significant in the multivariate analysis. Age and gender did not

show any statistically significant differences in either univariate or

multivariate analyses.
Feature selection and model development

We also tested the consistency of 670 radiomics features from

each of the iodine density maps and effective atomic number maps.

Initially, the radiomics features extracted from each phase were

subjected to feature selection and dimensionality reduction using

the LASSO algorithm (Figure 3). Based on the selection of

predictors by log(lambda) and the 1-SE criteria (Figure 3), five

radiomics features from the iodine density map and 2 from the

effective atomic number map were ultimately selected. These

selected radiomics features were used to calculate two radscores.

Multivariate logistic regression was then used to establish radiomics

models for each phase. The radscores effectively distinguished

between high and low Ki-67 expression cases (Figure 4). The

AUC values were used to compare the models within each phase

to identify the optimal model. Finally, six prediction models were

established, including one clinical model, two radiomics models

(iodine density map and effective atomic number map), and three

combined models (clinical + iodine density map; clinical + effective

atomic number map; clinical + iodine density map + effective
TABLE 1 Clinical characteristics of patients.

[ALL] N=91 N=22 Ki-67>5% N=69 Ki-67 ≤5% Pvalue

Gender: 0.161

male 44 (48.35%) 14 (63.64%) 30 (43.48%)

female 47 (51.65%) 8 (36.36%) 39 (56.52%)

Age 62.15 (8.86) 62.95 (10.30) 61.90 (8.41) 0.665

Local: <0.001

stomach 74 (81.32%) 10 (45.45%) 64 (92.75%)

Outside the stomach 17 (18.68%) 12 (54.55%) 5 (7.25%)

maximum.diameter 24.00 [16.00;38.00] 41.00 [26.25;75.25] 21.00 [14.00;31.00] <0.001
TABLE 2 All Characteristics of Patients Single factor logistic regression and multiple logistic regression.

Characteristics Uning-OR Uni-CI Uni-P Multi-OR Multi-CI Multi-P

1 Rad_Score.I. 10.42 10.42 (4.212-34.43) 0 21.816 21.81 (5.363-205.0) 0.001

2 Rad_Score.Z. 9.834 9.834 (3.866-33.31) 0 10.3 10.29 (2.645-81.16) 0.006

3 maximum.diameter 0.955 0.955 (0.929-0.976) 0

4 local 0.065 0.065 (0.017-0.213) 0 0.045 0.045 (0.002-0.392) 0.01

5 age 0.986 0.986 (0.933-1.042) 0.625

6 gender 2.275 2.275 (0.86-6.366) 0.104
I:iodine density maps Z:effective atomic number maps.
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atomic number map). The results showed that there was good

consistency (ICCs > 0.75) of extracted tumor features.
Model comparison and validation

The discrimination, calibration, and clinical applicability of

the six models are shown (Figure 5). The ROC curves were

compared using the DeLong test (Table 3), revealing statistical

differences between the combined clinical + iodine density map +

effective atomic number map model and the other four models,

but no statistical difference between the clinical + iodine density
Frontiers in Oncology 05
map model and the clinical model. The clinical + iodine density

map + effective atomic number map model was identified as the

best model. The optimal model’s discrimination, calibration, and

clinical decision curve were validated using the Bootstrap (1000

times) method. This model had the highest predictive

performance with an AUC of 0.982 (95% CI, 0.9603-1)

(Figure 6). The Hosmer-Lemeshow test showed a calibration P-

value of 0.99 (Figure 6). The clinical decision curve indicated a

probability threshold range of 15% to 98%, with high net benefit

(Figure 6). The optimal model was visualized using a nomogram

that combined clinical features, iodine density map, and effective

atomic number map radiomics.
FIGURE 3

Predictor selection(Z a, b) using the LASSO regression analysis with tenfold cross-validation. parameter (lambda) selection of deviance in the LASSO
regression based on the minimum criteria (left dotted line) and the 1-SE criteria (right dotted line). In the present study, predictor’s selection was
according to the 1-SE. Predictor selection(I c, d) using the LASSO regression analysis with tenfold cross-validation. parameter (lambda) selection of
deviance in the LASSO regression based on the minimum criteria (left dotted line) and the 1-SE criteria (right dotted line). In the present study,
predictor’s selection was according to the 1-SE.
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Discussion

Dual-energy CT iodine density maps and effective atomic

number maps with radiomic and clinical features for predicting

preoperative Ki-67 expression in gastrointestinal stromal tumors

(GISTs). Our findings demonstrate that models incorporating both

clinical and imaging radiomic features achieve high predictive

accuracy, with the highest AUC reaching 0.982. Notably There

was no significant difference in accuracy between the best models

using clinical + iodine density map radscore and clinical + iodine

density map radscore + effective atomic number radscore. These

findings suggest that models utilizing dual-energy CT iodine

density and effective atomic number maps hold significant clinical

value for non-invasive preoperative assessment of Ki-67 expression

in GISTs, thereby avoiding the risks associated with biopsy-induced

tumor rupture and dissemination. We developed and validated the
Frontiers in Oncology 06
best-performing combined model using bootstrap resampling

(1,000 iterations), with a calibration plot demonstrating excellent

agreement (AUC = 0.982, 95% CI: 0.9603–1). Clinical decision

curve analysis (DCA) indicated a probability threshold range of

15%–98%, yielding a high net benefit, making it a reliable tool for

preoperative Ki-67 assessment and clinical decision-making.

This study represents the first preoperative prediction model for

Ki-67 expression in GISTs using dual-energy CT iodine density and

effective atomic number maps with high accuracy. Previous studies

primarily relied on traditional CT features to assess Ki-67

expression in GISTs. However, DECT has emerged as a powerful

non-invasive functional imaging modality, providing objective and

quantitative information for disease diagnosis and differentiation

(11, 12). Unlike conventional imaging features, DECT enables the

acquisition of iodine density maps, electron density maps, and

effective atomic number maps. Iodine maps utilize dual-energy X-
FIGURE 4

Waterfall Plot (a) and comparison Plot (b) of the radiomics Z model. Waterfall Plot (c) and comparison Plot (d) of the radiomicsI model.
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ray imaging to differentiate substances based on their attenuation

characteristics at different energies, while electron density and

effective atomic number maps generate atomic number

distribution maps of substances, offering detailed information on

tissue composition. Previous research has demonstrated

correlations between DECT iodine density, electron density,

effective atomic number parameters, and Ki-67 expression in

cervical cancer, gastric adenocarcinoma, and breast cancer (13–

15). Our study confirmed that models incorporating iodine density

and effective atomic number maps are effective in predicting Ki-67

levels in GISTs.

GISTs occur in various locations and tissue types, leading to

differences in prognosis and response to treatment. Current risk

stratification measures, such as the modified American

Gastrointestinal Stromal Tumor Risk Classification Criteria, fail to

comprehensively assess tumor behavior, as low-risk GISTs can still

metastasize or recur. Ki-67 is a well-established marker of tumor

proliferation. A meta-analysis (16) has shown that higher Ki-67

indices are associated with poorer postoperative outcomes and

higher recurrence risks in GISTs.The selection criteria for Ki-67

thresholds in GISTs vary in previous studies, ranging from 5% to

10% (17–20); with 5% being commonly used. Our study adopted

this threshold and developed predictive models, and showed
Frontiers in Oncology 07
favorable outcomes. Traditional Ki-67 detection methods rely on

surgical or fine-needle biopsy samples, which may suffer from

sampling heterogeneity and limited accuracy. Our radiomics-

based approach offers a non-invasive alternative for preoperative

Ki-67 evaluation, which could be instrumental in guiding

treatment decisions.

Therefore, developing an accurate non-invasive tool for

preoperative assessment of Ki-67 expression in GIST patients is

crucial. Our findings align with previous studies indicating higher

Ki-67 expression levels in extra gastric GISTs compared to gastric

GISTs (21), and we utilized this information to build predictive

models. Tumor size has also been identified as an important

predictor of Ki-67 expression; larger tumors tend to have higher

Ki-67 expression probabilities. However, in our multivariate logistic

regression analysis, tumor size was excluded, possibly due to sample

size limitations. Radiomics has been widely used to integrate diverse

tumor phenotypes for developing predictive models in tumor

diagnosis, grading, treatment response assessment, and prognosis

prediction (22–24). In the existing body of literature, investigations

pertaining to the employment of radiomics for the prediction of Ki -

67 expression levels within gastrointestinal stromal tumors (GISTs)

have predominantly been predicated on the imaging manifestations

of conventional computed tomography (CT). Conversely, the

present study is uniquely founded upon the iodine - based maps

and atomic number maps that are generated subsequent to the post

- processing of dual - source CT data. Notably, the Area Under the

Curve (AUC) of the optimal prediction model derived from our

research substantially exceeds the corresponding outcomes reported

in the previously surveyed literature (17–20, 22).

However, our study has several limitations: retrospective design

and single-center data, which may introduce selection bias. Only

venous phase images were analyzed, potentially limiting the model’s

generalizability. Therefore, future studies should explore

multicenter and multiphase approaches to validate these

findings further.
TABLE 3 The ROC curves of 6 model compared using the DeLong test.

1 Model Model Pvalue

2 Clinical+Rad_Score.Z.+Rad_Score.I. Clinical 0

3 Clinical+Rad_Score.Z.+Rad_Score.I. Rad_Score.Z. 0

4 Clinical+Rad_Score.Z.+Rad_Score.I. Rad_Score.I. 0.03

5 Clinical+Rad_Score.Z.+Rad_Score.I. Clinical+Rad_Score.Z. 0.01

6 Clinical+Rad_Score.Z.+Rad_Score.I. Clinical+Rad_Score.I. 0.06
FIGURE 5

Comparison of ROC (a) in 6 model ModelA: Clinical+Rad_Score.Z.+Rad_Score.I.ModelB: Clinical.IModelC: Rad_Score.Z. ModelD: Rad_Score.I.
ModelE: Clinical+Rad_Score.Z.ModelF: Clinical+Rad_Score.I.). Comparison of calibration curve (b) in 6 model (ModelA: Clinical
+Rad_Score.Z.+Rad_Score.I.ModelB: Clinical.IModelC: Rad_Score.Z. ModelD: Rad_Score.I. ModelE: Clinical+Rad_Score.Z.ModelF: Clinical
+Rad_Score.I.). Comparison of decision curve analysis (c) in 6 model (ModelA: Clinical+Rad_Score.Z.+Rad_Score. I.ModelB: Clinical.IModelC:
Rad_Score.Z. ModelD: Rad_Score.I. ModelE: Clinical+Rad_Score.Z.ModelF: Clinical+Rad_Score.I.).
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FIGURE 6

Decision curve (a) analysis of the optimal model validated through 1000 bootstrp (threshold range of 15% to 98%). ROC (b) of the optimal model
validated through 1000 bootstrp. Calibration curve (c) of the optimal model validated through 1000 bootstrp.
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