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Background: Currently, the computed tomography (CT) radiomics-based

models, which can evaluate small (≤ 20 mm) solid pulmonary nodules (SPNs)

are lacking. This study aimed to develop a CT radiomics-based model that can

differentiate between benign and malignant small SPNs.

Methods: This study included patients with small SPNs between January 2019

and November 2021. The participants were then randomly categorized into

training and testing cohorts with an 8:2 ratio. CT images of all the patients were

analyzed to extract radiomics features. Furthermore, a radiomics scoring model

was developed based on the features selected in the training group via univariate

and multivariate logistic regression analyses. The testing cohort was then used to

validate the developed predictive model.

Results: This study included 210 patients, 168 in the training and 42 in the testing

cohorts. Radiomics scores were ultimately calculated based on 9 selected CT

radiomics features. Furthermore, traditional CT and clinical risk factors

associated with SPNs included lobulation (P < 0.001), spiculation (P < 0.001),

and a larger diameter (P < 0.001). The developed CT radiomics scoring model

comprised of the following formula: X = -6.773 + 12.0705×radiomics score

+2.5313×lobulation (present: 1; no present: 0)+3.1761×spiculation (present: 1; no

present: 0)+0.3253×diameter. The area under the curve (AUC) values of the CT

radiomics-based model, CT radiomics score, and clinicoradiological score were

0.957, 0.945, and 0.853, respectively, in the training cohort, while that of the

testing cohort were 0.943, 0.916, and 0.816, respectively.

Conclusions: The CT radiomics-based model designed in the present study

offers valuable diagnostic accuracy in distinguishing benign and malignant SPNs.
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Introduction

Pulmonary nodules (PNs) are non-transparent lesions that are

surrounded by the lung parenchyma and are not attributable to

pleural effusion, atelectasis, or mediastinal lymphadenopathy (1–3).

The two types of nodules include solid PNs (SPNs) and subsolid

PNs, which require different management strategies as per the

Fleischner guidelines (4). For > 8 mm SPNs, tissue sampling is

advised (5–7). The thorough preoperative assessment of these SPNs

is essential before the biopsy or video-assisted thoracoscopic

surgery (VATS)-based wedge resection.

The benign and malignant SPNs are generally distinguished

based on the clinical data, computed tomography (CT) findings,

and tumor marker levels for each patient (8–10). Several efforts have

been made to establish predictive models that can assess SPN

malignancy risk by combining several predictors associated with

malignant nodules (9), yielding models with 84% - 91% sensitivities

and 74% - 80% specificities, along with the area under the curve

(AUC) values between 0.83-0.89 (9). Therefore, more accurate

predictive models are required for SPN assessment.

Radiomics has emerged as a novel approach for processing

clinical images to extract high-dimensional quantitative data,

thereby allowing for the characterization of tissue features

undiagnosable (11, 12). Several radiomics-based models have also

been designed to identify benign and malignant PNs based on their

CT features (13–15). However, the assessment of SPNs is generally

performed in a manner stratified based on nodule size (8, 16–18),

with ≤ 20 mm SPNs being classified as small SPNs (8, 16, 17). The

malignancy rates associated with different SPN sizes vary,

suggesting that extant CT radiomics-based models may not be

appropriate for evaluating small SPNs.

In this study, a CT radiomics-based model was designed to

distinguish between benign and malignant small SPNs.
Methods

This study was authorized by the Ethics Committee of Xuzhou

Central Hospital, and the requirement of written informed consent

was waived.
Study design

This study enrolled small SPN patients consecutively from

January 2019 to November 2021. The inclusion criteria included

patients who indicated: (i) small SPNs ≤ 20 mm, (ii) a confirmed

pathological SPN diagnosis after surgical resection, and (iii) a < 2-

week interval between SPN detection and surgical resection.
Abbreviations: AUC, area under curve; CEA, carcinoembryonic antigen; CT,

computed tomography; CYFRA21-1, cytokeratin 19 fragment; ICC, inter-class

coefficient; LASSO, least absolute shrinkage and selection operator; NSE, neuron

specific enolase; PN, pulmonary nodule; ROC, receiver operator characteristic;

SCC, squamous cell carcinoma antigen; SPN, solid PN; VATS, video-assisted

thoracoscopic surgery.
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Patients were excluded if they had: (i) poor image quality; (ii) a

history of malignancy, (iii) SPNs < 6 mm in diameter, or (iv)

incomplete clinical data. Eligible patients were randomly assigned

to training and testing cohorts at an 8:2 ratio.
Clinical data

Clinical data were collected for all the patients including

demographic factors (age, gender, smoking history), CT features

(location, diameter, lobulation, spiculation, pleural retraction sign,

CT bronchus sign, and calcification), and the levels of tumor

markers [carcinoembryonic antigen (CEA), squamous cell

carcinoma antigen (SCC), neuron-specific enolase (NSE), serum

gastrin, cytokeratin 19 fragment (CYFRA21-1)]. The size of the

SPNs was measured as the largest diameter on the axial CT images.
CT images acquisition

A 64-row CT instrument (Brilliance 64 CT, Philips) was used

for all CT imaging with the following settings: tube voltage = 120

kVp, tube current = 160-220 mAs, pitch = 0.97, and collimation =

0.6×128 mm. Images were reconstructed using a medium sharp

(B50) reconstruction algorithm with a 1.0 - 1.25 mm thickness. The

images of the lung (width = 1600 HU; level = -600 HU) and

mediastinal (width = 450 HU; level = -50 HU) windows were

analyzed. CT imaging features were assessed individually by two

chest radiologists (JXS and XXZ) with 7 and 12 years of relevant

experience, respectively, who were blinded to the pathological

results for each patient.
Feature extraction

A chief radiologist (YJY) with 7 years of experience manually

segmented target 3D SPNs with the Radcloud platform (http://

radcloud.cn) and remained blinded to patient pathological results.

Further, the Radcloud platform was used for extracting the

radiomics feature. Observer consistency was assessed using intra-

and inter-class coefficient (ICC) values. Briefly, CT images from 20

randomly selected individuals in the training cohort were

independently segmented by two radiologists (JXS and XXZ).

Moreover, Reader 1 (JXS) repeated the segmentation of tumors

from these 20 patients following a one-week interval. Repeatable

features were regarded as those with an ICC ≥ 0.8, which were

elected for subsequent evaluation. All remaining images were

segmented by Reader 1 (JXS).
Feature selection

Features with > 0.8 variances were identified with the variance

threshold method for further analysis. Furthermore, based on the

Selec-K-Best method analysis, features with a p-value of < 0.05 were

then retained for a final step in which, features associated with
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malignant SPNs were selected using a least absolute shrinkage and

selection operator (LASSO) regression model. These characteristics

were employed to formulate a radiomics signature, enabling the

computation of radiomics scores for each respective patient.
Development and validation of a CT
radiomics-based model

To distinguish between malignant and benign small SPNs, a CT

radiomics-based model was established. Briefly, univariate analysis

(UA) and multivariate logistic regression analysis (MLRA) were

carried out to select risk factors related to SPN malignancy in the

training cohort. Then, a nomogram incorporating these risk factors

and radiomics scores was established. Subsequently, the AUC

values for receiver operating characteristic (ROC) curves were

employed to assess the accuracy of the developed model.

Moreover, the model was validated using data from the patients

in the testing cohort.
Clinical benefit assessment

The clinical application of the predictive model was assessed via

a decision curve analysis of the training and testing cohorts.
Statistical analyses

The statistical analysis was carried out using the SPSS 25.0 and

R 4.1.2 software. Eligible patients were randomly assigned to
Frontiers in Oncology 03
training and testing cohorts at an 8:2 ratio using the Radcloud

platform. The comparison of categorical data was carried out via

Fisher’s exact test or c2 test, while for continuous data, an

independent sample t-test or Mann-Whitney U test was carried

out. UA and MLRA were performed to identify factors that are

associated with SPN malignancy. In the MLRA, particularly in UA,

variables indicating a P-value < 0.1, were then selected. The

comparison of AUC values was implemented using the DeLong

test, and the predictive model’s performance was evaluated via

calibration curves and the Hosmer-Lemeshow test. The statistical

significance threshold was set as P < 0.05.
Results

Patients’ criteria

This study recruited 323 patients with small SPNs who

underwent surgical resection procedures in our hospital from

January 2019 to November 2021. Of these 323 patients, 210 were

selected for further analyses (Figure 1). Each patient had a single

SPN with a pathological diagnosis confirmed following surgical

resection. All the participants were categorized into training (n =

168) and testing (n = 42) groups in an 8:2 ratio. Table 1 indicates

detailed information on the characteristics of selected patients.
Feature selection and radiomics scoring

Initial analyses identified 1409 radiomics features. Then, to

develop a radiomics score, a stepwise process was then employed
FIGURE 1

Study flowchart.
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(Supplementary Table S1), which revealed 9 features for radiomics

score calculation (Supplementary Table S2). Coefficient values for

all features as well as the mean square error for the combined

sequences are presented in Supplementary Figure S1.
Identification of malignancy-related
clinicoradiological factors

The clinicoradiological features associated with malignant SPNs

were assessed in the training cohort. The data revealed that the

training cohort comprised 88 and 80 malignant and benign SPNs

patients, respectively. UA identified older age (P = 0.01), lobulation
Frontiers in Oncology 04
(P < 0.001), spiculation (P < 0.001), and larger SPN diameter (P <

0.001) as being associated with a risk of SPN malignancy.

Furthermore, MLRA confirmed that lobulation (P < 0.001),

spiculation (P < 0.001), and larger SPN diameter (P < 0.001) were

associated with a greater risk of SPN malignancy (Table 2).
Predictive model development

The identified clinicoradiological factors and radiomics score

were used to establish a predictive model with the following

formula: X = -6.773 + 12.0705×radiomics score+2.5313×lobulation

(present: 1; no present: 0)+3.1761×spiculation (present: 1; no present:
TABLE 1 Baseline data of the patients.

Training cohort (n=168) Test cohort (n=42) p-
Inter

Benign
(n=80)

Malignant
(n=88)

p-
Intra

Benign
(n=20)

Malignant
(n=22)

p-
Intra

Clinical features

Age (y) 57.88 ± 10.06 61.98 ± 9.60 0.008 52.60 ± 11.35 62.82 ± 10.25 0.004 <0.001

Gender [n (%)] Male 33 (41.2) 47 (53.4) 0.155 7 (35.0) 9 (40.9) 0.94 0.148

Female 47 (58.8) 41 (46.6) 13 (65.0) 13 (59.1)

Smoker [n (%)] No 60 (75.0) 66 (75.0) 1 13 (65.0) 14 (63.6) 1 1

Yes 20 (25.0) 22 (25.0) 7 (35.0) 8 (36.4)

CT imaging features

Lobe location [n (%)] Non-
upper

38 (47.5) 49 (55.7) 0.365 9 (45.0) 13 (59.1) 0.546 0.223

Upper 42 (52.5) 39 (44.3) 11 (55.0) 9 (40.9)

Lobulation [n (%)] No 53 (66.2) 33 (37.5) <0.001 14 (70.0) 9 (40.9) 0.114 <0.001

Yes 27 (33.8) 55 (62.5) 6 (30.0) 13 (59.1)

Spiculation [n (%)] No 48 (60.0) 33 (37.5) 0.006 11 (55.0) 9 (40.9) 0.546 0.004

Yes 32 (40.0) 55 (62.5) 9 (45.0) 13 (59.1)

Pleural retraction
[n (%)]

No 41 (51.2) 34 (38.6) 0.137 13 (65.0) 8 (36.4) 0.122 0.031

Yes 39 (48.8) 54 (61.4) 7 (35.0) 14 (63.6)

CT bronchial sign
[n (%)]

No 66 (82.5) 61 (69.3) 0.071 15 (75.0) 14 (63.6) 0.644 0.049

Yes 14 (17.5) 27 (30.7) 5 (25.0) 8 (36.4)

Diameter (mm) 9.76 ± 3.67 13.14 ± 4.79 <0.001 10.25 ± 4.27 11.41 ± 4.33 0.388 <0.001

Calcification [n (%)] No 71 (88.8) 88 (100.0) 0.004 15 (75.0) 21 (95.5) 0.147 0.001

Yes 9 (11.2) 0 (0.0) 5 (25.0) 1 (4.5)

Tumor marker tests

CEA (mg/L) 2.21 ± 1.34 2.42 ± 1.54 0.345 2.09 ± 0.91 2.51 ± 2.02 0.398 0.213

NSE (ng/ml) 13.02 ± 3.23 13.12 ± 3.27 0.848 13.15 ± 3.47 12.35 ± 3.60 0.47 0.857

SCC (mg/L) 1.53 ± 0.76 1.86 ± 0.81 0.321 1.86 ± 1.03 1.61 ± 0.71 0.373 0.43

Cyfra21-1 (ng/ml) 2.72 ± 1.18 2.55 ± 1.05 0.333 2.30 ± 0.93 3.00 ± 1.82 0.132 0.972
fron
CEA, Carcinoembryonic antigen; CT, Computed tomography; NSE, Neuronspecifc enolase; SCC, Squamous cell carcinoma antigen.
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0)+0.3253×diameter. A nomogram was also developed with this CT

radiomics-based model (Figure 2). Furthermore, individual

clinicoradiological and radiomics score models were also developed.

Sensitivity, specificity, accuracy, and AUC measurements for these

models are presented in Table 3. AUC values for the CT radiomics-

based model, CT radiomics score, and clinicoradiological score were

0.957, 0.945, and 0.853 (Figure 3A). Moreover, the AUC values of the

CT radiomics-based model were significantly higher those for both

CT radiomics scores (P = 0.035) and clinicoradiological scores

(P = 0.021).
Frontiers in Oncology 05
Model validation

The testing cohort comprised 42 patients, including 20 benign

and 22 malignant SPN patients. Using the models developed above

as well as the testing cohort data, the AUC values of the CT

rad iom i c s -b a s ed mode l , CT r ad iom i c s s c o r e , and

clinicoradiological score were assessed as 0.943, 0.916, and 0.816,

respectively (Figure 3B). The AUC of the CT radiomics-based

model was significantly greater than the CT radiomics score (P =

0.043) and clinicoradiological score (P < 0.001).
TABLE 2 Predictors of malignancy in the training cohort (malignancy: 88/benign: 80).

Univariate analysis Multivariate analysis

OR 95% CI p-value OR 95% CI p-value

Age 0.61 0.33-1.13 0.12

Gender 1.04 1.01-1.08 0.01 1.02 0.99-1.06 0.2

Smoker 1 0.5-2.01 1

Non-upper lobe 0.72 0.39-1.32 0.29

Lobulation 3.27 1.74-6.16 <0.001 2.84 1.4-5.76 <0.001

Spiculation 2.5 1.34-4.65 <0.001 3.13 1.52-6.43 <0.001

Pleural retraction 1.67 0.9-3.08 0.1

CT bronchial sign 2.09 1-4.34 0.05

Diameter 1.2 1.11-1.3 <0.001 1.19 1.09-1.3 <0.001

Calcification 0 0-Inf 0.98

CEA 1.11 0.89-1.38 0.35

NSE 1.01 0.92-1.11 0.85

SCC 1.11 0.88-1.38 0.38

Cyfra21-1 0.87 0.66-1.15 0.33
CEA, Carcinoembryonic antigen; CT, Computed tomography; NSE, Neuronspecifc enolase; SCC, Squamous cell carcinoma antigen.
Bold value means the statistical significance.
FIGURE 2

The developed CT radiomics model-based nomogram.
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TABLE 3 The diagnostic performance of each model.

Models Cohorts AUC (95%CI) Accuracy Sensitivity Specificity

Clinicoradiologic model
Training 0.853 (0.799-0.897) 0.851 0.864 0.838

Test 0.816 (0.620-0.842) 0.762 0.773 0.750

Radiomics score model
Training 0.945 (0.914-0.968) 0.887 0.898 0.875

Test 0.916 (0.764-0.935) 0.810 0.818 0.800

CT radiomics based model
Training 0.957 (0.931-0.979) 0.911 0.920 0.900

Test 0.943 (0.822-0.975) 0.857 0.909 0.800
F
rontiers in Oncology
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AUC, area under curve; CT, computed tomography.
B

A

FIGURE 3

ROC curves corresponding to the CT radiomics-based model, CT radiomics score, and clinicoradiological score in the (A) training and (B)
testing cohorts.
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Analysis of model clinical benefit

In calibration curve analyses, the results predicted via the CT

radiomics-based model and the actual results indicated good

consistency in the training and testing cohorts (Figures 4A, B).

Further, decision curves confirmed that the developed nomogram

and associated predictive model yielded a net benefit in both

cohorts with a risk threshold > 0 (Figures 5A, B).
Frontiers in Oncology 07
Discussion

Accurately diagnosing malignant SPNs is vital for the effective

detection and management of lung cancer. Although the CT follow-

up and longitudinal evaluation are often required for the SPNs, the

follow-up for the high-risk SPNs may sometimes increase the risk of

tumor growth. The Fleischner Society guidelines also recommended

that the high-risk SPNs required tissue sampling (4). The predictive
B

A

FIGURE 4

Calibration curves of CT radiomics-based model in the (A) training and (B) testing cohorts.
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model is important because it can provide a comprehensive analysis

for the SPNs and it can help us to make the next decision for CT

follow-up or tissue sampling. Although various models have been

designed to distinguish SPNs that are benign and malignant based

on certain biomarkers (19–21), it is necessary to further stratify
Frontiers in Oncology 08
these analyses according to SPN size due to the high degree of

variability in the malignancy rates of SPNs with different sizes (22).

Some specific predictive models have been designed to identify

small SPNs (8, 19, 23), however, further studies are required

focusing on incorporating radiomics data into these models.
B

A

FIGURE 5

Decision curve analysis results for the (A) training and (B) testing cohorts.
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Variables such as clinical and tumor morphological

characteristics are often incorporated into clinicoradiological

predictive models aimed at differentiating benign and malignant

SPNs (8, 19). The most common CT features of malignant SPN

include a larger diameter, lobulation, spiculation, and CT bronchial

sign (8, 19, 23). This study developed a more traditional predictive

model based on clinical and tumor CT findings, which yielded AUC

values of 0.853 and 0.816 in the training and testing cohorts,

respectively. These AUC values align well with previously studied

predictive models for small SPNs (0.744-0.878) (8, 19). However,

these traditional CT features fail to offer any insight into the detailed

internal structural properties of target tumors. Moreover, the

identification of these features is often based on the experience of

the radiologists who evaluate patient imaging results, therefore, they

are prone to a high risk of bias.

The radiomics method entails the processing of medical images

to extract high-dimensional quantitative data. This technique can

characterize tumor microscopic features related to cellular,

molecular, or gene expression patterns. Several studies support

the application of radiomics to the differential diagnosis and

prognostic assessment of several tumor types (12–14).

Here, a CT radiomics-based model was developed that could

distinguish between benign and malignant small SPNs. This model

was based on a combination of the radiomics scores and the

established clinical model. The model showed an AUC value

higher than that of the clinical model in the training (0.957 vs.

0.853, P = 0.021) and testing (0.943 vs. 0.816, P < 0.001) cohorts.

These data validate that the radiomics score to significantly

improves diagnostic performance relative to that associated with

traditional clinical and radiological findings. The resultant

nomogram can generate a direct predictive score for each small

SPN, with this score corresponding to a predicted probability that

can aid in clinical decision-making efforts.

Predictive models developed to evaluate small SPNs in previous

reports determined that CEA levels were significantly related to the

risk of malignancy (8, 23). One meta-analysis demonstrated that

CEA had good diagnostic performance when used to distinguish

between benign and malignant PNs (24). However, in the present

study, no relationship was observed between tumor marker levels

and the malignancy status of small SPNs. These discrepant results

may be attributable to sample size limitations.

There are some limitations to the present study. For one, as a

retrospective study, there is a high risk of selective bias. Secondly,

this was a single-center study, therefore, prospective multi-center

validation is required. Thirdly, some patient data at baseline was not

balanced between the training and testing cohorts, potentially

contributing to a greater risk of bias. However, both cohorts

exhibited similarly high AUC values exceeding 0.9, suggesting a

high degree of stability for the predictive model. Finally, because a

radiomics approach was employed in this study, the reproducibility

of this analytical strategy and its potential for standardization are

limited, constraining the potential clinical application of this model.
Frontiers in Oncology 09
Conclusions

In summary, this study established a CT radiomics-based model

that indicated satisfactory diagnostic accuracy in distinguishing

between benign and malignant small SPNs.
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(A) The coefficients for each individual feature and (B) combined sequence
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