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Objective: This study aimed to develop and validate an Informer- Convolutional

Neural Network (CNN) model to predict the gamma passing rate (GPR) for

patient-specific quality assurance in volumetric modulated arc therapy (VMAT),

enhancing treatment safety and efficacy by integrating multiple data sources.

Methods: Analyzing 465 VMAT treatment plans covering head & neck, chest, and

abdomen, the study extracted data from 31 complexity indicators, 123 radiomics

features, and 123 dosimetrics indices, along with daily linac performance data

including 141 key performance indicators. A hybrid Informer-CNN architecture

was used to handle both temporal and non-temporal data for predicting GPR.

Results: The Informer-CNN model demonstrated superior predictive

performance over traditional models like Convolutional Neural Networks

(CNN), Long Short-Term Memory(LSTM), and Informer. Specifically, in the

validation set, the model achieved a mean absolute error (MAE) of 0.0273 and

a root mean square error (RMSE) of 0.0360 using the 3%/3mm criterion. In the

test set, the MAE was 0.0327 and the RMSE was 0.0468. The model also showed

high classification performance with AUC scores of 0.97 and 0.95 in test and

validation sets, respectively.

Conclusion: The developed Informer-CNN model significantly enhances the

prediction accuracy and classification of gamma passing rates in VMAT treatment

plans. It facilitates early integration of daily accelerator performance data,

improving the assessment and verification of treatment plans for better

patient-specific quality assurance.
KEYWORDS

deep learning, radiotherapy, patient-specific quality assurance, prediction model,
gamma passing rate
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1 Introduction

The accuracy and safety of radiotherapy are critical factors

influencing treatment outcomes for cancer patients (1, 2).

Volumetric modulated arc therapy (VMAT), acknowledged as an

advanced radiotherapy technique, provides significant benefits,

especially in the treatment of complex tumors, owing to its precise

and efficient dose distribution (3, 4). The aim of patient-specific quality

assurance (PSQA) is to guarantee the safe delivery of treatment plans

and enhance treatment outcomes by mitigating uncertainties and

inaccuracies during plan execution (5, 6). While traditional PSQA

methods, such as utilizing 2D or 3D diode arrays for physical dose

measurement and comparing the outcomes with the planned dose

distribution, have been extensively adopted, such approaches

frequently demand considerable time and resources, particularly

when managing complex IMRT/VMAT plans (7, 8). Furthermore,

measurement-based methods often struggle to adapt quickly to the

increasing complexity of modern radiotherapy plans, which may

involve intricate tumor geometries and varying motion patterns.

These challenges can result in delays in plan validation, potentially

limiting the ability to implement timely adjustments. Additionally, the

dependency on physical measurements may not fully capture

equipment-related variations, such as isocenter accuracy, MLC

positioning errors, and absolute dose output, which are critical for

ensuring overall treatment quality and consistency.

In recent years, computation-based PSQA methods have been

increasingly adopted as they provide faster and more resource-

efficient alternatives to traditional measurement-based approaches

(9–13). For instance, Huang et al. (9) demonstrated the effectiveness

of predicting dose distribution in virtual PSQA by employing the

UNet++ architecture. Wall et al. (10) delved into the application of

machine learning models, such as support vector machines (SVMs),

for forecasting the QA outcomes of VMAT treatment plans.

Expanding further, by prognosticating the gamma passing rate

(GPR) of gated dosimetry using tree-based algorithms, Lam et al.

(14) highlighted the utility of deep learning technology in enhancing

the precision of radiotherapy QA.While recent research has achieved

notable advancements, it remains constrained by certain limitations.

Many studies primarily utilize data from radiotherapy planning and

verification tools for training, which may not strongly correlate with

the operational performance of radiotherapy linacs, including

parameters such as isocenter accuracy, absolute dose, and MLC

positioning error. In the present study, particular attention was
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paid to linac performance data. MPC daily check data were utilized

(15), which records the daily status of radiotherapy equipment. Such

data are crucial for monitoring and ensuring the stability and

accuracy of treatment equipment. Further, traditional machine

learning methods have largely been employed in existing research.

However, the Informer model was introduced in the present study,

which effectively captures long-term dependencies in time series data

by leveraging attention mechanisms (16). This model is particularly

suitable for analyzing time-dependent daily linac performance data

in radiotherapy.

A spectrum of multi-dimensional features was harnessed in the

present study, including linac performance data, radiomics, dosimetrics

characteristics, and plan complexity, so as to develop an Informer-

CNN model grounded in the Informer architecture. The primary

objective is to facilitate the prompt acquisition of patient gamma

pass rate information for VMAT treatment plans, leveraging daily

linac performance data and treatment plans. This process enables rapid

feedback and adjustments in the initial stages of radiotherapy, thereby

enhancing the efficiency of treatment plan optimization. As such, this

method not only ensures timelier quality assurance but also reduces the

uncertainties in the VMAT plans clinically used.
2 Materials and methods

2.1 Data collection

2.1.1 Radiation treatment plan
A total of 465 VMAT treatment plans (comprising 915 fields)

from the years 2019 to 2023 were collected. All plans were generated

using the Varian Eclipse planning system, employing a calculation

grid of 2.5 mm and the AAA algorithm, with treatment energies of 6

MV and 6MV-FFF, administered via a Varian TrueBeam linac. The

collected files included patient CT scans, treatment plans

(RTPLAN), dose distributions (RTDOSE), and contour structures

(RTSTRUCTURE). The information collected from the treatment

plans is presented in Table 1.
2.1.2 Dose verification data
Patient dose verification was conducted using the Portal Dosimetry

software with settings of absolute gamma, normalization, and a

threshold of 10%. Verifications were conducted with four different

criteria: 3%3mm, 3%2mm, 2%2mm, and 1%1mm. The corresponding
TABLE 1 Plan characteristics.

Characteristic Number of Plans % Number of Fields %

Treatment site

Head & Neck 97 24.8 179 19.6

Chest 145 31.2 288 31.5

Abdomen 213 45.8 423 46.2

Other 10 2.2 25 2.7

Energy
6MV 402 86.5 795 86.9

6MV-FFF 63 13.5 120 13.1
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GPRs were collected, along with records of the verification times. The

EPID panels employed were of the aSi1000 type, with dimensions

measuring 40 × 30 cm². A backscatter absorption plate was positioned

between the detection panel and the gantry. The detector matrix

comprised 1024 × 768 pixels, providing a resolution of 0.39 mm

(17). The GPRs distribution is presented in Table 2.

2.1.3 Daily machine data
Daily machine data measured between 2019 and 2023 were

collected using the Varian’s Machine Performance Check (MPC)

application. This tool, an EPID image-based application, was

employed to assess the performance attributes of TrueBeam

systems. The key performance metrics evaluated included

mechanical isocenter deviation, multileaf collimator (MLC) leaf

deviation, and beam uniformity deviation (18, 19).
2.2 Feature extraction

2.2.1 Complexity of plan(C)
The complexity features of each beam in the plan were computed

using the Pydicom package in Python 3.7, and these features were then

extracted to be utilized as input for the model. A comprehensive set of

31 features was extracted from each treatment plan, encompassing

both complexity-related attributes and other parameters such as the

machine model, beam energy, MLC type, and jaw positions. The study

included three Varian TrueBeam linacs with Millennium 120-leaf

MLCs. The methodology employed for feature extraction follows the

approach outlined by Dao Lam et al. (14) Detailed explanations of the

features are provided in Supplementary Table A1.

2.2.2 Radiomic (R) and dosimetric (D) features
Radiomic (R) and dosimetric (D) features were respectively

extracted from the planning target volume (PTV) in computed

tomography (CT) images. Utilizing the Pyradiomics open-source

Python library (version 3.0), as outlined by van Griethuysen et al.,

2017 (20), a total of 123 R features from pretreatment CT scans and

123 D features from RTDOSE files were extracted. Details of these

extracted features can be found in Supplementary Table A2. To refine

the feature extraction process, cavities within the PTV were eliminated

from the original CT images by omitting CT values beneath -200

Hounsfield Units (HU), enhancing the precision in calculating R andD

features. The threshold of -200 HU was chosen to exclude low-density

regions, such as air cavities within the PTV, that are not representative

of solid tissue. This ensures that R and D features are calculated based
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on clinically relevant areas, minimizing noise and enhancing the

precision of feature extraction. The categories of extracted features

included three-dimensional shape (exclusive to R, totaling 14 features),

first-order statistics (comprising 18 features), and texture features such

as the gray-level co-occurrence matrix (GLCM, 24 features), gray-level

dependence matrix (GLDM, 14 features), gray-level run-length matrix

(GLRLM, intended for 14 unique features), gray-level size zone matrix

(GLSZM, 16 features), and neighboring gray tone difference matrix

(NGTDM, 5 features). To enhance model interpretability, solely

unfiltered raw images were utilized for extracting R and D features.

This extraction was conducted within an image region delineated by a

three-dimensional bounding box, strategically cropped with a voxel

buffer of 10 voxels surrounding the PTV. To ensure consistency across

datasets, both R and D features were standardized by discretizing voxel

intensities using a bin width of 25 HU for radiomic features and 25 cGy

for dosimetric features. These features contribute to GPR prediction by

quantifying clinically relevant properties. For instance, GLCM features

capture spatial texture patterns reflecting dose distribution consistency,

while shape and first-order statistics provide information on PTV

geometry and intensity, which are critical for understanding plan

complexity and GPR outcomes. Three-dimensional shape features

were derived solely from the structural geometry of the PTV in CT

images, as they quantify anatomical characteristics such as volume,

surface area, and compactness, which are clinically relevant for plan

complexity and tumor characterization.

2.2.3 Linac performance features(L)
Raw linac performance data were extracted from the MPC

software and subsequently standardized to ensure uniformity across

datasets. The MLC data underwent refinement to extract individual

leaf information from the extensive dataset, facilitating a more

granular performance analysis. A total of 141 daily performance

features were extracted to provide an accurate depiction of the

linear accelerator’s status. In addition, each data point was

timestamped to facilitate the examination of performance

variations over time. These processed and labeled datasets were

subsequently organized for further analysis. Supplementary Table

A3 enumerates the performance status features of the linac.
2.3 Predictive model

2.3.1 CNN
The Convolutional Neural Network (CNN) is a widely used

architecture in deep learning that specializes in processing spatial
TABLE 2 The GPRs distribution.

Criteria Number
of Fields

Pass (Count) Pass
(Percentage)

Fail (Count) Fail
(Percentage)

Mean Std Dev

3%/3mm 915 886 96.83 29 3.17 98.61 2.77

3%/2mm 915 849 92.79 66 7.21 97.53 4.25

2%/2mm 915 757 82.73 158 17.27 94.94 6.44

1%/1mm 915 29 3.17 886 96.83 72.43 13.28
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data (21). It employs convolutional layers to extract hierarchical

features, pooling layers for dimensionality reduction, and fully

connected layers for final predictions. The CNN model comprises

three convolutional layers with kernel sizes of 3×3, 5×5, and 3×3,

respectively. Each layer employs ReLU activation, followed by

average pooling (2×2 window) and dropout (rate=0.2) to mitigate

overfitting. The final output is generated through a fully connected

layer with ReLU activation, tailored to predict the four GPRmetrics.

The outputs include four GPR values (3%/3mm, 3%/2mm, 2%/

2mm, 1%/1mm) and treatment success (GPR > 90%).

2.3.2 LSTM
Long Short-Term Memory (LSTM) is an innovative design of

recurrent neural network (RNN) tailored for sequential data

processing (22). Unlike traditional RNN models, this architecture

effectively tackles long-term dependency challenges by integrating

three gating mechanisms alongside a dedicated memory unit. In

contrast to standard RNNs, LSTMs are characterized by their

utilization of a memory cell, which regulates the retention of

information. The cell state forms the crux of the LSTM’s

functionality. Within this memory cell, three distinct control

gates—namely the input, forget, and output gates—are deployed

to modulate and maintain the cell’s status. Each gate is structured

around a neural network layer, which encompasses a sigmoid

activation function and a point-wise multiplication operation. The

LSTM model employs two stacked layers with 128 hidden units

each, adopting the gating mechanisms and memory cell structure.

This architecture, validated in sequential data tasks, ensures robust

handling of temporal dependencies in radiotherapy QA parameters.

The final LSTM layer connects to a dense layer with ReLU

activation for GPR prediction.

2.3.3 Informer
The Informer model is a supervised learning framework rooted

in the attention mechanism, featuring both an encoder and a

decoder (16). Built upon the Transformer architecture, it excels in

capturing long-term dependencies inherent in time series data by

incorporating additional steps such as position encoding, block

attention, and adaptive length sequence sampling. The encoder’s

role is to establish a robust understanding of the long-term

dependencies within the original input sequences, while the

decoder extends this understanding to predict future sequences.

In this design, the encoder on the left-hand side handles longer

input sequences and employs sparse self-attention, an enhanced

version of the traditional self-attention mechanism. This self-

attention refinement, effectively minimizes the network’s size and,

when coupled with the layering of multiple levels, significantly

bolsters the model’s strength. In contrast, the decoder on the right-

hand side concentrates on long-term sequence inputs, disregarding

irrelevant target elements, thereby enabling the assessment of

attention-weighted features. Consequently, these elements are

efficiently outputted. The encoder-decoder architecture employs

two encoding layers with ProbSparse self-attention (256 hidden

units, quad-head attention) followed by Feed-Forward Networks

(FFN, 512-dimensional with ReLU activation). The FFN applies
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position-wise fully connected layers to transform attention outputs.

The inclusion of all features ensures that both time-series and non-

time-series data contribute to the prediction.

2.3.4 Informer-CNN
In the present study, a deep learning framework based on the

Informer model was developed for integrating time-series and non-

time-series data to predict radiation therapy GPRs (see Figures 1, 2).

Data features were extracted from four sources: C (915×31), R

(915×123), and D (915×123), L (915×141), and normalized using Z-

score. The Informer architecture was adopted, with two encoding

layers featuring the ProbSparse self-attention mechanism and 256

hidden units with quad-head self-attention. The Informer-CNN

retains identical encoder-decoder parameters to the standalone

Informer model, but appends CNN-based spatial feature

processing to the decoder outputs. Following each self-attention

layer, a 512-dimensional FFN was applied, incorporating layer

normalization, residual connections, and downsampling, along

with a dropout rate to mitigate overfitting. Subsequently, the

encoded features underwent decoding, emphasizing previous

outputs for precise future predictions. This process included self-

attention and cross-attention layers, followed by FFN, layer

normalization, and residual connections. Informer-processed

features were then combined with other data, resulting in a

dataset, which was then processed through convolutional layers,

ReLU activation, average pooling, and dropout. The prediction

module includes two parts: one predicts four GPR values (3%/

3mm, 3%/2mm, 2%/2mm, 1%/1mm) using a fully connected layer

with ReLU activation; the other predicts treatment success (GPR >

90%) using a fully connected layer with a Sigmoid function. The aim

of such approach is to improve predictive accuracy in radiation

therapy QA.

All models (CNN, LSTM, Informer, and Informer-CNN)

utilize the full set of input features (C, R, D, L) and produce

consistent outputs, including four GPR values (3%/3mm, 3%/

2mm, 2%/2mm, 1%/1mm) and treatment success (GPR > 90%).

This consistency ensures a direct comparison of performance

across different architectures.
2.4 Model training and evaluation

In the present study, four models were generated and

compared, including the CNN model, LSTM model, Informer

model, and Informer-CNN model. The dataset of 465 VMAT

treatment plans was split into training, validation, and testing sets

using a random splitting method, with 70% allocated for training,

15% for validation, and 15% for testing. The network models were

implemented using Python 3.7, on a 64-bit Windows operating

system, equipped with 16.00 GB RAM and a 12th generation Intel

(R) Core(TM) i7-12700KF processor at 3.60 GHz.

In this study, we trained a deep learning model using the

Informer-CNN framework. The initial learning rate was set at

0.001, and we employed the Adam optimizer with settings of

beta1 = 0.9, beta2 = 0.999, and epsilon = 1e-8. A validation set
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was used to fine-tune hyperparameters and prevent overfitting

during model training. To prevent overfitting, we applied a

learning rate decay of 0.95 every 20 epochs and set the batch size

to 32. ReLU and Sigmoid activation functions were used in the

convolutional and output layers, respectively. To mitigate potential

data leakage, the validation and test sets were strictly isolated from

the training process. Regularization techniques, including dropout

(rate = 0.5) and L2 regularization (coefficient = 0.01), were applied

alongside learning rate decay to ensure model generalization.

To evaluate the performance and accuracy of these models,

various metrics were used for numerical prediction models: RMSE,

MAE, and mean absolute percentage error (MAPE) (Equations 1–

3). The classification prediction model used the ROC curve and the

Area Under the Curve (AUC) metric (23). Among these, smaller

values of RMSE, MAE, and MAPE indicate better predictive

performance of the model. The calculation formulas are as

follows, where yi represents the i-th actual value, ŷ i is the i-th

predicted value, and N denotes the total number of observations

(24):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(1)

MAE =
1
No

N

i=1
∣ yi − ŷ i ∣ (2)

MAPE =
100%
N o

N

i=1
∣
yi − ŷ i

yi
∣ (3)
3 Results

3.1 Numerical prediction of GPR under
different standards

Numerical predictions for the GPR were performed using

different models: CNN, LSTM, Informer, and Informer-CNN, for

data training. The training and validation sets of these four models

were assessed using RMSE, MAE, and MAPE, and the results are

detailed in Table 2. Moreover, Figures 3, 4 depict the distributions

of discrepancies between predicted values and actual values.

As illustrated in Table 3, Figures 3, 4, under the 3%/3mm

standard, the CNN validation metrics indicated a level of precision,

with marginal improvement noted during the testing phase. The

LSTM model exhibited a decrease in error rates (measured by

RMSE, MAE, and MAPE) in both phases, suggesting enhanced

accuracy. The Informer model demonstrated further improvement

in these metrics, reflecting its effective management of complex data

relationships. Notably, a reduction in error rates (in terms of RMSE,

MAE, and MAPE) was observed in the Informer-CNN model

compared to the other models, indicating its potential in

predictive accuracy. This pattern was maintained under the 3%/

2mm and 2%/2mm standards, with the Informer-CNN model

generally outperforming the others, followed by Informer, LSTM,

and CNN in that order. As the standards became more rigorous, an
Frontiers in Oncology 05
increase in error rates (in RMSE, MAE, and MAPE) was observed

for all models, yet the relative order of their performance remained

stable. Under the most stringent criterion, 1%/1mm, the hierarchy

of performance remained consistent: the Informer-CNN model

demonstrated the lowest error rates, succeeded by the Informer,

LSTM, and CNN models, respectively.
3.2 GPR classification prediction under
different standards

GPR outcome classification predictions were conducted, with

results above 90% representing a pass and those below 90%

indicating a fail. The CNN, LSTM, Informer, and Informer-CNN

models were utilized for data training. Evaluation was performed

using the AUC and ROC curves, and the results are presented in

Table 4 and Figure 5.

The CNN model exhibited comparable AUC values in both the

testing and validation sets. Nevertheless, it demonstrated lower

predictive accuracy, particularly under the stringent criterion of 1%/

1mm. In contrast, the LSTM model generally surpassed the CNN

model in the testing set, notably achieving higher AUC values,

particularly at the 2%/2mm standard. Nevertheless, its AUC values

decreased in the validation set, particularly under stricter standards,

suggesting potential overfitting concerns. The Informer model

exhibited higher AUC values in most standards for both testing

and validation sets, notably improving performance under the 1%/

1mm standard compared to other models. The Informer-CNN

model consistently performed well across all standards, achieving

the highest AUC values in both the testing and validation sets.

Specifically, in the validation set under the 1%/1mm standard, an

AUC of 0.91 was achieved, indicating high predictive accuracy and

generalization capability.
4 Discussion

In the present study, an Informer CNN model based on the

Informer architecture for long time series prediction was developed

by integrating multi-modality features including linac performance,

radiomics, dosimetrics, and plan complexity. PSQA gamma passing

rate numerical and classification models for VMAT treatment plans

under various criteria were developed. These models were then

compared with CNN, LSTM, and Informer models, and their

respective performances were evaluated.

Machine learning and deep learning methods have emerged as

powerful quality assurance tools in radiotherapy, particularly for error

detection and prevention, machine quality assurance, and patient-

specific quality assurance. In the present study, particular attention was

paid to the following multimodal features: linac performance status,

radiomics, doseomics, and plan complexity. Initially, novel linac

performance state features were developed to train the model. As per

the recommendations outlined in the AAPM TG-218 report, if there

are failures or issues detected during PSQA, it is imperative to review

the linac’s daily andmonthly QA procedures (25). This underscores the

close relationship between the GPR measurements obtained during
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PSQA and the performance status of the linac on the given day.

Notably, executing the same radiation plan at different times may yield

varying measurement outcomes. The AAPM TG-218 report

emphasized the crucial importance of regular QA of MLC in relation

to PSQA. Hence, daily MPC data were employed, encompassing

various indicators of linac performance status, including mechanical

precision, dose accuracy, and MLC positioning accuracy, among

others. Integrating such characteristics into the training of the

prediction model can significantly enhance the precision and

reliability of GPR prediction. The Informer model, distinguished for

its applicability to long-term time series, was employed to

accommodate the dynamic nature of MPC data. Emerging from the

transformer architecture, the Informer model adeptly manages

relational dynamics across different time points, thereby enhancing

prediction accuracy. Its effectiveness has been extensively documented

across various domains necessitating temporal predictions (26–28).
Frontiers in Oncology 06
Further, the plan complexity feature is essential for predicting GPR.

Lam et al. (11) achieved prediction accuracy with both AdaBoost and

random forest algorithms, with 98% of predictions falling within 3% of

the measured 2%/2 mm gamma pass rate and a mean absolute error of

less than 1%. In addition, nine key plan complexity features (AAJA,

MCS, MAD, EM, BI, MAXJ, BM, MSAS20, and MUCP) with a

significant impact on prediction results were identified, underscoring

the substantial relationship between plan complexity and GPR.

Building on previous research, 31 plan complexity features were

selected for analysis in the present study.

Moreover, radiomics and doseomics characteristics were extracted.

Radiomics aims to quantify phenotypic features of medical imaging

using automated algorithms, while dosimetrics focuses on quantifying

phenotypic features of radiation dose distribution. Huang et al. (9)

predicted GPR accurately by combining plan complexity and

dosimetric features. The average MAE values for 3%/3mm, 3%/
FIGURE 1

Model prediction workflow based on various feature extraction techniques.
FIGURE 2

Architecture of the Informer-CNN used for prediction model.
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2mm, 2%/3mm, and 2%/2mm were 0.82, 0.88, 2.11, and 2.52,

respectively. In addition, the AAPM-218 report (25) suggested the

use of three-dimensional dose distribution to assess PSQA results.

Radiomics and doseomics features offer insights into the spatial and

volumetric dose distribution within the three-dimensional treatment

volume (29), aiding in the identification of potential regions susceptible

to underdose or overdose, which can affect the GPR. In addition, PTV

delineation was utilized as a mask to obtain three-dimensional imaging
Frontiers in Oncology 07
information about tumors. Previous research has shown that radiomics

and doseomics characteristics are related to the patient’s anatomical

structure, radiotherapy dose distribution, and the GPR.

In constructing the model, to leverage the utilization of

multimodal data during training, a CNN network was integrated

with the Informer model. This fusion enhanced the model’s

capacity to effectively process multimodal inputs (30). Two

approaches for prediction were adopted: numerical and
FIGURE 3

Distribution of prediction deviations for the CNN and LSTM model under four criteria (3%/3mm, 3%/2mm, 2%/2mm, and 1%/1mm). (a) Prediction
deviation distribution of the CNN model. (b) Prediction deviation distribution of the LSTM model.
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classification. The numerical prediction method can directly yield

the GPR values, providing an intuitive understanding of the results.

Conversely, classification prediction can determine whether a plan

meets the quality assurance criteria, simplifying the evaluation into

a pass or fail outcome. This dual-method approach aligns with the

AAPM TG-218 report’s guidelines (25), which advocate for the use

of tolerance and action limits in assessing GPR outcomes.

Accordingly, the present study adheres to the recommended

universal action limit of 90%, serving as the threshold for

classifying results as either pass or fail.

In the numerical prediction of GPR, four models, CNN, LSTM,

Informer and Informer CNN, were used. The performance of each
Frontiers in Oncology 08
model under different criteria was analyzed by evaluating the

training and validation sets, including RMSE, MAE, MAPE, and

error distribution. Under the evaluation criterion of 3%/3mm, the

CNN model demonstrated basic predictive capabilities. However,

the model’s performance on the test set showed limited

improvement. In contrast, the LSTM exhibited a declining trend

in error rates during both training and testing phases, suggesting its

robust capability in processing and analyzing time-series data. The

Informer model demonstrated further enhancements in predictive

indicators, highlighting its exceptional capability in managing

complex data relationships. Particularly noteworthy was the

exceptional performance of the hybrid Informer-CNN model
FIGURE 4

Distribution of prediction deviations for the Informer and Informer-CNN model under four criteria (3%/3mm, 3%/2mm, 2%/2mm, and 1%/1mm).
(a) Prediction deviation distribution of the Informer model. (b) Prediction deviation distribution of the Informer-CNN model.
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across multiple assessment metrics. At the 3%/3mm standard, it

achieved an MAE of 0.0273 and an RMSE of 0.0360. Even under the

most stringent standard of 1%/1mm, the model maintained

commendable performance with an MAE of 0.0451 and an RMSE

of 0.0623, indicating its substantial advantage in prediction

accuracy. Such findings highlight the potential superiority of the

Informer-CNN model in enhancing the precision of GPR data
Frontiers in Oncology 09
predictions. The outcomes of the present study surpassed those

reported by Huang et al. (9), who employed the Unet++ model,

which yielded a mean of 0.79 and a standard deviation of 1.28 at 3%

3mm. Osman et al.’s (31) ANNmodel predicted an RMSE of 0.0097

mm for MLC position deviation. The present Informer CNNmodel

was developed specifically to predict the GPR of VMAT treatment

plans. While Osman et al. focused on MLC position accuracy, the
FIGURE 5

ROC curves for the test and validation set by different models under four criteria (3%/3mm, 3%/2mm, 2%/2mm, and 1%/1mm). (a) ROC curve for the
test set. (b) ROC curve for the validation set.
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prediction paradigm was broadened in the present study to include

GPR results. The Informer CNN model effectively combines the

advantages of Informer’s long-term dependency processing with

CNN’s spatial feature extraction capability, offering a promising

new approach to radiotherapy quality assurance.

In GPR classification prediction, the data were trained using CNN,

LSTM, Informer, and Informer-CNN, and the results were evaluated

using AUC and ROC curves. The Informer CNN model performed

exceptionally well in GPR classification prediction, with AUC values of

0.97 and 0.95 in the test and validation sets, respectively. Cheng et al.

(13) employed a combined model based on 1D complexity metrics and

3D plan dose to predict pretreatment PSQA results, with an AUC of

0.92 for QA classification. Glanville et al. (32) utilized a linear support

vector classifier trained on treatment plan features and linac quality

control metrics to predict VMAT patient-specific QA outcomes with

an accuracy of 0.88. The model developed in the present study merges

the long-term dependency processing capabilities of the Informer

model with the spatial feature identification prowess of CNN. This

synergy not only boosts the model’s capacity to handle multi-
Frontiers in Oncology 10
dimensional data features within VMAT treatment plans but also

enhances its performance in terms of classification accuracy and

generalization ability.

The prediction speed of the Informer-CNN model is

noteworthy, operating at the second-level time scale per treatment

plan. This efficiency highlights the model’s potential for providing

timely feedback in clinical workflows. It is important to note that

prediction time may vary depending on the computational

resources available, and further optimization could enhance its

performance. Unlike traditional PSQA methods that often require

several minutes to hours for comprehensive evaluation, the

Informer-CNN model provides predictions in a fraction of that

time. This rapid feedback enables clinicians to make timely

adjustments to treatment plans, thereby improving workflow

efficiency and patient care outcomes. While random splitting may

not preserve temporal dependencies, the proposed framework

focuses on integrating heterogeneous features (time-series and

non-time-series) under a controlled setup. Future studies will

explore time-aware splitting to validate clinical applicability.
TABLE 3 Comparative performance analysis of predictive models.

Standards Metric CNN LSTM Informer Informer-CNN

Validation Test Validation Test Validation Test Validation Test

3%/3mm MAE 0.3008 0.2791 0.1717 0.1549 0.0837 0.0866 0.0273 0.0327

MAPE 0.3050 0.2832 0.1740 0.1573 0.0849 0.0878 0.0278 0.0331

RMSE 0.3782 0.3538 0.2190 0.2004 0.1141 0.1154 0.0360 0.0468

3%/2mm MAE 0.3140 0.3154 0.1684 0.1901 0.0752 0.0824 0.0451 0.0447

MAPE 0.3222 0.3250 0.1723 0.1952 0.0776 0.0849 0.0460 0.0459

RMSE 0.3926 0.3912 0.2173 0.2352 0.1013 0.1157 0.0623 0.0633

2%/2mm MAE 0.3336 0.3417 0.1788 0.2043 0.0986 0.0960 0.0518 0.0520

MAP 0.3528 0.3613 0.1887 0.2153 0.1043 0.1005 0.0550 0.0549

RMSE 0.4019 0.4056 0.2255 0.2504 0.1269 0.1230 0.0708 0.0695

1%/1mm MAE 0.3452 0.3610 0.2049 0.2088 0.0854 0.0975 0.0506 0.0499

MAPE 0.4911 0.5233 0.3026 0.2956 0.1193 0.1408 0.0723 0.0709

RMSE 0.4145 0.4277 0.2460 0.2490 0.1121 0.1269 0.0675 0.0647
fron
TABLE 4 AUC values for GPR classification prediction by different models under four criteria.

Model Group 3%/3mm 3%/2mm 2%/2mm 1%/1mm

CNN Test 0.88 0.88 0.83 0.84

Validation 0.89 0.86 0.88 0.79

LSTM Test 0.92 0.89 0.92 0.81

Validation 0.93 0.84 0.89 0.70

Informer Test 0.93 0.85 0.83 0.88

Validation 0.93 0.87 0.91 0.86

Informer-CNN Test 0.95 0.92 0.90 0.88

Validation 0.97 0.88 0.88 0.91
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While the present study highlights the considerable promise of

the Informer-CNN model in predicting the PSQA GPR for VMAT

treatment plans, there are several limitations that must be

addressed. The scope and variety of the case datasets employed in

the present study were not extensive enough, potentially restricting

a thorough assessment of the model’s generalization capabilities.

Moreover, the focus of the study was on outcomes from specific

linacs, suggesting that future efforts should encompass a broader

array of linac models. Such expansion would contribute to the

development of a more universally applicable prediction model,

thereby enhancing its utility and precision in the realm of

radiotherapy quality assurance.
5 Conclusion

The developed Informer-CNN model demonstrates superior

prediction accuracy and classification of gamma passing rates in

VMAT treatment plans compared to traditional models such as

CNN, LSTM, and Informer alone. This model allows for early

integration of daily accelerator performance data, ensuring more

accurate assessment and verification of treatment plans for better

patient-specific quality assurance.
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