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Objective: This study aims to examine association between vitamin D with

melanoma and develop an explainable machine learning model.

Methods: For this study, relevant data were downloaded from the CDC’s National

Health and Nutrition Examination Survey (NHANES) program, for the three survey

cycles 2011-2012, 2013–2014 and 2015-2016. Self-reported melanoma data,

serum vitamin D levels, and other covariates were downloaded and analyzed.

Analysis of variance in this study was performed using t-tests and chi-square

tests, modelling was performed using logistic regression based on NHANES

weights, and other risk factors were analyzed using forest plots. Ten machine

learning models were compared and XGboost was selected for the

melanoma prediction.

Results: In this study, logistic regression analysis revealed a protective effect of

higher vitamin D levels in melanoma, the ORs were much less than 1 for Q2

(OR=0.97, 95% CI (0.44, 0.98)), Q3 (OR=0.71, 95% CI (0.65, 0.92)), and Q4

(OR=0.32, 95% CI (0.55, 0.81)). Meanwhile, forest plot analysis showed that

vitamin D, the number of sunburns in the past year, advanced age, Caucasian,

education some college, single and unmarried, smoking, diabetes and

hypertension, were all statistically significant. The OR was higher in men than

in women, with Q4 values of 0.31 (95% CI: 0.18–0.51) for men and 0.29 (95% CI:

0.15–0.45) for women. OR was higher in the senior patients than in the non-

senior group, with Q4 (OR=0.53, 95% CI (0.23, 0.73)). An explainable XGBoost

model had AUC 0.906, and in the model vitamin D had main contribution to

the model.

Conclusion: In conclusion, this study concluded that vitamin D decreases

melanoma risk based on a larger sample and multi-covariate analysis. Female

and young people received high protection from vitamin D inmelanoma. XGBoost

can accurately prediction the possibility of melanoma based on vitamin D.
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Introduction

Over the past 50 years, cutaneous melanoma (CM) incidence has

steadily increased around the world. The expected number of new

cases of CM in the world in 2018 is 287,723, with an age-standardized

incidence rate of 3.1/100,000/year and amortality rate of 0.63/100,000/

year, according to GLOBOCAN 2018 (1, 2). As the most deadly and

aggressive type of skin cancer, CM arises from unrepaired DNA

damage in skin cells (3, 4). CM is around 5% of skin cancers overall,

but it also kills about 75% of people who have skin cancer (5, 6).

In recent years, the potential anti-cancer effects of vitamin D have

garnered increasing attention in the field of oncology. Research has

linked low vitamin D serum levels to poorer survival rates and

increased thickness of CM, supporting the hypothesis that vitamin

D derivatives might play a crucial role in cancer prevention and

treatment strategies (7, 8). Yet, despite its anti-cancer benefits,

vitamin D has also been demonstrated to have immunosuppressive

effects, it is not considered to be the standard of therapy (9, 10). A

Study have shown that vitamin D can alter the tumor

microenvironment by increasing the ratio of T regulatory (Treg)

cells to T helper 17 (Th-17) cells, leading to immunosuppression (11).

This dual effect necessitates careful consideration when evaluating the

role of vitamin D in cancer therapy (12).

Recently machine learning was widely used in disease risk factor

exploration and prediction (13, 14). In parallel, the integration of

machine learning techniques in melanoma research is transforming

the landscape of diagnosis and treatment. Machine learning algorithms

can analyze vast datasets, identifying patterns and predictors of CM

progression that might not be visible through traditional methods (5).

These advanced tools can enhance the accuracy of early detection,

predict patient outcomes, and even personalize treatment plans based

on individual genetic and environmental factors. By combining

machine learning insights with clinical and biochemical data,

researchers hope to refine therapeutic strategies and achieve better

prognostic accuracy for melanoma patients.

Despite growing evidence on vitamin D’s anti-cancer effects, its

role in melanoma remains controversial due to conflicting findings

and limited large-scale studies (9, 10). To gain deeper insights into the

impact of vitamin D on CM, this study incorporated a large sample

size and multiple covariates for model analysis. By doing so,

researchers aim to unravel the complex interactions between

vitamin D and melanoma and establish effective machine learning

predictionmodel, potentially paving the way for innovative treatment

approaches and improved patient outcomes. By integrating

epidemiological and computational approaches, this work provides

novel insights into personalized prevention strategies.
Methods

Data source

The National Health and Nutrition Examination Survey

(NHANES) survey data from the CDC, which includes annual
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dietary nutrition surveys of the US population from 2000 to 2020,

served as the source of the data for this study (https://www.cdc.gov/

nchs/nhanes/). The data collected included demographic data, data

from physical exams, data from lab tests, and data from

questionnaires. The required variables were found in three cycles,

2011–2012, 2013–2014, and 2015–2016, which were chosen for this

study. A final sample of 1245 people who included all three cycles’

variables was chosen after screening 29250 of the three cycles were

included. Finally, we delete the data with missing covariates. The

inclusion and exclusion process are shown in the Figure 1. This

cross-sectional study analyzed data from the CDC’s NHANES

program from 2011 to 2016, covering a nationally representative

sample of the U.S. population.
Melanoma and covariates

The NHANES questionnaire’s section on medical conditions

asked about “age at first diagnosis of melanoma,” which must be

answered in order to be considered a melanoma patient; if not, the

respondent is not a melanoma patient. A skin-related questionnaire

that revealed the sample’s number of sunburns in the previous year

served as the primary source of data for this study’s primary risk

factor. In order to measure 25-hydroxyvitamin D3, 3-epi-25-

hydroxyvitamin D3, and 25-hydroxyvitamin D2 (25OHD2) in

human serum, the US Centers for Disease Control and Prevention

(CDC) used high performance liquid chromatography-tandem mass

spectrometry (HPLC-MS/MS). The 25OHD3 + 25OHD2 form of

vitamin D used in this research.

Other covariates, such as demographic data (including age, sex,

race, education, marriage, BMI, and PIR, an indicator of household

economic situation), disease history (including diabetes and

hypertension), and lifestyle habits (including smoking and alcohol

consumption), were obtained from questionnaire data.
FIGURE 1

Flow chart of inclusion and exclusion.
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Model development and comparison

The included data were divided into a training set (70%) and an

internal validation set (30%) to mitigate overfitting. A prediction

model was built using the aforementioned 12 features. Ten ML

models, including Decision Tree (DT), K-Nearest Neighbors

(KNN), Logistic Regression (LR), Random Forest (RF), Support

Vector Machine (SVM), Naive Bayes (NB), GLM with Elastic Net

Regularization (GLM), Generalized Additive Model (GAM),

Multivariate Adaptive Regression Splines (MARS), and Extreme

Gradient Boosting (XGB), were utilized to predict the probability of

cutaneous melanoma.

To optimize the prediction models, a combination of grid

search and manual tuning was employed to obtain the final

hyperparameters. The reliability of the models was evaluated

using commonly used metrics such as the area under the ROC

curve (AUC), sensitivity, specificity, positive predictive value,

negative predictive value, accuracy, and F1 score. Furthermore,

10-fold cross-validation was performed in the derivation cohort to

validate the prediction models.

DT offer advantages such as interpretability, ease of

visualization, and the ability to handle both numerical and

categorical data, but they are prone to overfitting and can be

unstable with small data changes. KNN is simple to implement,

requires no training phase, and adapts well to local patterns, but it

suffers from high computational cost with large datasets and

sensitivity to irrelevant features. LR is efficient, interpretable,

and works well for binary classification, but it struggles with non-

linear relationships and multicollinearity. RF reduces overfitting,

handles high-dimensional data, and provides feature importance,

but it is less interpretable than single decision trees and can be

computationally expensive. SVM excel in high-dimensional spaces,

are effective for clear-margin classification, and can use kernels for

non-linear data, but they are computationally intensive and require

careful parameter tuning. NB is fast, performs well with small

datasets, and is ideal for text classification, but it assumes feature

independence, which is often unrealistic. GLM combines L1 and

L2 regularization for feature selection and multicollinearity

handling, offering interpretability, but it may underperform with

highly non-linear data. GAM are flexible, handle non-linear

relationships, and are interpretable, but they can be computationally

expensive and complex to tune. MARS model non-linear and

interaction effects effectively and are interpretable, but they can

overfit with noisy data and require careful tuning. XGB delivers

high performance, handles large datasets, and is robust to outliers,

but it is complex to interpret, computationally intensive, and requires

extensive hyperparameter tuning. Each model has its trade-offs,

making it crucial to select the right one based on the specific

problem, dataset size, and interpretability requirements.
Feature selection and model explanation

Obtaining a correct interpretation of ML models could be

challenging. The SHapley Additive exPlanations (SHAP) method
Frontiers in Oncology 03
was a technique that ranked the importance of input features and

explains the predictions of a model. Its implementation aimed to

overcome the “black box” problem by assisting in feature selection

using SHAP values, which ranked the importance of features. This

process helped to reduce the initial 47 features to a final set of 9

features that had the best predictive power. This selected model was

then used for further analysis.

The SHAP method provided both global and local explanations

for model interpretation. Global explanations provided consistent

and accurate attribution values for each feature in the model,

illustrating the associations between input features and the

progression of kidney function. On the other hand, local

explanations demonstrated specific predictions for individual

patients by inputting specific data into the model.
Statistical analysis

First, the baseline data were described according to the

prevalence of CM, with all variables in both groups being

described in accordance with CM status. Using chi-square tests

for categorical variables and t-tests for quantitative data, a variance

analysis between the two groups was also carried out.

In order to examine the risk factors impacting CM, stepwise

logistic regression analysis was then used to build three models, the

first of which had CM with the primary risk factor being serum

vitamin D in the previous year. The second model combined CM

with information on demographics, lifestyle choices, and the

amount of sunburns in the previous year. Moreover, forest

patches were made. The third model integrated CM with

information on demographics, lifestyle choices, past medical

history, and the number of sunburns in the previous year. Forest

plots were also used to demonstrate the third model.

A subgroup analysis of CM was then completed, comparing the

outcomes of the third model for men and women and for the higher

and lower age cases, respectively. The subgroups were divided based

on gender and age.

According to the official NHANES weight recommendations,

we selected WTMEC2YR as the analytic weight, which was used for

both the interviewed and MEC examined sample persons because

the majority of the sample data included came from the

questionnaire. R4.2.2 (R CORE TEAM, Vienna, Austria) was used

to run all analyses for this study, and P 0.05 was regarded as

statistically significant.
Results

The outcomes for each covariate for the groups with and

without CM disease are displayed in Table 1. As can be seen, only

age and the number of sunburns in the previous year showed a

statistically significant difference between the two groups. Other

factors, including gender, race, education, marital status, PIR,

smoking, alcohol use, diabetes, hypertension, and BMI, showed

no significant differences.
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In model 1, which divides serum vitamin D in the previous year

into four quarters, Q3 and Q4 are statistically significant, along with

a dose-response relationship, as shown in Table 2. Results from

Models 2, 3, and 1 are comparable. The vitamin D in the previous

year and having CM, however, showed a clear dose-response

relationship in Model 4, and Q2-Q4 were all statistically

significant when compared to Q1 and all had ORs that were

significantly higher than 1. Q2, Q3, and Q4 all had odds ratios of

0.25, 0.33, and 0.32, respectively, with a 95% confidence interval of

0.1 to 0.85.

We included all covariates in the model and generated forest

plots after investigating the relationship between CM and sunburn

based on model 3. Figure 2 demonstrates the statistical significance

of the number of sunburns in the previous year, vitamin D,

advanced age, Caucasian, some college education, single,

unmarried, cohabiting, smoking, diabetes, and hypertension.

While some of the aforementioned statistically significant risk

factors have been previously reported, others could also be

explained by the confounding variables used in this study. It is

obvious that additional research into the risk factors for CM

is necessary.
Subgroup analysis

The results of the subgroup analysis are shown in Table 3, with

statistically significant Q3 (OR=0.64, 95% CI (0.48, 0.81)), Q4

(OR=0.31, 95% CI (0.18, 0.51)) for men, and Q4 (OR=0.29, 95%

CI (0.15, 0.45) for women. Men had significantly higher ORs than

women did. In the age subgroup, senior patients had higher ORs

than non-senior patients, with Q3 having a higher OR in the senior

group than the non-senior group (OR=0.74, 95% CI (0.41, 0.98),

and Q4 having a higher OR in the senior group than the non-senior

group (OR=0.53, 95% CI (0.23, 0.73)).
TABLE 1 Characteristics of included samples.

Non-CM CM P value

N=1223 N=22

Sunburn times 1.75 (0.96) 2.29 (2.59) 0.041*

Vitamin D 66.8 (24.6) 67.3 (21.3) 0.965

Age 36.9 (10.9) 50.8 (4.79) 0.01*

Gender 1

Male 616 (50.4%) 11 (50.0%)

Female 607 (49.6%) 11 (50.0%)

Race 1

Mexican American 142 (11.6%) 5 (22.72%)

Other Hispanic 91 (7.44%) 8 (36.36%)

Non-Hispanic White 764 (62.5%) 4 (18.18%)

Non-Hispanic Black 77 (6.30%) 2 (9.09%)

Other Race - Including Multi-Racial 149 (12.2%) 3 (13.64%)

Education 0.164

Less Than 9th Grade 35 (2.86%) 3 (13.64%)

9-11th Grade 114 (9.32%) 6 (27.27%)

High School Grad/GED
or Equivalent

254 (20.8%) 4 (18.18%)

Some college or AA degree 410 (33.5%) 4 (18.18%)

College Graduate or above 410 (33.5%) 5 (22.72%)

Marriage status 0.044

Married 606 (49.6%) 11 (50.0%)

Widowed 12 (0.98%) 2 (9.09%)

Divorced 111 (9.08%) 2 (9.09%)

Separated 39 (3.19%) 5 (22.72%)

Never married 320 (26.2%) 2 (9.09%)

Living with partner 135 (11.0%) 0 (0.00%)

PIR 2.73 (1.66) 2.73 (1.68) 0.998

Smoking 0.045

Yes 562 (46.0%) 20
(90.91%)

No 661 (54.0%) 2 (9.09%)

Alcohol 0.125

Yes 197 (16.1%) 11 (50.0%)

No 1026
(83.9%)

11 (50.0%)

Diabetes 1

Yes 84 (6.87%) 5 (22.72%)

No 1118
(91.4%)

17
(77.27%)

(Continued)
TABLE 1 Continued

Non-CM CM P value

N=1223 N=22

Diabetes 1

Borderline 19 (1.55%) 0 (0.00%)

Missing 2 (0.16%) 0 (0.00%)

Hypertension 1

Yes 14 (1.14%) 2 (9.09%)

No 1209
(98.9%)

20
(90.91%)

BMI 0.838

normal(25<) 392 (32.1%) 10
(45.46%)

overweight(25≤BMI<30) 447 (36.5%) 6 (27.27%)

obesity(≥30) 384 (31.4%) 6 (27.27%)
fro
*P<0.05.
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TABLE 2 Logistic risk analysis for vitamin D and CM.

Sunburn times Model1 Model2 Model3 Model4

Q1 Reference Reference Reference Reference

Q2 0.92 (0.52, 0.94) 0.63 (0.89, 0.93) 0.74 (0.84, 0.96) 0.97 (0.44, 0.98) *

Q3 0.82 (0.34, 0.83) * 0.32 (0.33, 0.82) * 0.45 (0.73, 0.76) * 0.71 (0.65, 0.92) *

Q4 0.26 (0.10, 0.52) * 0.25 (0.21, 0.45) * 0.33 (0.21, 0.85) * 0.32 (0.55, 0.81) *

p trend 0.03* 0.04* 0.01* 0.01*
F
rontiers in Oncology
 05
*P<0.05, Model 1= Sunburn; Model 2= Model 1 plus Vitamin D; Model 3 = Model 2 plus adjusted for sex, age (years, continuous), age squared, education (less than high school, high school
graduate, some college and above), race (non-Hispanic white, non-Hispanic black, Mexican American, other), self-reported alcohol status (Yes and No) and self-reported smoking status (Yes and
No); Model 4 = Model 3 plus adjusted for BMI, self-reported hypertension (Yes and No) and self-reported diabetes (Yes and No).
FIGURE 2

Forest plot for CM risk factors. LBXVIDMS: Serum vitamin D; DEQ038Q: sunburn times; RIDAGEYR: age; RIAGENDR: gender (1=male, 2=female);
RIDRETH1: race (1=Mexican American, 2=Other Hispanic, 3=Non-Hispanic White, 4=Non-Hispanic Black, 5=Other Race - Including Multi-Racial),
DMDEDUC2: education (1=Less Than 9th Grade, 2 = 9-11th Grade, 3=High School Grad/GED or Equivalent, 4=Some college or AA degree,
5=College Graduate or above); DMDMARTL: marriage (1=Married, 2=Widowed, 3=Divorced, 4=Separated, 5=Never married, 6=Living with partner);
BMIQ: BMI (1=normal (25<), 2=overweight (25≤BMI<30), 3=obesity (≥30)); SMQ020: smoking (1= No, 2= Yes); ALQ151: alcohol (1= No, 2= Yes);
DIQ010: diabetes (1= No, 2= Yes, 3=Borderline, 9=Missing); HYTQ(1= No, 2= Yes).
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Explainable machine learning model

The derivation cohort data was used to generate 10 ML models

for predicting cutaneous melanoma. Before we conduct the ML

training, we made a correlation analysis and it showed that

marriage, PIR and Age had negative correlation while education,

PIR and smoking had positive correlation (Figure 3). Among the 10

models, the XGB model achieved the best predictive performance

for “cutaneous melanoma” with an AUC of 0.906. The KNN model

(AUC = 0.854) and Support Vector Machine model (AUC = 0.808)

followed in terms of performance. The ROC curves for the 9

selected features in all ML models and the AUC summary plot

for XGB could be found in Figure 4A. Therefore, it could be

observed that among the mentioned five models, the XGB model

performed the best in predicting “ cutaneous melanoma “. The

performance of the XGB model with different numbers of features

was shown in Figure 4C. Sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), accuracy, and F1
Frontiers in Oncology 06
score were calculated at the optimal cutoff value that maximized the

Youden index. The final model was determined during the feature

simplification process of the XGB model. We analyzed the

importance of all 45 features, as shown in Figure 4B. The 9-

feature model demonstrated good net benefit and high threshold

probability, as depicted in Figure 4C.
Model explanation

Due to the difficulty of clinical acceptance of prediction models

that could not be directly explained and interpreted, the SHAP

method was used to explain the output of the final model by

calculating the contribution of each variable to the prediction.

This interpretable approach provided two types of explanations:

feature-level model global explanations and individual-level local

explanations. Global explanations described the overall

functionality of the model. As shown in the SHAP summary plots
TABLE 3 Subgroup association between Vitamin D and CM.

Vitamin D Male Female Age<60 Age≥60

Q1 Reference Reference Reference Reference

Q2 0.85 (0.68, 1.87) 0.59 (0.56, 2.98) 0.83 (0.93, 2.53) 0.82 (0.44, 1.56)

Q3 0.64 (0.48, 0.81) * 0.52 (0.17, 1.41) 0.64 (0.43, 0.91) * 0.74 (0.41, 0.98) *

Q4 0.31 (0.18, 0.51) * 0.29 (0.15, 0.45) * 0.49 (0.33, 1.73) 0.53 (0.23, 0.73) *

p trend 0.03* 0.01* 0.02* 0.01*
*P<0.05.
FIGURE 3

Correlation matrix of included variables.
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FIGURE 4

(A) ROC Curve of 10 machine learning models, (B) Variable importance plot, (C) Feature selection processing plot. LBXVIDMS: Serum vitamin D;
DEQ038Q: sunburn times; RIDAGEYR: age; RIAGENDR: gender (1=male, 2=female); RIDRETH1: race (1=Mexican American, 2=Other Hispanic, 3=Non-
Hispanic White, 4=Non-Hispanic Black, 5=Other Race - Including Multi-Racial), DMDEDUC2: education (1=Less Than 9th Grade, 2 = 9-11th Grade,
3=High School Grad/GED or Equivalent, 4=Some college or AA degree, 5=College Graduate or above); DMDMARTL: marriage (1=Married, 2=Widowed,
3=Divorced, 4=Separated, 5=Never married, 6=Living with partner); BMIQ: BMI (1=normal(25<), 2=overweight (25≤BMI<30), 3=obesity(≥30)); SMQ020:
smoking (1= No, 2= Yes); ALQ151: alcohol (1= No, 2= Yes); DIQ010: diabetes (1= No, 2= Yes, 3=Borderline, 9=Missing); HYTQ (1= No, 2= Yes).
Frontiers in Oncology frontiersin.org07
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FIGURE 5

Global model explanation by the SHAP method. (A) Waterfall plot and evolution of risks contributed by each feature for individual patient at high risk
of cutaneous melanoma and low risk (B) SHAP summary bar plot. (C) Force plot for the internal validation set at high risk of cutaneous melanoma
and low risk. (D) SHAP summary dot plot. LBXVIDMS: Serum vitamin D; DEQ038Q: sunburn times; RIDAGEYR: age; RIAGENDR: gender (1=male,
2=female); RIDRETH1: race (1=Mexican American, 2=Other Hispanic, 3=Non-Hispanic White, 4=Non-Hispanic Black, 5=Other Race - Including
Multi-Racial), DMDEDUC2: education (1=Less Than 9th Grade, 2 = 9-11th Grade, 3=High School Grad/GED or Equivalent, 4=Some college or AA
degree, 5=College Graduate or above); DMDMARTL: marriage (1=Married, 2=Widowed, 3=Divorced, 4=Separated, 5=Never married, 6=Living with
partner); BMIQ: BMI(1=normal (25<), 2=overweight (25≤BMI<30), 3=obesity (≥30)); SMQ020: smoking (1= No, 2= Yes); ALQ151: alcohol (1= No, 2=
Yes); DIQ010: diabetes (1= No, 2= Yes, 3=Borderline, 9=Missing); HYTQ (1= No, 2= Yes).
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(Figures 5B, D), the contribution of features to the model was

evaluated using average SHAP values and displayed in

descending order.

Furthermore, local explanations analyzed how specific

predictions are made for individual cases by combining

personalized input data. According to the prediction model,

Figure 4A represented the patient with a probability of 0.209%

towards the “cutaneous melanoma” class, while the patient with a

probability of 99.8% towards the “non-cutaneous melanoma “ class.

The actual measured values of the features were also shown in the

waterfall plot, as depicted in Figure 5A. As observed, the values of

LBXVIDMS, INDFMPIR, RIDAGEYR, DMDMARTL, BMIQ,

DIQ010, RIDRETH1 and 4 other features would contribute to the

categorization as “non-cutaneous melanoma”. If the actual values of

most features were within the normal range, such as LBXVIDMS,

the risk of “cutaneous melanoma” would be low. On the other hand,

if the actual value of LBXVIDMS went beyond the normal range, it

might increase the risk of “cutaneous melanoma” for the patient,

even if the overall prediction put the case into the “non-cutaneous

melanoma” class.

In Figure 5C, a similar phenomenon was observed for patients

who experienced “non-cutaneous melanoma”. The features that

drove the decision towards or away from the “non-cutaneous

melanoma” class and their actual measurement values were

shown in Figure 5C. Additionally, Figure 5C illustrated the

explanatory force plots for patients in the internal validation

cohort. Figure 5C represented cases where the likelihood of

“cutaneous melanoma” was lower, while the likelihood of “non-

cutaneous melanoma” was higher. At last, we conducted a partial

dependence plot to detect the key feature (vitaminD) impact on

SHAP value (Figure 6).
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Discussion

In this study, we found that vitamin D (Q2 (OR=0.97, 95% CI

(0.44, 0.98)), Q3 (OR=0.71, 95% CI (0.65, 0.92)), and Q4 (OR=0.32,

95% CI (0.55, 0.81)), sunburn, advanced age, Caucasian,

educational attainment some college, single and unmarried,

smoking, diabetes and hypertension may all influence the

development of CM. Further subgroup analyzes found that

vitamin D had a protective effect against CM especially in female

(OR=0.29 (95% CI: 0.15–0.45)) and young people (OR=0.74, 95%

CI (0.41, 0.98)). Sun exposure is known to promote the synthesis of

vitamin D, also known as the “sunshine vitamin”, which is a

hormone proponent (15). Previous studies demonstrate that lack

of vitamin D has been linked to an increased risk of several cancers,

including CM (16, 17). This can be explained by how vitamin D

inhibits the proliferation of CM cells both in vitro and in vivo. There

are currently no established guidelines for measuring serum vitamin

D levels or recommending vitamin D supplementation for patients

with CM (18, 19). Although exposure to sunlight may increase the

availability of vitamin D, clinicians should stress that adequate

serum concentrations are typically achieved through dietary intake

of the vitamin (20–23). Because there is a risk of heterochronic skin

cancers in CM patients with vitamin D deficiency, oral vitamin D

supplements should be chosen over unprotected sun exposure (24).

Additionally, we carried out an age and gender subgroup

analysis and discovered that men were more likely to develop CM

than women. Older people had a higher risk of developing CM than

younger people did. Numerous studies over the past few years have

focused on gender differences in cutaneous CM, and the findings

indicate that compared to men (25, 26). Independent of the primary

histological and clinical prognostic factors, women have a higher
FIGURE 6

Partial dependence plot. LBXVIDMS: Serum vitamin D.
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survival rate. The relative excess risk of death in men was found to

be 2.70 (95% CI 2.38-3.06) in a retrospective study involving 10,538

CM patients, with survival rates remaining higher in women after

accounting for numerous confounding factors (26).

Age-related effects on CM risk factors, prognosis, SLN

positivity, and BRAF mutations have been supported by some

studies (27–29). Offering treatment options takes age into account

as well. The impact of CM drugs on frequent hospital visits for

regular infusions and imaging, as well as toxicity, needs to be

carefully assessed, especially in older patients with limited social

support. Immunotherapy and targeted therapies give similar

responses and toxicity to older patients, despite more non-CM

skin cancers on targeted therapies (30, 31).

A previous meta-analysis highlighted the potential of machine

learning in melanoma screening, categorizing 48 studies into seven

groups based on algorithmic approaches (33). These groups

included: artificial neural network (n=23), support vector

machines (n=8), decision tree (n=5), cluster analysis (n=4),

Bayesian network (n=3) and other (n=10). Analysis techniques

used for the papers in the “other” group comprised border analysis,

k-nearest neighbor, forest plot, principal component analysis, low

level image processing, and unique algorithms. The mean sensitivity

and specificity for each group were calculated. The mean sensitivity

and specificity of the 48 articles are 87.6 and 83.54. Another recent

meta-analysis including 30 references revealed prediction of

immunotherapy response and prognosis of melanoma (34). The

pooled AUC was 0.728 (95%CI: 0.629–0.828) for PFS in the training

set, 0.760 (95%CI: 0.728–0.792) and 0.819 (95%CI: 0.757–0.880) for

treatment response in the training and validation sets, respectively,

and 0.746 (95%CI: 0.721–0.771) and 0.700 (95%CI: 0.677–0.724)

for OS in the training and validation sets, respectively. In this study,

we trained an XGBoost model for melanoma screening, achieving a

high AUC of 0.906. Compared to existing approaches, representing

a substantial advancement in melanoma screening technology.

Unlike most published studies focusing on prognostic prediction

(32–34), our work provides both clinically actionable risk factor

analysis and an advanced screening tool, bridging the gap between

epidemiological research and clinical application in melanoma

detection and prevention. Most of the published articles focus on

the prognosis prediction of melanoma using informatics, while our

study is based on a large scale population level data, which is a

clinically practical and advanced (35, 36).
Conclusion

This study identifies key risk factors for cutaneous melanoma

(CM), including vitamin D levels (Q2-Q4), sunburn, advanced age,

Caucasian ethnicity, educational attainment, marital status, smoking,

diabetes, and hypertension, with vitamin D showing a protective

effect, particularly in females and younger individuals. Subgroup

analysis revealed higher CM risk in men and older individuals,

consistent with prior research. The XGBoost model achieved
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superior predictive performance (AUC = 0.906) for CM screening,

outperforming other algorithms like KNN and SVM, while the SHAP

method provided interpretable insights into feature contributions,

enhancing clinical applicability. Bridging epidemiological research

and clinical practice, the study offers actionable risk factor analysis

and an advanced screening tool, emphasizing the importance of

vitamin D supplementation over unprotected sun exposure and the

need for age- and gender-specific prevention strategies.
Strength and limitations

This study had key strengths as below: firstly, comprehensive

multi-covariate adjustments (e.g., demographics, lifestyle,

comorbidities) to isolate vitamin D’s protective effect against

melanoma; secondly, rigorous model comparison across ten ML

algorithms, with XGBoost achieving exceptional predictive

accuracy (AUC=0.906); thirdly, interpretable AI via SHAP values,

clearly identifying vitamin D as the top contributor to predictions.

However, there are still some limitations of this study. Firstly, the

data used in this study were from a cross-sectional study and the

analysis performed could not explain the causal relationship of CM.

Secondly, the inclusion of covariates in this study may still be

inadequate and may overlook the effect of other factors on CM.

Thirdly, the sample period of this study was 6 years across and there

may be bias in the data measurement due to time variation. Finally,

CM, the target of analysis in this study, is a relatively rare disease

and the sample of CM patients included in this study was limited.
Future recommendation

To advance the findings of this study, future research should

prioritize longitudinal cohorts to establish causality between

vitamin D and melanoma risk, addressing the limitations of

cross-sectional data. Expanding sample diversity and integrating

multi-omics data could uncover mechanistic pathways and improve

generalizability. Enhancing predictive models via hybrid

approaches or dynamic feature engineering may refine accuracy.
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