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Tumour habitat-based radiomics
analysis enhances the ability to
predict prostate cancer
aggressiveness with biparametric
MRI-derived features
Mengjuan Li †, Ning Ding †, Shengnan Yin, Yan Lu, Yiding Ji*

and Long Jin*

Department of Radiology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou,
Jiangsu, China
Objective: The purpose of this study was to develop three predictive models

utilising clinical factors, radiomics features, and habitat features, to distinguish

between nonclinically significant prostate cancer (csPCa) and clinically significant

PCa (non-csPCa) on the basis of biparametric MRI (bp-MRI).

Methods: A total of 175 patients were enrolled, including 134 individuals with csPCa

and 41 with non-csPCa. The clinical model was developed using optimal predictive

factors obtained from univariable logistic regression and modelled through a

random forest approach. Image acquisition and segmentation were performed

first in the creation of both the radiomics model and the habitat model. The K-

means clustering algorithm was then used exclusively for habitat generation in the

development of the habitat model. Finally, feature selection andmodel construction

were performed for both models. Model comparison and diagnostic efficacy

assessment were conducted through receiver operating characteristic curve

analysis, decision curve analysis (DCA), and calibration curve analysis.

Results: The habitat model outperformed both the radiomics model and the

clinical model in distinguishing csPCa from non-csPCa patients. The AUC values

of the habitat model in the training and test sets were 0.99 and 0.93, respectively.

Furthermore, DCA and the calibration curves highlighted the superior clinical

utility and greater predictive accuracy of the habitat model in comparison with

the other two models.

Conclusion: We developed a habitat-based radiomics model with a greater

ability to distinguish between csPCa and non-csPCa on the basis of bp-MRI than

a traditional radiomics model and clinical model. This introduces a novel

approach for assessing the heterogeneity of PCa and offers urologists a

quantitative, noninvasive method for preoperatively evaluating the

aggressiveness of PCa.
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Introduction

Prostate cancer (PCa) is one of the most common types of

cancer among men worldwide. The incidence has been increasing

annually since 2015, and as of 2024, PCa accounted for nearly one-

third of all cancers, with nearly three times the prevalence of the

second most common cancer, lung and bronchial cancer. It is also

the second leading cause of cancer death among men; a cancer

statistics report for 2024 revealed that out of 322,800 patients with

PCa, 35,250 (approximately 11%) died (1). The 2020 guidelines

emphasise the urgent need to distinguish between nonclinically

significant PCa, which typically has a slow progression and is best

managed with active surveillance, and the more aggressive,

clinically significant PCa, which demands immediate intervention

owing to its rapid progression (2). Timely identification of PCa and

precise evaluation of its aggressiveness are paramount for tailoring

the most effective treatment strategy to increase survival rates and

improve patient outcomes, even in the face of the diagnostic

challenge of overlapping clinical symptoms with benign

prostate conditions.

Traditional PCa diagnostic methods, such as the serum

prostate-specific antigen (PSA) index and transrectal ultrasound-

guided needle biopsy (TRUS), have significant drawbacks. TRUS,

while the standard for assessing cancer invasiveness, is itself

invasive, can cause discomfort, and may not accurately reflect the

severity of cancer. Overreliance on the PSA level, meanwhile, can

lead to overdiagnosis and unnecessary procedures, whereas biopsies

pose risks of pain and infection (3, 4). Additionally, some patients

with benign prostatic hyperplasia (BPH) may undergo unnecessary

biopsies, and there is a chance of a false negative result for certain

PCa patients. In light of these issues, more accurate and less invasive

diagnostic methods are urgently needed. MRI, specifically

multiparametric MRI (mp-MRI), has become an essential tool for

detecting, locating, and grading PCa (5, 6). The introduction of

streamlined biparametric MRI (bp-MRI), which includes T2-

weighted imaging (T2WI) and diffusion-weighted imaging (DWI)

—particularly apparent diffusion coefficient (ADC) mapping—as

per the PI-RADS v2.1, is a step towards a more efficient diagnostic

approach (7). Recent studies have demonstrated that, compared to

traditional imaging methods, bp-MRI offers superior diagnostic

accuracy for PCa. It also simplifies the imaging process, thereby

saving time and resources, reducing patient discomfort, and

avoiding overdiagnosis (7, 8). This innovation represents a

significant shift from traditional methods, marking a new chapter

in the early and precise diagnosis of PCa.

Traditional MRI interpretation often relies on radiologists’

subjective interpretations, leading to inconsistencies due to

varying levels of expertise and a lack of objectivity. However, the

integration of machine learning (ML) has transformed the field by

introducing a more systematic and quantitative method for

analysing medical images. Radiomics, an emerging imaging field,

excels in this role by extracting numerous features from medical

images and converting them into comprehensive datasets. These

features encompass data about tumour heterogeneity and the

microenvironment (9, 10), enabling a more accurate assessment
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of tumour traits and treatment response (11–13). Unlike previous

methods, a novel radiomic-based approach divides whole tumours

into subregions known as habitats, which contain voxels with

similar attributes and consistent tumour biology (14). This

methodology has significantly enhanced the quantification of

intratumoural heterogeneity (15, 16).

To our knowledge, few studies have aimed to conduct habitat-

based radiomics analyses to predict PCa aggressiveness on the basis

of bp-MRI. In this research, we employed a new radiomics

approach to identify imaging biomarkers within the whole

tumour region and subregional zones. We established and

validated three predictive models based separately on clinical

factors, radiomics features, and habitat features to distinguish

between csPCa and non-csPCa.
Materials and methods

Patient selection and
clinicopathological information

This retrospective study was approved by the Institutional

Ethics Committee of Suzhou Ninth Hospital Affiliated to

Soochow University (No. KYLW2024-052-01), who waived the

requirement for written informed consent. A total of 429 patients

in our hospital who underwent 3.0T MRI examination due to

elevated PSA or clinical symptoms (such as frequent urination,

urgent urination, pain in urine, etc.) from January 2019 to January

2023 and who had pathological results were included in our

research. The details of the patient selection and grouping

processes are shown in Figure 1. Finally, 175 patients, including

134 with csPCa and 41 with non-csPCa, were enrolled and

randomly divided into training and test sets at a 7:3 ratio. All

patients underwent TRUS-guided systematic prostate biopsy.

The collected clinical factors for the patients included age,

prostate volume (PV), total PSA (tPSA), free PSA (fPSA), the

ratio of fPSA to tPSA (f/t PSA), and the PSA density (PSAD).

The PV was calculated by multiplying the width, length, and height

of the prostate on T2WI by 0.52 (17). The PSAD was calculated as

tPSA/PV.
Workflow of radiomics analysis

Radiomics analysis was executed through a series of steps,

including image acquisition and segmentation, feature extraction,

feature selection, and model construction. The entire flowchart for

the workflow employed in this research is presented in Figure 2.
Image acquisition and segmentation

All patients underwent scans on a 3.0-TMRI device (GEDiscovery

MR750, USA). The scan sequences included sagittal and axial T2WI,

T1-weighted imaging (T1WI), fat-suppressed T2WI, DWI (b values of
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FIGURE 2

Workflow of the radiomics analysis.
FIGURE 1

Flowchart of patient selection.
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50 and 1,400 sec/mm 2) and dynamic contrast-enhanced MRI (DCE-

MRI). At the end of the scan, the machine automatically generated an

ADC map on the basis of the DWI sequence. In this study, a bp-MRI

sequence that includes axial T2WI and ADC mapping was selected as

recommended by the PI-RADS v2.1 due to its combination of accuracy

and convenience. The parameters of the T2WI sequence were as

follows: repetition time (TR) = 3000 ms, echo time (TE) = 100 ms,

thickness = 3 mm, gap = 0 mm, field of view (FOV) = 220*220 mm,

matrix = 276*238, and number of excitations (NEX) = 3. The

parameters of the DWI sequence were as follows: TR = 6000 ms, TE

= 77 ms, thickness = 3 mm, gap = 0 mm, FOV = 260*260 mm, matrix

= 104*126, and NEX = 2. To bolster the reliability of the medical image

analyses, a series of preprocessing steps were implemented prior to

image segmentation. First, the PyRadiomics package (version 3.1.0,

https://pyradiomics.readthedocs.io/en/latest/) was employed to

perform N4BiasFieldCorrection on the MR images, effectively

correcting low-frequency bias fields and eliminating background

inhomogeneity to increase contrast and improve accuracy (18).

Second, each original image was resampled to a size of 1 * 1 * 1

mm3. Third, the ADC image was registered to the T2W image for

spatial alignment in terms of anatomical structure for subsequent

analysis and diagnosis. The registration process involved the use of

the “SlicerElastix” plugin, an extension module integrated into the

3D Slicer software. This plugin leverages the Elastix medical image

registration toolkit, providing robust image registration capabilities.

Through the SlicerElastix plugin, medical experts can achieve high-

precision image registration, which is crucial for the diagnosis and

treatment planning of pathologies such as prostate cancer. This

structure-based spatial alignment ensures that image data acquired

under different imaging conditions can be accurately compared and

evaluated. A seasoned radiologist with a 10 years of expertise

subsequently meticulously delineated the region of interest (ROI)

corresponding to the lesion on T2WI layer by layer with 3D-Slicer

software (version 5.6.2, https://www.slicer.org/); all ROIs were then

consolidated into a volume of interest (VOI). In instances of doubt

or uncertainty, the radiologist consulted with a fellow senior

radiologist with 12 years of experience to ensure that the ROIs

were precisely delineated. Importantly, both physicians were

blinded to the patients’ clinical and pathological data throughout

the evaluation, thereby increasing the objectivity and impartiality of

the study.
Habitat generation

Initially, we extracted 40 features from each voxel within the

lesion area, including first-order statistics and grey-level co-

occurrence matrix (GLCM) features. The first-order features,

derived directly from the distribution of image pixel intensities,

include statistical measures such as the mean, variance, and

standard deviation, which provide a description of the central

tendency, dispersion, and heterogeneity, respectively, of the

distribution of the image brightness. The GLCM, on the other

hand, captures textural features of the image by analysing the
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relationships between pixel intensities and their immediate

neighbours, thereby revealing microstructural textural

characteristics such as coarseness, directionality, and uniformity.

These features were then integrated to form a comprehensive

feature vector, each of which represents a unique set of properties

for the corresponding voxel.

We subsequently conducted an in-depth analysis of these

feature vectors with the K-means clustering algorithm, a classical

unsupervised learning technique (19). Through an iterative process,

the K-means algorithm partitions the feature vectors into K clusters,

each defined by its centroid—the mean of all points within the

cluster. The algorithm aims to minimise the distance between voxels

within a cluster and the cluster centre, thereby allowing

identification of patterns and structures within the data.

Determining the optimal number of clusters during the clustering

process is crucial; to aid in this determination, we employed the

Calinski–Harabasz (CH) index, which evaluates the ratio of

intracluster compactness to intercluster separation, assisting in

identifying the most discriminative number of clusters (20). This

approach enables the determination of the best subregion division.
Feature extraction and selection

The PyRadiomics tool was used to extract features including

first-order, shape (including 2D and 3D), GLCM, grey level run

length matrix (GLRLM), grey level size zone matrix (GLSZM), grey

level dependence matrix (GLDM), and neighbouring grey tone

difference matrix (NGTDM) features, all in accordance with the

guidelines of the Imaging Biomarker Standardization Initiative

(IBSI). While many features were identified, not all of them were

valuable in distinguishing csPCa from non-csPCa. Therefore, three

feature dimension reduction methods were employed to determine

the most discriminative set of features. First, we used mutual

information-based feature selection, which assesses the relevance

between features and the classification target as well as the

redundancy among features to select the most beneficial subset of

features for classification. Through three steps—feature subset

generation, subset evaluation, and stopping criteria—it effectively

reduces the dimensionality of the features, thereby increasing the

efficiency and accuracy of the resulting classification model. Second,

the maximum relevance minimum redundancy (mRMR) method

was used to eliminate irrelevant and redundant features. Third, we

utilised the least absolute shrinkage and selection operator (LASSO)

to meticulously select the most impactful features for the models,

ensuring a streamlined and less sparse structure and mitigating the

propensity for overfitting. By carefully fine-tuning the

regularisation parameter l, LASSO effectively makes the

regression coefficients of extraneous features zero. The optimal l
was identified through 10-fold cross-validation, with the goal of

achieving the lowest possible mean square error. Finally, the

Pearson correlation coefficient was used to eliminate features with

high consistency, that is, those with a correlation coefficient greater

than 0.8.
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Model construction and
performance evaluation

To establish the clinical model, univariable logistic regression

analysis was used to obtain clinical features with P values<0.05, and

then the random forest method was used to establish the model. To

establish the radiomics and habitat models, numerous machine

learning models were applied, including logistic regression, linear

regression, k-nearest neighbour (KNN), decision tree, support

vector machine (SVM), eXtreme Gradient Boosting (XGBoost),

random forest (RF), light gradient boosting machine (LightGBM),

neural network, gradient boosting machine (GBM), and AdaBoost.

The diagnostic performance of the clinical, radiomics and

habitat models was assessed and compared from multiple

perspectives with three distinct approaches: receiver operating

characteristic (ROC) curve analysis, decision curve analysis

(DCA), and calibration curve analysis. ROC curve analysis

included calculation of the area under the curve (AUC), accuracy,

sensitivity and specificity were computed. Calibration curves were

plotted to assess the accuracy of the models’ predictions. Finally, the

clinical applicability of the predictive models was evaluated with

DCA (21).
Statistical analysis

The data were statistically analysed in R language (version 4.3.0,

https://www.r-project.org) and Python language software (version

3.9, https://www.python.org). The Shapiro-Wilk test was used to

assess the normality of the distributions of the variables. Variables

conforming to a normal distribution are described using the mean

and standard deviation, whereas those not conforming to a normal

distribution are described with the median (Q1, Q3). The Mann-
Frontiers in Oncology 05
Whitney U test was used to assess differences between two groups.

Categorical data are presented as counts and were compared

between groups with the chi-square test. Comparisons of the

AUCs were conducted with the DeLong test. P < 0.05 was

considered to indicate statistical significance.
Results

Patient characteristics

A total of 175 patients (134 with csPCa and 41 with non-csPCa)

were included in this research. All the subjects were then divided

into training (140) and test (35) sets via stratified random sampling

at a 7:3 ratio. The characteristics of all patients are listed in Table 1.
Clinical model

Univariable logistic analysis revealed that tPSA, fPSA, and

PSAD were significant factors for predicting csPCa (P<0.05). The

results of the univariable logistic regression analyses are presented

in Supplementary Table S1. The clinical model was then established

with the random forest method on the basis of the selected

clinical features.
Subregion cluster and feature selection

Forty radiomic features were extracted from each voxel within

the lesion on the T2WI and ADC maps, along with the values of

T2WI and ADC, for a total of 42 features that were then used to

form a feature vector matrix for K-means clustering analysis.
TABLE 1 Patient characteristics.

Characteristics Total (n=175) Clinically significant PCa
(n = 134)

Nonclinically significant PCa
(n = 41)

P value

Age, years, median (Q1, Q3) 74 (68, 80) 74 (67, 80.8) 74 (71, 78) 0.982

PV, mL, median (Q1, Q3) 39.8 (28, 56.5) 38.8 (27.4, 58.4) 40.6 (32, 49.3) 0.857

tPSA, ng/mL, median (Q1, Q3) 39.8 (28, 56.5) 55.1 (20.4, 113.1) 12.1 (8.8, 18) < 0.001

fPSA, ng/mL, median (Q1, Q3) 3.2 (1.3, 10.7) 5.3 (1.9, 16.5) 1.2 (0.9, 2.2) < 0.001

PSAD, ng/mL/mL, median
(Q1, Q3)

1 (0.4, 2.1) 1.4 (0.6, 2.6) 0.3 (0.2, 0.6) < 0.001

f/tPSA, %, median (Q1, Q3) 1 (0.4, 2.1) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) 0.748

Gleason Score

3 + 3 = 6 – 41 –

3 + 4/4 + 3 = 7 56 –

4 + 4 = 8 41 –

4 + 5/5 + 4 = 9 28 –

5 + 5 = 10 9 –
PCa, prostate cancer; PV, prostate volume; tPSA, total prostate-specific antigen; fPSA, free PSA; f/tPSA, ratio of free-to-total PSA; PSAD, PSA density.
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According to the CH value, the optimal number of cluster centres

was three, which was then used for the subregional division of each

lesion (Figure 3).

For the habitat model, a total of 10,004 radiomic features were

extracted from the different subregions of the lesions outlined on

the T2W and ADC images. After applying the four feature selection

methods—mutual information-based feature selection, mRMR,

LASSO, and Pearson correlation analysis—13 features were

ultimately selected for model construction (Supplementary Figure

S1). For the radiomics model, a total of 3668 radiomic features were

extracted from the different subregions of the lesions outlined on

the T2W and ADC images. After the same four feature selection

methods were applied, 8 features were ultimately selected for model

construction (Supplementary Figure S2).
Model construction and
performance comparison

On the basis of the analysis of prediction performance

(Supplementary Figure S3), the radiomics model and habitat

model were constructed with RF. Figure 4 shows the ROC curves

for the clinical model, radiomics model, and habitat model, while

Table 2 provides the details of their ROC-related metrics, including

the AUC value, accuracy, sensitivity, specificity, and F1 score. These

metrics offer a comprehensive assessment of the diagnostic efficacy

of the constructed models. In the test set, the AUC value of the

habitat model was 0.93, which was greater than that of the

radiomics model and the clinical model. Additionally, DCA

indicated that the habitat model offered greater clinical benefits

than the other two models did (Figure 5A). The calibration curves

suggested that the habitat model had better precision than the other

models (Figure 5B). The cross-validation boxplot also indicates that

the habitat model exhibits superior stability and reliability

compared to the other models (Figure 5C).
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Discussion

In this study, we established and validated three predictive

models based separately on clinical factors, radiomics features, and

habitat features to assess the aggressiveness of PCa on the basis of

bp-MRI. Our results indicated that the habitat model outperformed

both the radiomics model and the clinical model in distinguishing

csPCa from non-csPCa, with AUC values in the training and test

sets of 0.99 and 0.93, respectively. Furthermore, the DCA and

calibration curves highlight the superior clinical utility and

enhanced accuracy, respectively, of the habitat model with respect

to the other two models.

PCa of varying pathological grades exhibit differences at the

cellular level. Although rich in information, medical imaging often

depends on radiologists’ subjective interpretations and visual acuity,

making it challenging to assess pathological grade. Previous studies

have indicated that radiomics, a high-throughput analytical

technique, can extract textural features from images and convert

them into usable data, offering certain value in qualitatively

assessing the invasiveness of PCa. Gong et al. developed a 2D

model that achieved a C-index of 0.728 and an AUC of 0.794,

showing stable key features and robust performance, even in the

presence of a 2 mm deviation in segmentation boundaries. The

model effectively identified prostate pathology and Gleason scores

with radiomic features extracted from 2D prostate-gland MR

images (22). Jin et al. developed an integrated clinical-radiomic

model that effectively identified csPCa in PI-RADS 3 lesions,

achieving an AUC of 0.88, potentially reducing unnecessary

biopsies and enhancing the quality of life of the patients (23). Shu

et al. reported that a machine learning model constructed using an

RF classifier exhibited the best overall predictive performance, with

an AUC value of 0.89 for the high-risk group, indicating that

machine learning methods based on MR radiomics could be

promising tools for accurately stratifying PCa risk (24). The

results of this study are similar to those of the aforementioned
FIGURE 3

Habitat Generation Process. (A) A total of 40 radiomic features were extracted from each voxel within the lesion on T2-weighted imaging (T2WI) and
apparent diffusion coefficient (ADC) maps, in addition to the T2WI and ADC values themselves, resulting in a feature vector matrix comprising 42
features for K-means clustering analysis. (B) The optimal number of cluster centres was determined to be three based on the Calinski-Harabasz (CH)
index, which was subsequently utilised for subregional division of each lesion (C).
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research; the traditional radiomics model constructed on the basis

of bp-MRI achieved AUC values of 0.95 and 0.84 in the training and

test sets, respectively, indicating that the model has certain

predictive value for the aggressiveness of PCa.

Tumour heterogeneity refers to differences in gene expression,

protein levels, and biological behaviours within a tumour and can be

divided into spatial heterogeneity and temporal heterogeneity (25).

Spatial heterogeneity describes the complexity of the tumour

architecture, particularly the interactions between tumour cells,

immune cells, and stromal cells, through which the tumour obtains

nutrientsandgrowth factorsvianeovascularisationandregionalhypoxia

(26). Temporal heterogeneity describes the dynamic process of tumour

formation, evolution, and metastasis (27). This heterogeneity has a

significant impact on tumour growth, invasiveness, treatment

response, and prognosis (28, 29). Traditional radiomics studies often

focus on aggregates of imaging features of the entire tumour, whichmay

not fully capture the extent of intratumoural heterogeneity (30).

Compared with traditional whole-tumour radiomics, habitat imaging

focuses on subregional imaging, providing better quantification of

tumour subregions that is better related to tumour growth or

invasiveness. By analysing multiple subregions of the tumour and their

interrelationships, this method explicitly considers spatial heterogeneity

and therefore may provide more precise information for tumour

diagnosis and clinical decision-making (31–33).

Several recent studies have indicated that habitat imaging provides

valuable insights into the qualitative characteristics of tumours, the

prediction of their invasiveness, and the evaluation of treatment

efficacy. Prior et al. utilised quantitative MRI and CT imaging
Frontiers in Oncology 07
techniques to uncover biological correlations within the tumour

microenvironment, highlighting the value of habitat imaging in

characterising tumour heterogeneity. By employing unsupervised

clustering models and certain radiomic features, diverse phenotypes

within the tumour, such as cellularity, vascularisation, and necrosis,

were explored, revealing a close association between these

characteristics and tumour aggressiveness (34). Huang et al.

identified habitat-based radiomic features to assess the immediate

response of patients with colorectal cancer lung metastases following

radiofrequency ablation treatment. They extracted radiomic features

from tumour, peritumoural, and specific habitat regions, and the final

model combined habitat features and those extracted from a 5-mm

peripheral zone, demonstrating the best performance in an

independent test set with an AUC of 0.870 (35). Wang et al. utilised

PET/CT imaging to extract radiomic features from the entire tumour

region and features derived from the habitat technique to predict the

Ki-67 status in high-grade serous ovarian cancer. The findings

demonstrated that, compared with textural features extracted from

the whole tumour region, textural features extracted with the habitat

method more effectively predicted the Ki-67 status, demonstrating

potential as a biomarker to supersede Ki-67 itself (36). Parra et al.

presented a comprehensive methodology for quantifying csPCa

detected by radiology, employing DCE-derived habitat analysis and

assessing both DCE and ADC features. The resulting model had

excellent precision in detecting csPCa, exhibiting robust accuracy

across two distinct institutional datasets (37). While these studies

were exploratory in nature and require larger sample sizes to validate

their findings, they nevertheless demonstrate significant potential in
TABLE 2 AUC values of the clinical, radiomics and habitat models in the prediction of prostate cancer aggressiveness.

Models AUC (95% CI) Accuracy Sensitivity Specificity F1 score

Clinical model
training 0.97 (0.92-1.00) 0.98 0.93 1.00 0.97

test 0.73 (0.54-0.91) 0.83 0.55 0.90 0.57

Radiomics model
training 0.95 (0.89-1.00) 0. 98 0.90 1.00 0.95

test 0.84 (0.69-0.99) 0.91 0.73 0.95 0.76

Habitat model
training 0.99 (0.98-1.00) 0.99 1.00 0.99 0.98

test 0.93 (0.82-1.00) 0.94 0.91 0.95 0.87
AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval; T2WI, T2-weighted imaging; ADC, apparent diffusion coefficient.
FIGURE 4

Receiver Operating Characteristic (ROC) Curves of three models for predicting clinically significant prostate cancer. (A) ROC curves of the clinical
model; (B) ROC curves of the radiomics model; (C) ROC curves of the habitat model.
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the study of tumour heterogeneity, providing new directions for future

cancer researchand therapy.Thehabitat imagingapproachused in this

study emphasises the importance of subregional cluster analysis in

understanding the heterogeneity of PCa. After optimising the number

of clusters, we identified three spatially distinct habitats with K-means

clustering. As anticipated, following dimensionality reduction, the

radiomic features extracted from these unique subregions were used

to construct a habitat model that provided valuable information for

assessing the aggressiveness of PCa. The habitat model achieved an

AUC of 0.93 in the test set, outperforming the radiomics model (AUC

= 0.84). This superior performance may be attributed to the

subregional analysis employed by the habitat model, which captures

the heterogeneity within the tumour and thereby enhances the

accuracy of predicting csPCa.

Our study has several limitations. First, this was a single-centre

retrospective study with a small sample size and potential selection bias.

Therefore, we will collect larger samples and conduct multicentre

prospective studies to validate the findings and ensure their

generalisability. Second, the machine learning methods utilised in this

study relied on manual segmentation, which may introduce subjective

bias. In the future, we will focus on automatic segmentation techniques

to increase the objectivity of our results. Finally, the uneven distribution

of samples in this study may have affected model generalisability,

primarily because we observed that the incidence of non-csPCa was

significantly lower than that of csPCa during the case collection process.

We attempted to mitigate this issue by employing stratified random

sampling, but validation of model robustness with a larger and more

diverse sample is still necessary. In addition,wewill explore the potential

of extending habitat-based radiomics tomultiparametricMRI to further

enhance performance in the future.
Conclusion

We developed a habitat-based radiomics model that, compared

with the traditional radiomic model and clinical model, better

distinguished between csPCa and non-csPCa on the basis of bp-

MRI. Our study demonstrates a novel approach for assessing the

heterogeneity of PCa and offer urologists a quantitative, noninvasive
Frontiers in Oncology 08
method for preoperatively evaluating the aggressiveness of PCa,

thereby reducing unnecessary biopsies and improving patients’

quality of life.
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