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Clinical value of the nomogram
model based on endoscopic
ultrasonography radiomics
and clinical indicators in
identifying benign and malignant
lesions of the pancreas
Xiaofei Fan †, Jia Huang †, Xiaohan Cai †, Ayixie Maihemuti , Shu Li,
Weili Fang, Bangmao Wang and Wentian Liu*

Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
Objective: Based on endoscopic ultrasonography (EUS) radiomics and clinical data,

we constructed a radiomics model and a nomogram model for identifying benign

andmalignant pancreatic lesions, and explored the diagnostic performance of these

two prediction models.

Methods: Images and clinical data of 151 patients with pancreatic lesions detected

by EUS from January 2018 to September 2023 were retrospectively collected. The

patients were randomly divided into a training set and a validation set at a ratio of 7:3.

Through feature extraction and feature screening of EUS images, we calculated the

radiomics score (rad-score) to realize the construction of the radiomics model.

Collecting the clinical data, laboratory test results, and rad-scores from patients,

univariate and multivariate logistic regression analyses were used to screen

statistically significant influencing factors that could help identify benign and

malignant lesions of the pancreas, and a nomogram model was constructed. The

diagnostic performance and clinical utility of the two prediction models were

evaluated using the receiver operating characteristic (ROC) curves, calibration

curves, and decision curve analysis (DCA).

Results: Through feature extraction and screening, eight non-zero coefficient

features were finally selected to calculate the rad-score. Multivariate logistic

regression analysis showed that rad-score, age, and CA199 were the influencing

factors in predicting benign and malignant pancreatic lesions. A nomogram model

was constructed based on the three factors. In the validation set, the nomogram

model exhibited superior performance with an AUC = 0.865 (95% CI 0.761–0.968)

compared to the radiomics prediction model. The calibration curve and DCA
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depicted that the nomogram model demonstrated superior accuracy and yielded a

higher net benefit for clinical decision-making compared to the radiomics

prediction model.

Conclusion: Based on EUS radiomics and clinical indicators, we constructed a

promising nomogram model to accurately identify benign and malignant

pancreatic lesions.
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1 Introduction

Pancreatic cancer (PC), benign pancreatic tumor (BPT), and

mass-forming pancreatitis (MFP) are common pancreatic lesions

(1–4). They often present with clinical manifestations such as

jaundice, weight loss, and abdominal pain (5). However, their

treatment methods and prognoses differ significantly. To prevent

overtreatment, early and accurate differentiation between benign

and malignant pancreatic lesions is critical. At present, endoscopic

ultrasonography (EUS) has become one of the most important

examination methods for diagnosing pancreatic lesions. It can not

only allow for the visualization of lesion size and depth, assessment

of surrounding lymph nodes and vascular invasion, and evaluation

of adjacent tissue and organ involvement, but also provide the

possibility for cellular and histological diagnosis through

endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA)

and endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB)

(6). However, some studies indicate that the specificity of EUS for

diagnosing pancreatic malignancy is limited, with figures as low as

58% (7). Even after the injection of contrast, the manifestations of

different pancreatic lesions are also non-specific and there may be

overlapping appearance (8). Meanwhile, the diagnostic accuracy of

EUS is closely related to the endoscopist’s knowledge, experience,

and operational level, with poor inter-observer agreement (9).

Relying solely on EUS images to distinguish between benign and

malignant lesions can be subjective and challenging for

endoscopists (10). Pathologic biopsy is the gold standard for

diagnosis. The diagnostic rate of EUS-FNA for pancreatic lesions

is approximately 70%–82%, and the diagnostic accuracy of EUS-

FNB is approximately 70%–89% (11–13). However, they are

invasive procedures that may result in complications such as

infection, bleeding, abdominal pain, and self-limited pancreatitis

(14). Therefore, a safe, effective, simple, and objective way to

identify benign or malignant pancreatic lesions is needed.

The concept of radiomics, first proposed by Lambin et al. in 2012,

is an emerging computer-aided diagnosis (CAD) technology that has

been widely used in recent years for tumor research (15–17). Based

on radiomics and ultrasound images, it has been widely used in the
02
diagnosis of thyroid tumors, breast tumors, etc. (18–21). However,

there are relatively few studies investigating the application of EUS

radiomics for distinguishing between benign and malignant

pancreatic lesions; thus, this study constructed a radiomics

prediction model and a nomogram prediction model based on EUS

radiomics and clinical data to distinguish benign and malignant

pancreatic lesions.
2 Materials and methods

2.1 Participant identification

This study retrospectively included clinical data and images

from 151 patients with pancreatic lesions detected by EUS at the

Gastrointestinal Endoscopy Center of the General Hospital of

Tianjin Medical University from January 2018 to September 2023.

Among these patients, 69 cases were classified as malignant and 82

were classified as benign. The patients were randomly divided into a

training set (N = 105) and a validation set (N = 46) at a 7:3 ratio. The

inclusion criteria were as follows (1): patients who underwent EUS

examination to find pancreatic lesions (2); patients with complete

laboratory tests, clinical data, and imaging data; and (3) patients

with benign and malignant lesions that can be identified by EUS-

FNA/FNB, pathologic confirmation after surgery, or follow-up

observation after comprehensive consideration of clinical and

imaging data. The exclusion criteria were as follows (1): patients

with missing EUS images (2); EUS images quality is poor and

cannot be used for analysis (3); repeat EUS examinations for the

same patient, selecting only the clearest image with the largest

measured section (4); non-focal MFP (non-FMFP) patients; and (5)

patients with a combination of other malignant tumors. In this

study, patient data were anonymized, and all patients’ personal

information was deleted from the final results. This study is a

retrospective study and has been approved by the Tianjin Medical

University General Hospital Medical Research Ethics Committee

and Institutional Review Board, exempting informed consent. The

patient selection flowchart is shown in Figure 1.
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2.2 Construction of the radiomics model

2.2.1 EUS image acquisition
Patients were examined using radial EUS (GF-UCT240-AL5;

Olympus Medical, Tokyo, Japan) and fan-scan EUS (GF-UE260-

AL5; Olympus Medical, Tokyo, Japan). Contraindications to EUS

and puncture were excluded preoperatively. Patients and their

families were fully informed of the risks associated with the

operation and signed informed consent forms. An experienced

EUS physician performed a continuous scan of the pancreas to

explore the lesion site, measure the lesion length and diameter, and

observe the image characteristics of the lesion and its relationship

with the surrounding organs and blood vessels. If there was any

disagreement, it was confirmed by a senior EUS physician. The
Frontiers in Oncology 03
images were acquired in accordance with the current quality control

indexes and standardized specifications. The EUS images were

saved to the Picture Archive and Communication System (PACS)

and the clearest images containing the largest section of the

pancreatic lesion were selected and stored in BMP (Bitmap) format.

2.2.2 Workflow
The workflow for the radiomics analysis consisted of lesion

segmentation, feature extraction, feature selection, model

construction, and evaluation (Figure 2).

2.2.3 Lesion segmentation and preprocessing
The acquired EUS images were imported into COCO

Annotator software, and the regions of interest (ROIs) were

manually outlined along the tumor boundaries by an experienced

EUS physician and confirmed by a senior EUS physician. The above

images were processed in grayscale.

2.2.4 Feature extraction and feature selection
Image radiomics features were automatically extracted using

Python 3.9.0 and Pyradiomics v3.0.1. In this study, 1,032 radiomics

features were extracted from the ROI of each EUS image, which can

be divided into eight types according to image types: Original,

Exponential, Gradient, LocalBinaryPattern2D, Logarithm, Square,

Squareroot, and Wavelet (this includes LH, HL, HH, and LL). The

above radiomics features can be further divided into three

categories based on feature types (1): shape features (2), first-

order histogram features, and (3) second-order histogram

features, including gray-level co-occurrence matrix features, gray-

level dependency matrix features, gray-level run length matrix

features, gray-level size zone matrix features, and neighborhood

gray-level zone difference matrix features.
FIGURE 2

Flowchart of the radiomics analysis.
FIGURE 1

Flowchart of patient selection.
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Intraclass and interclass correlation coefficients (ICCs) were

used to assess intra-observer and inter-observer reliability. A set of

30 EUS images was randomly chosen. An experienced EUS

physician (A) and a senior EUS physician (B) independently

performed ROI segmentation. Two weeks later, physician A

repeatedly performed the ROI segmentation. Radiomics features

with the ICC value greater than 0.70 (indicating excellent stability)

were selected for subsequent analysis.

Pearson correlation analysis and the least absolute shrinkage

and selection operator (LASSO) logistic regression algorithm were

applied for feature selection. Firstly, Pearson correlation coefficients

were calculated to assess feature correlation. When the correlation

coefficient between any two features exceeded 0.7, it indicated a

strong correlation, which could lead to multicollinearity problems

in the model. To enhance the accuracy of data analysis, these highly

correlated and redundant features were removed. Finally, the 10-

fold cross-validation was used to identify radiomics features with

non-zero coefficients using the LASSO regression model.

2.2.5 Radiomics model construction
Finally, the features with predictive value were selected, and the

radiomics score (rad-score) was calculated through coefficient

weighting to construct the radiomics model.
2.3 Construction of the nomogram model

Medical records were reviewed to gather each patient’s clinical

information, laboratory test results, and characterization of

pancreatic lesions based on EUS examination. The variables

included (1) gender (2); age (3); CA199 (4); lesion size, defined as
Frontiers in Oncology 04
the diameter of the largest section of the lesion (5); cystic–solid

appearance of lesions: “solid” indicates that the lesion has a purely

parenchymal component and shows echogenic manifestations such

as very hypoechoic, moderately hypoechoic, and hypoechoic echoes

on EUS; “cystic” indicates that the lesion has a purely fluid

component and shows echo-less areas on EUS; “mixed” refers to

lesions with both fluid and parenchymal components, displaying

both echo-less and echogenic areas on EUS; and (6) lesion location:

lesions in the head and neck are categorized as the pancreatic head

and neck group; lesions in the body and tail are categorized as the

pancreatic body and tail group; if the lesions are large or distributed

across multiple sites, they are categorized as the total pancreas

group. Clinical indicators and rad-scores were selected through

univariable and multivariable logistic regression in the training set

to construct the nomogram prediction model.
2.4 Statistical analysis

Data conforming to normal and approximately normal

distributions are expressed as mean and standard deviation. Non-

normally distributed continuous data were expressed as the median

(upper and lower quartiles). Categorical data were expressed as

frequencies and percentages. We compared variables of the

participants utilizing an independent-sample t-test, Mann–Whitney U

test, or c2 test, where appropriate. The study was statistically analyzed
using the R software package (version 4.2.1). Receiver operating

characteristic (ROC) curves were plotted to evaluate the diagnostic

efficacy of the models, and area under the curve (AUC) comparisons

were performed using the DeLong test. Plotting calibration curves to

evaluate the calibration of the model and decision curve analysis (DCA)
TABLE 1 Clinical characteristics in all patients.

Characteristics All (N = 151) Benign (N = 82) Malignancy (N = 69) p-value

Gender (%) 0.484

Male 73 (48) 37 (45) 36 (52)

Female 78 (52) 45 (55) 33 (48)

Age (years), mean ± standard deviation 59.78 ± 11.69 56.93 ± 12.62 63.17 ± 9.49 <0.001*

CA199 (U/mL), median (upper and lower quartiles) 98.23 (7.84, 318.41) 15.01 (4.58, 318.41) 318.41 (82.63, 1,200) <0.001*

Lesion size (cm), mean ± standard deviation 3.08 ± 1.80 2.44 ± 2 3.85 ± 1.14 <0.001*

Cystic–solid appearance of the lesion (%) <0.001*

Solid 94 (62) 37 (45) 57 (83)

Cystic 42 (28) 39 (48) 3 (4)

Mixed 15 (10) 6 (7) 9 (13)

Lesion site (%) 0.007*

Head and neck 78 (52) 43 (52) 35 (51)

Body and tail 54 (36) 23 (28) 31 (45)

Total pancreas 19 (13) 16 (20) 3 (4)
*Significant difference p-value < 0.05.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1504593
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fan et al. 10.3389/fonc.2025.1504593
was used to assess the clinical efficacy of the predictive models. A p-

value of less than 0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics

In this study, 151 patients with pancreatic lesions were finally

included, including 69 PC and 82 benign lesions. Clinical data,

laboratory test results, and characteristics of pancreatic lesions of

each patient were obtained by reviewing the medical records. Gender

was not statistically different between the two groups of patients (p =

0.484). Age, CA199, lesion size, cystic–solid appearance of the lesion,

and lesion site were statistically different between the two groups of

patients (p < 0.05). Details are shown in Table 1.

Comparing the clinical indexes of patients in the benign and

malignant groups in the training set, the results showed that the

difference in gender between the two groups was not statistically

significant (p = 0.594), but the differences in age, CA199, lesion size,

cystic–solid appearance of the lesion, and lesion site between the two

groups were statistically significant (p < 0.05), as shown in Table 2.
3.2 Radiomics model results

The ROI of each EUS image in this study was extracted to 1,032

features, of which 582 features had an ICC greater than 0.8. After

eliminating features with a correlation coefficient greater than 0.7, 35

features remained. We performed LASSO regression analysis with 10-

fold cross-validation on the retained features, and finally selected eight

non-zero coefficient features with the highest predictive value, including
Frontiers in Oncology 05
one morphological feature, one first-order histogram feature, and six

second-order histogram features, as detailed in Figures 3A, B. A linear

combination of these eight features and their corresponding weighted

coefficients was used to generate the rad-score calculation formula,

resulting in a rad-score for each patient to construct the final radiomics

predictive model. The linear expression of the radiomics model is:

Rad-score = (−2.493685e−01) + (4.457582e−01) × (original_

shape2D_Elongation) + (1.824497e−02) × (original_glszm_

GrayLevelNonUniformity) + (9.148610e-01) × (gradient_glcm_Imc1) +

(9.552690e−07) × (gradient_glszm_LargeAreaHighGrayLevelEmphasis)

− (1.068615e−01) × (gradient_glszm_SizeZoneNonUniformity) −

(4.128836e-01) x (lbp.2D_firstorder_10Percentile) + (4.416447e−02) ×

(square_glszm_GrayLevelNonUniformity) − (4.088332e+01)

×(squareroot_ngtdm_Contrast)

The results showed that the rad-scores of the malignant group

were higher than those of the benign group in both the training set and

the validation set (p < 0.001, p = 0.001), as shown in Figures 3C, D.
3.3 Nomogram model results

We conducted univariate logistic regression analysis using the rad-

score of patients in the training set, combined with clinical data,

laboratory test results, and EUS image features. Indicators with p <

0.1 (rad-score, age, CA199, lesion size, and cystic–solid appearance of

lesions) were selected for multivariate logistic regression analysis. The

results showed that the rad-score [OR = 5.254 (95% CI 2.409–14.85), p

< 0.001], age [OR = 1.089 (95%CI 1.026–1.176), p = 0.012], and CA199

[OR = 1.003 (95% CI 1.001–1.007), p = 0.006] were significant factors

in distinguishing between benign and malignant pancreatic lesions.

These three indicators were used to construct a nomogram prediction

model, as shown in Figure 4.
TABLE 2 Clinical characteristics in the training set.

Characteristics All (N = 105) Benign (N = 57) Malignancy (N = 48) p-value

Gender (%) 0.594

Male 55 (52) 28 (49) 27 (56)

Female 50 (48) 29 (51) 21 (44)

Age (years), mean ± standard deviation 59.92 ± 12.08 57.07 ± 12.87 63.31 ± 10.21 0.007*

CA199 (U/mL), median (upper and lower quartiles) 167.71 (13.67, 318.41) 21.58 (4.53, 318.41) 318.41 (167.22, 1,200) <0.001*

Lesion size (cm), mean ± standard deviation 3 ± 1.80 2.32 ± 1.98 3.81 ± 1.11 <0.001*

Cystic–solid appearance of the lesion (%) <0.001*

Solid 69 (66) 27 (47) 42 (88)

Cystic 28 (27) 26 (46) 2 (4)

Mixed 8 (8) 4 (7) 4 (8)

Lesion site (%) 0.025*

Head and neck 54 (51) 29 (51) 25 (52)

Body and tail 37 (35) 16 (28) 21 (44)

Total pancreas 14 (13) 12 (21) 2 (4)
*Significant difference p-value < 0.05.
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3.4 Validation and evaluation of
model performance

The ROC curve illustrates the relationship between sensitivity

and specificity of the model at different thresholds and reflects the

model’s ability to correctly distinguish between different patients. A

higher AUC (closer to 1.0) indicates better discrimination. As

shown in Figure 5 and Table 3, the AUC of the nomogram
Frontiers in Oncology 06
prediction model in the validation set is higher than that of the

single radiomics model (0.865 vs. 0.777), with a statistically

significant difference (DeLong p < 0.05). The calibration curve

evaluates the model’s consistency by comparing predicted risk

with actual risk, where closer alignment to the ideal curve

signifies better calibration. Figure 6 demonstrates good

consistency for both models in the training and validation sets.

The DCA curve is used to evaluate the clinical net benefit of the
FIGURE 4

A nomogram model based on clinical features and rad-scores.
FIGURE 3

Radiomics feature selection and rad-scores results. (A) Selection of the tuning parameter (l) in the LASSO model via 10-fold cross-validation based
on minimum criteria. (B) LASSO coefficient profile plot with different log (l) was displayed. (C) Box plots of rad-scores in the training set. (D) Box
plots of rad-scores in the validation set.
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model. As shown in Figure 7, when the threshold probability is

between 0% and 75%, using the nomogram model to differentiate

between benign and malignant pancreatic lesions in the validation

set provides a higher clinical benefit than treating all lesions

(assuming all lesions are malignant) or not treating all lesions

(assuming all lesions are benign), and the net benefit is

significantly higher than that of a single radiomics model within

the threshold probability range of 50%–75%.
4 Discussion

The clinical manifestations of pancreatic lesions are similar;

however, the treatment approaches and prognosis differ significantly

between benign and malignant lesions. PC, characterized by its high

malignancy and poor prognosis, requires early and timely diagnosis and

treatment. Surgical resection is one viable treatment option. In contrast,

benign pancreatic lesions generally have a better prognosis, with

conservative treatment often being sufficient. Therefore, accurately

distinguishing between benign and malignant pancreatic lesions is

crucial for effective diagnosis, treatment, and prognosis. EUS is a

pivotal examination method for diagnosing pancreatic lesions, which

can perform comprehensive ultrasound scans of the entire pancreas

with minimal interference. Its sensitivity in detecting pancreatic lesions

is 93%–94%, higher thanmagnetic resonance imaging (MRI) (67%) and

computed tomography (CT) (53%) (lesions < 30 mm) (22), and EUS

can better detect lesions that have not been identified in CT or other

imaging examinations (23). However, EUS is highly operator-dependent

and presents technical challenges. According to the American Society

for Gastrointestinal Endoscopy (ASGE), a comprehensive EUS practice

should include at least 24 months of regular gastrointestinal endoscopy

experience and at least 1 year of specialized training in biliopancreatic

EUS (24). The high training costs and steep learning curve make it

challenging for physicians to acquire expertise in EUS (25), and there is

significant variability in diagnostic ability among different physicians,
Frontiers in Oncology 07
which limits the specificity and sensitivity of EUS diagnoses. Meanwhile

EUS-FNA/FNB is an invasive examination and may increase the risk of

complications. Therefore, it is extremely important to develop an

accurate and non-invasive diagnostic method. To our knowledge, this

study is the first to combine EUS radiomics with clinical information to

construct the nomogram model for distinguishing benign and

malignant lesions of the pancreas.

Our comparison of clinical data from patients with benign and

malignant lesions revealed statistically significant differences in age and

CA19-9 levels (p < 0.05). The age and CA199 levels of the patients in

the malignant group were higher than those in the benign group.

Multivariate logistic regression analysis also showed that age and

CA199 were influencing factors in differentiating benign and

malignant pancreas (p < 0.05). It has been shown (26, 27) that the

incidence of PC increases with age, with almost 90% of cases diagnosed

after the age of 55 years and the highest incidence above the age of 70

years. The results of this paper are consistent with it. In our study, the

age of onset of the malignant group was approximately 63 years, which

was significantly higher than that of the benign group, indicating that

age is one of the factors affecting the development of PC. CA199 is the

only FDA-approved clinical biomarker of PC, and it has suggestive

significance in the diagnosis of PC, guiding treatment, and determining

prognosis (28). Most patients with PC have significantly elevated serum

CA199. The CA199 levels in malignant lesions of the pancreas were

significantly higher than those in benign lesions in the training set of

this paper, similar to previous studies, suggesting that CA199 levels are

also helpful in identifying benign and malignant pancreatic lesions.

However, the sensitivity and specificity of serum CA199 levels alone in

differentiating benign and malignant pancreatic lesions are only 68%

and 70%, respectively (29). Su et al. (30) also showed that elevated

CA199 alone is not sufficient to differentiate PC from chronic

pancreatitis, but when CA199 and other indicators are combined

with radiomics information, the accuracy can reach over 80%,

indicating that the combination of CA199 and radiomics can further

improve diagnostic performance (31).
FIGURE 5

Comparison between the ROC curves of the two models in both training set (A) and validation set (B). Model A, nomogram model; Model B,
radiomics model.
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Radiomics is considered as an emerging non-invasive, objective,

and efficient CAD technology by extracting high-throughput image

features and transforming them into mineable data. These features can

uncover biological information not visible through conventional

imaging, improving disease diagnosis and prediction. Currently, some

studies have demonstrated the promising results of CT-based andMRI-

based radiomics in the identification of benign and malignant

pancreatic tumors (32–35). However, compared to EUS, CT has a

higher radiation dose and may cause allergic reactions to contrast

agents, while MRI is time-consuming, expensive, artifactual, and not

suitable for patients with ferromagnetic and/or metallic substances in

the body (36). Therefore, there is growing interest in EUS-based

radiomics analysis (7, 9, 37–40). In this study, we initially extracted

1,032 radiomic features from EUS images. Through ICC analysis,

correlation analysis, and LASSO regression, we identified eight non-

zero coefficient features, including one morphological feature, one first-

order histogram feature, and six second-order histogram features

(texture features). Morphological features describe the geometric

characteristics of the image, reflecting the contour and size of the

tumor, such as volume and maximum diameter. The first-order

histogram feature describes the characteristics associated with the

distribution of voxel intensities within the lesion image. Second-order

histogram features (texture features) characterize the spatial distribution

of voxel intensities, or the interrelationships between image gray values,

reflecting the spatial heterogeneity within the tumor (41–43). Unlike

traditional tumor imaging, which primarily relies on qualitative features

such as tumor density, regularity of tumor margins, cellular

composition within the tumor, and relationship with surrounding

tissues, the radiomic features we extract can decode images into

quantitative characteristics, including size, shape, and texture. This

approach is more precise and reliable than qualitative diagnoses and

can quantify image information that is undetectable by humans, aiding

in the accurate identification of tumor benignity or malignancy (43, 44).

Then, the rad-score of each patient was calculated using the above

features, and the results showed that the rad-score of the malignant

group was higher than that of the benign group in both the training and

validation sets (p < 0.01). Multivariate analysis also showed rad-score as

one of the influencing factors in identifying pancreatic benign and

malignant (p < 0.05), similar to previous research findings (35). As the

radiomics features can reflect the morphological characteristics of

lesions and tumor heterogeneity, they can be used to identify the

benign and malignant nature of pancreatic lesions. In this paper,

the AUCs for our radiomics prediction model were 0.891 and 0.777

in the training and validation sets, respectively, with sensitivities of 0.938

and 0.762, and specificities of 0.79 and 0.6.

While radiomics models show good promise, they often operate in

isolation, overlooking the potential influence of other factors such as

laboratory tests and radiological date. The performance of the model

needs to be improved. Consequently, many researchers have focused

on developingmultimodal models that combine radiomics with clinical

information to improve diagnostic accuracy. Cui et al. (31) constructed

a CNN model based on EUS images using information from 439

patients with solid pancreatic lesions, as well as a multimodal model

that combined EUS images and clinical information. The results

showed that the performance of the multimodal AI model was

superior to that of the single model running solely on EUS images.
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Zhu et al. (45) demonstrated through multicenter external validation

that the fusion model that integrated radiological and radiomics

models outperformed models based on the clinical model and

radiological model in predicting grade 1 and grade 2/3 non-

functional pancreatic neuroendocrine tumors (NF-PNETs). Mo et al.

(46) constructed an ultrasomics signature model, a clinical–ultrasonic

signature model, and a combined nomogram model using ultrasomics

signature and clinical–ultrasonic signature. The results showed AUC

values of 0.649, 0.847, and 0.884 in the testing cohort, respectively, with

the combined nomogram model showing the highest accuracy,

effectively distinguishing between pancreatic neuroendocrine tumors

and PC. However, the current studies lack visualization nomogram

models that combine EUS radiomic features and clinical information to

differentiate between a wide range of benign and malignant pancreatic
Frontiers in Oncology 09
lesions. Thus, we used EUS radiomics features and clinical indicators to

construct a nomogrammodel, which was superior to a single radiomics

model. The AUC and accuracy were 0.865 vs. 0.777 and 0.761 vs. 0.67,

respectively, similar to the results of the above article. This suggests that

the combination of the rad-score with relevant clinical indicators can

provide a more comprehensive interpretation for the patient

examination results and enhance the differentiation benign and

malignant pancreatic lesions. Unlike the study by Mo et al. (46), our

research, including various types of benign lesions with complex and

diverse imaging, preliminarily classified pancreatic lesions into benign

and malignant, not limited to the differentiation between pancreatic

neuroendocrine tumors and PC. Additionally, when collecting clinical

ultrasound features, we not only focused on characteristics such as age,

lesion size, and ultrasound features, but also included the clinical
FIGURE 7

DCA curves of two models in both training set (A) and validation set (B). Model A, nomogram model; Model B, radiomics model.
FIGURE 6

Calibration curves of two models in both training set (A) and validation set (B). Model A, nomogram model; Model B, radiomics model.
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indicator CA199 to construct the model, which yielded good results. In

contrast to Cui et al. (31), who directly constructed models like CNNs,

we developed a visual nomogram model to differentiate between

benign and malignant pancreatic lesions. This model assigns

corresponding scores to different values of each independent variable,

allowing the prediction result to be obtained by calculating the total

score. This approach is simple and convenient, making the results

easier to understand and interpret. Moreover, it does not have

algorithm patent barriers, allowing for broader application.

As pancreatic-occupying lesions are increasingly being detected,

some controversial lesions inevitably require ultrasound-guided

puncture biopsy for further diagnostic clarification. Although the

diagnostic rate of the lesion is high (approximately 70%–82% for

EUS-FNA and 70%–89% for EUS-FNB), it is an invasive operation.

The incidence of post-puncture complications ranges from 1% to 2.5%

(47, 48), and it is influenced by factors including lesion size, lesion

location, type of puncture needle, and competence of the puncture (49).

Our study showed that the nomogrammodel had anAUC of 0.825 and

an accuracy of 0.761 in the validation set, which is similar to the

diagnostic performance of puncture biopsy, and this method is non-

invasive and not limited by puncture biopsy sampling. It may have

important clinical significance by providing reliable supplementary

information for EUS-FNA/B in the future.

This study is a preliminary attempt to identify benign and

malignant pancreatic lesions based on EUS radiomics, which still

suffers from the following shortcomings (1): This is a retrospective

study with certain selection bias (2). This study is a single-center

study with relatively small sample size, which poses challenges to

the stability and reliability of the established model compared to

models built on larger samples. The next step could involve

expanding the sample size and increasing multicenter external

validation to further enhance the robustness and generalizability

of the model (3). In this study, two types of EUS devices and

scanning methods were used to acquire images, and different

scanning devices and scanning methods may have an impact on

the study results. Meanwhile, the radial EUS scope used in this

study was no longer widely used, which was also one of the

limitations of this study (4). In this study, the ROIs were

performed manually, which was complex and time-consuming,

especially for lesions with unclear boundaries, and automated

image segmentation algorithms can be developed or adopted in

the next step to improve efficiency and reproducibility.

In summary, we established a radiomics prediction model and a

nomogram model based on EUS images and clinical indicators to

evaluate the diagnostic efficacy for benign and malignant pancreatic

lesions. The results showed that the nomogram model was superior to

the single radiomics prediction model in the differential diagnosis of

benign and malignant pancreatic lesions and had better performance.
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