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Ovarian cancer, known for its high invasiveness and therapeutic resistance, is one

of the leading causes of death from gynecological tumors. The tumor

microenvironment (TME) plays a crucial role in the development of ovarian

cancer, with cancer-associated fibroblasts (CAFs) being a key non-tumor cell

component. They significantly affect the prognosis of ovarian cancer by

promoting tumor cell proliferation, invasion, metastasis, immune evasion, and

drug resistance. The heterogeneity of CAFs provides a new perspective for

targeted therapy in ovarian cancer. This review comprehensively analyzes the

mechanisms of action, heterogeneity characteristics, and role in the immune

microenvironment of CAFs in ovarian cancer, and discusses targeted therapy

strategies for CAFs, aiming to provide new theoretical basis and treatment

directions for the treatment of ovarian cancer.
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1 Research background

Ovarian cancer ranks among the most prevalent malignant neoplasms within the

female reproductive system, holding a notable status in terms of incidence and mortality

rates among gynecological malignancies (1, 2). The subtle nature of its early indicators

often results in a diagnosis at an advanced stage for the majority of patients, characterized

by extensive tumor metastasis, thereby presenting significant therapeutic challenges (2).

Despite ongoing refinements in surgical procedures and advancements in chemotherapy

treatments, the five-year survival rate for ovarian cancer has remained less than optimal,

marred by a high recurrence rate and an overall poor prognosis (3). Consequently, there is a

critical need to explore the etiology of ovarian cancer and to identify novel therapeutic

targets, with the aim of enhancing the survival and quality of life for patients afflicted with

this disease.

The tumor microenvironment (TME) encompasses the internal and external milieu in

which tumor cells proliferate and evolve, encompassing a complex array of elements

including tumor cells, fibroblasts, immune cells, vascular cells, and the extracellular matrix

(4, 5). In the context of ovarian cancer development, the TME assumes a pivotal role.
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Within this ecosystem, cancer-associated fibroblasts (CAFs) emerge

as particularly critical cellular constituents. CAFs, which are

essentially normal fibroblasts resident in tissues, undergo

activation and transformation into CAFs under the influence of

signaling molecules released by tumor cells, such as transforming

growth factor b (TGF-b) and platelet-derived growth factor (PDGF)
(6). These CAFs contribute to the proliferation, invasion, and

metastasis of tumor cells by secreting an arsenal of cytokines,

chemokines, and factors that remodel the extracellular matrix (7).

Concurrently, CAFs suppress the anti-tumor activities of immune

cells through the secretion of immunosuppressive factors such as

TGF-b, IL-10, and PGE2. These factors inhibit the proliferation and

activation of T cells, reducing their ability to kill tumor cells (8).

Additionally, CAFs express immune inhibitory molecules like PD-

L1, which bind to PD-1 on T cells, further suppressing T cell

function (9). The contribution of CAFs to an immunosuppressive

tumor microenvironment partially explains the muted response

that ovarian cancer patients have to clinically available

immunotherapies (10). This highlights the critical need for new

therapies targeting CAFs and other components of the TME to

enhance the effectiveness of immunotherapy and improve patient

outcomes (11).

The heterogeneity of CAFs is a reflection of their functional

diversity in the tumor microenvironment (12). Studies have shown

that CAFs can be divided into different subpopulations based on their

phenotype and function, such as myofibroblast-like CAFs (myCAFs)

and inflammatory CAFs (iCAFs) (13). These different CAF

subpopulations play different roles in the development of ovarian

cancer. For example, myCAFs promote the invasion and metastasis of

tumor cells by secreting collagen and fibronectin and other

extracellular matrix proteins; iCAFs recruit immunosuppressive cells

such as regulatory T cells (Tregs) andmyeloid-derived suppressor cells

(MDSCs) by secreting IL-6, IL-8 and other inflammatory factors,

inhibiting the anti-tumor activity of immune cells (14–16).

With the development of single cell sequencing technology, the

heterogeneity of CAFs has beenmore deeply understood. Researchers

have found that the distribution and function of CAFs in ovarian

cancer may be closely related to the stage, grade, and prognosis of the

tumor. For instance, some subpopulations of CAFs may be related to

the early metastasis and recurrence of tumors, while others may be

associated with the immune evasion and chemotherapy resistance of

tumors. Therefore, in-depth study of the heterogeneity of CAFs is of

great clinical significance for revealing the pathogenesis of ovarian

cancer, predicting tumor progression and prognosis, and developing

personalized treatment plans.

This review aims to comprehensively analyze the mechanisms

of action, heterogeneity characteristics, and role in the immune

microenvironment of CAFs in ovarian cancer. It will discuss

targeted therapy strategies for CAFs, providing new theoretical

basis and treatment directions for the treatment of ovarian

cancer. The review will cover the following topics: the concept

and source of CAFs, their role in the development of ovarian cancer,

the impact of CAF heterogeneity on targeted therapy, and the latest

preclinical research progress on targeting CAFs for ovarian

cancer treatment.
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2 Concept and source of CAFs

CAFs are different from normal fibroblasts (Normal Fibroblasts,

NFs), a type of fibroblast that is in a state of continuous activation,

which not only has all the characteristics of NFs but also has more

active cell functions, stronger proliferation ability, and higher

metabolic status, making it one of the most important cellular

components in the TME (11). The characteristics of CAFs are that

the cells are slender and spindle-shaped, without the expression of

epithelial cells, endothelial cells, and leukocytes and other markers,

and lack the cellular characteristics of cancer cells (17).

CAFs mainly come from NFs, which are activated by cytokines

secreted by cancer cells; epithelial cells and endothelial cells that

have undergone epithelial-mesenchymal transition are also

important sources of CAFs; bone marrow stem cells, fat stem

cells, and pericytes can also be transformed into CAFs. Tumor

cells secrete transforming growth factor b (TGF-b), vascular

endothelial growth factor (VEGF), fibroblast growth factor (FGF),

and white blood cell interleukin (IL) and other cytokines, which

promote the transformation of NFs, epithelial cells, endothelial

cells, bone marrow stem cells, fat stem cells, and pericytes into CAFs

(6). Tumor cells can also transform fat cells and endothelial cells

into CAFs through specific signaling pathways, such as the Wnt

signaling pathway that prompts fat cells to become CAFs

(18) (Figure 1).
3 The role of CAFs in the
development of ovarian cancer

The role of CAFs has been confirmed in various cancers, promoting

the occurrence and development of tumors through multiple pathways

(19, 20). In the latest research on pancreatic cancer, a new

subpopulation of CAFs has been found to exhibit specific anti-tumor

effects, indicating the heterogeneity of CAFs (21, 22). Currently, there is

relatively little research on CAFs in ovarian cancer, and no special

subpopulation of CAFs with anti-tumor effects has been found in

ovarian cancer. Most studies have shown that CAFs have the effect of

promoting the occurrence and development of ovarian cancer cells, and

targeting CAFs is a new treatment method.
3.1 CAFs promote the proliferation of
ovarian cancer cells

CAFs are the main components of ovarian cancer stromal cells

and are in close contact with ovarian cancer cells (OCC). They can

exert a promoting effect on tumors through multiple pathways. The

interaction between CAFs and OCC promotes glycogenolysis under

aerobic conditions and induces the phosphorylation of glycogen

metabolic enzymes. Glycogen participates in the glycolysis process,

thereby promoting the proliferation ability of OCC (23). CAFs can

also promote the angiogenesis or extracellular matrix remodeling of

OCC by secreting cytokines and chemokines, causing OCC to

proliferate rapidly (24–26). CAFs secrete collagen response
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medium protein 2 (CRMP2), secretory leukocyte protease inhibitor

(SLPI), etc. (27), which can promote the progression of ovarian

cancer through specific signaling pathways. CAFs promote the

proliferation and growth of OCC by directly participating in

cancer metabolism, secreting pro-cancer factors, and regulating

signaling pathways.
3.2 CAFs promote the invasion and
metastasis of ovarian cancer cells

The invasion and metastasis of ovarian cancer refer to the

process by which OCC from the primary site, through lymphatic

vessels, blood vessels, or the abdominal cavity, reach outside the

primary site and continue to grow (28). The high mortality and

recurrence rate of ovarian cancer are closely related to its easy

invasion and metastasis, and CAFs have the ability to invade the

matrix, playing an important role in promoting the invasion and

metastasis of ovarian cancer. GLIS family zinc finger 1 (GLIS1) gene

can act as a transcriptional activator, inducing the reprogramming

of multipotent stem cells into fibroblasts, and plays a role in the

differentiation and proliferation of OCC, and is a specific gene

overexpressed in CAFs, playing a promoting role in tumors; in

addition, the overexpression of the Twist family bHLH

transcription factor 1 (Twist1) gene can also promote the transfer

of OCC through the interleukin 6 enrichment pathway (29, 30).

CAFs secrete the chemokine CXCL14, which can promote the

upregulation of long non-coding RNA LINC00092 in OCC,

affecting glycolysis and the local support function of CAFs,

promoting the transfer of OCC, thus forming a positive feedback

loop, which is crucial for the invasion and metastasis of ovarian
Frontiers in Oncology 03
cancer (30). A variety of long non-coding RNAs (lncRNAs) highly

expressed in CAFs, such as CRNDE, MALAT1, MEG3, TP73 -AS1,

etc. (31), can promote the invasion and metastasis of ovarian cancer

through various signaling pathways. In addition, CAFs release

cytokines/chemokines (such as IL-6, IL-8) that inhibit autophagy

in OCC, thereby promoting tumor transfer (32). CAFs’ derivative

osteomembrane protein (POSTN) promotes the invasion function

of OCC by activating the PI3K/Akt regulatory pathway and

inducing epithelial-mesenchymal transition (33), and also

enhances the promoting effect of CAFs on tumors by integrating

through the integrin-mediated NF-kB and TGF-b2 signaling

pathways (34). The extracellular vesicles (EV) secreted by OCC

can carry miR-630 into NFs, activate the NF-kB pathway, accelerate

the activation of CAFs, and promote the transfer of ovarian cancer

through a positive feedback loop (35). In addition to indirectly

acting on OCC, CAFs can also directly participate in the

proliferation of cancer stem cells and the formation of the

metastatic niche. In summary, CAFs can promote the occurrence

of tumors through specific gene overexpression, secretion of related

substances (such as cytokines, chemokines, extracellular vesicles,

etc.), mediation of epithelial-mesenchymal transition, and

regulation of signaling pathways, and are closely related to the

characteristics of invasion and metastasis of ovarian cancer (36).
4 Immune evasion by CAFs in
ovarian cancer

CAFs play a pivotal role in the immune evasion process of

ovarian cancer by modulating the TME to suppress the anti-tumor

immune response. They achieve this through several mechanisms.
FIGURE 1

Source of CAFs.
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First, CAFs secrete a variety of immunosuppressive cytokines and

chemokines, such as TGF-b, IL-10, and PGE2, which inhibit the

proliferation and activation of T cells, reducing their ability to

recognize and kill tumor cells (8). TGF-b, in particular, is a potent

immunosuppressive cytokine that can directly inhibit T cell

activation and differentiation, leading to a reduced anti-tumor

immune response (9). Second, CAFs express immune checkpoint

molecules like PD-L1, which bind to PD-1 on T cells (9), further

suppressing T cell function and promoting immune evasion (10).

This interaction can lead to T cell exhaustion, a state where T cells

become less effective in killing tumor cells (11). Third, CAFs attract

and activate regulatory T cells(Tregs) and myeloid suppressor cells

(MDSCs) by secreting interleukins(IL-6,IL-8), which can inhibit the

antitumor activity of other immune cells (32). Tregs can inhibit the

activation of effector T cells, while MDSCs can suppress T cell

proliferation and function through the production of reactive

oxygen species (ROS) and arginase (31). Finally, CAFs can induce

epithelial-mesenchymal transition (EMT) in tumor cells, making

them more invasive and less recognizable by the immune system.

EMT tumor cells often express lower levels of classical major

histocompatibility complex (MHC) molecules, reducing the

chance of being recognized by T cells (37). For example, CAFs

can secrete TGF-b, which is a key inducer of EMT in ovarian cancer

cells (23).The ability of CAFs to facilitate immune evasion has

significant implications for the treatment of ovarian cancer. Several

strategies are being explored to target CAFs and their secreted

factors to enhance the immune response. These include the use of

monoclonal antibodies against specific cytokines, small molecules

to inhibit signaling pathways, and immunomodulatory agents to

reprogram CAFs (38–40). These approaches aim to reduce the

immunosuppressive effects of CAFs and improve the overall

immune response against ovarian cancer (21).
5 Drug resistance mediated by CAFs in
ovarian cancer

CAFs contribute to drug resistance in ovarian cancer through

multiple mechanisms, which can reduce the sensitivity of tumor

cells to chemotherapy and targeted therapies. First, CAFs can

activate survival signaling pathways in tumor cells, such as the

PI3K/Akt and MAPK pathways, which promote cell survival and

resistance to apoptosis induced by chemotherapy drugs (22). For

example, the periostin (POSTN) secreted by CAFs can activate the

PI3K/Akt signaling pathway, reducing cisplatin-induced apoptosis

and leading to drug resistance (41). Second, CAFs can induce

epithelial-mesenchymal transition (EMT) in tumor cells, which is

associated with increased drug resistance. EMT can lead to changes

in cell morphology and behavior, making tumor cells more resistant

to chemotherapy (42). The secretion of chemokine CXCL12 by

CAFs can activate the CXCR4/Wnt/b-catenin signaling pathway,

further reducing the sensitivity to cisplatin (43). Third, CAFs can

affect the transport and metabolism of drugs, reducing their

availability to tumor cells. For example, the high expression of the
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lipoma partner gene (LPP) in CAFs can increase the permeability of

endothelial cells, reducing the delivery of paclitaxel to cancer cells

(44). CAFs can also secrete extracellular vehicles (EVs) carrying

miRNAs, such as miR-630, which can target cell cycle proteins like

CDKN1A, promoting drug resistance (45–47).

The role of CAFs in drug resistance has significant clinical

implications. Understanding and targeting the mechanisms by

which CAFs contribute to drug resistance can help develop more

effective treatment strategies for ovarian cancer (44, 46, 48).

Potential therapeutic approaches include targeting CAF-secreted

factors, which can enhance the sensitivity of tumor cells to

chemotherapy. For example, targeting TGF-b signaling can

reduce the immunosuppressive effects of CAFs and improve

treatment outcomes (2). Reprogramming CAFs to a more

quiescent state or to a phenotype that supports anti-tumor

immunity can be a promising strategy, achieved through the use

of specific small molecules or gene therapy approaches (49).

Combining therapies that target CAFs with standard

chemotherapy or immunotherapy can enhance the overall

treatment efficacy. For example, combining anti-CAFs therapy

with immunotherapy can overcome immune evasion and

improve patient survival (1). In combination with the action

mechanism of CAFs, we drew Figure 2.
6 The impact of CAF heterogeneity on
targeted therapy in ovarian cancer

With the development of emerging gene sequencing

technologies, it has been found that CAFs can exhibit different

CAF subpopulations with different types and expression levels of

markers, and there are great differences in expression among various

CAF subpopulations, which is the manifestation of CAF

heterogeneity (25). At present, many markers of CAFs have been

discovered, such as fibroblast activation protein (FAP), a-smooth

muscle actin (a-SMA), and platelet-derived growth factor receptor

(PDGF-R) (50). Different CAF subtypes show different biological

characteristics. For example, in ovarian cancer, CAFs can promote

the invasion and metastasis of OCC by secreting cytokines and

chemokines (7); they can also regulate the expression level of

immune checkpoint molecules through specific signaling pathways,

increasing the immune evasion ability of tumor cells (39). In CAFs,

different subpopulations can be divided according to the expression

level of markers such as FAP, with high expression of FAP in CAFs

inducing tumor cell proliferation, invasion and metastasis, and

immune resistance. FAP low-expressing CAFs reduce the

promoting effect of FAP high-expressing CAFs on tumor through

specific genes such as TCF21 (51); CAFs not only show differences in

ovarian cancer but also in other cancers. For example, the four

common subtypes of CAFs in breast cancer have different

mechanisms of action and expression patterns; even the latest

research has found that there are CAF subpopulations that can

inhibit the progression of tumor cells in pancreatic cancer (52, 53).

It is precisely because of the different expression of different CAF
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subtypes that the study and analysis of CAF subtypes are one of the

current key directions in cancer research.

The heterogeneity of CAFs in ovarian cancer is mainly

manifested in aspects of mechanisms of action and expression.

The same CAF subpopulation has different phenotypes in different

diseases, and even the functions exhibited at different stages of the

same tumor are not the same. Due to the diversity of sources and

molecular expression differences, CAFs show the heterogeneity of

their functions (54, 55). Because CAFs play an important role in the

occurrence and development of ovarian cancer, promoting the

invasion and metastasis of ovarian cancer and immune evasion,

accurately targeting CAFs is of far-reaching significance for the

treatment of ovarian cancer (56). Although targeted therapy for

CAFs has provided us with new treatment plans for ovarian cancer,

due to the heterogeneity of CAF subpopulations, we need a deeper

understanding of their mechanisms of action to accurately locate

targets in order to treat ovarian cancer (Table 1).
Frontiers in Oncology 05
7 Preclinical research progress on
targeting CAFs for ovarian
cancer treatment

CAFs are widely present in the TME of OCC and have the effect

of promoting tumor cell proliferation, invasion and metastasis,

immune evasion and drug resistance, and their molecular

expression is heterogeneous (57, 58). Targeting CAF

subpopulations can effectively inhibit tumor progression.

Targeting CAFs mainly includes three forms: identifying and

killing CAFs through surface markers, interfering with the

activation of CAFs, and targeting signaling molecules and

regulatory pathways related to CAFs.

At present, a variety of markers have been used to identify

CAFs, such as a-smooth muscle actin (a-SMA), platelet-derived

growth factor receptor (PDGF-R), and fibroblast activation protein

(FAP), etc (59). These markers are highly expressed in CAFs in

ovarian cancer stroma, but not detected in normal tissue cells, so

CAFs can be killed by identifying surface markers. For example,

fibroblast activation protein (FAP) is selectively expressed by CAFs

and pericytes in about 90% of human epithelial cancers. Given the

high expression and restricted distribution of FAP, targeting the

FAP marker can play a role in identifying and killing CAFs, thereby

inhibiting the proliferation and development of cancer. Studies have

shown that targeting the inhibition of FAP can reduce the

recruitment and infiltration of CAFs and is a new method for

treating epithelial cancers such as ovarian cancer.

CAFs have a variety of markers on their surface, some of which

are also expressed in other stromal cells of ovarian cancer, causing
FIGURE 2

Action mechanism of CAFs.
TABLE 1 Summary of CAF subtypes in ovarian cancer with references.

Subtype Marker Function Reference

myCAFs a-SMA,
TGF-b

Promote invasion
and metastasis

(23, 24)

iCAFs IL-1, IL-6,
TNF-a

Immunosuppression (31, 32)

FAP-high CAFs FAP Tumor promotion (51)

FAP-low CAFs FAP Reduced
tumor promotion

(51)
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inaccurate identification of CAFs, and bringing difficulties to

targeted therapy. Therefore, new targeted treatment plans act on

the related expression genes of CAFs, downstream signaling

molecules, and regulatory pathways to inhibit the development of

ovarian cancer. For example, targeting interleukin 8 (IL-8) (28),

chemokine CXCL12 (34), GLIS1 gene (20), lipoma partner

gene (LPP) (43), periosteal protein (POSTN), transforming

growth factor b (TGF-b) (33), methyltransferase nicotinamide

N-methyltransferase (NNMT) (60), human microfiber-related

protein 5 (MFAP5) (61), etc. can achieve the purpose of

inhibiting the progression of ovarian cancer. Calcitriol can act on

the Smad signaling pathway in CAFs, inhibit tumor progression,

and extend the patient’s survival time. The monoclonal antibody of

human microfiber-related protein 5 can enhance the bioavailability

of paclitaxel in ovarian cancer by inhibiting fibrosis and tumor

internal microvascular leakage, and inhibit the growth of OCC,

which has been applied to clinical treatment (61).

In addition to identifying and killing CAFs, targeting signaling

molecules related to CAFs, it is also possible to interfere with the

activation of CAFs, that is, to reprogram the function of CAFs.

Studies have shown that after the reprogramming of CAFs, it is

possible to silence the pro-tumor factors secreted by CAFs while

maintaining the overall structure of the extracellular matrix. The

use of chitosan nanoparticles (NPs) to deliver the targeted small

interfering RNA (siRNA) of human microfiber-related protein 5 for

the reprogramming of CAFs will reduce the level of human

microfiber-related protein 5 in the TME, thereby inhibiting the

metastasis of ovarian cancer (17). It is possible to reprogram CAFs

by changing the metabolism inside ovarian cancer. The

lysophosphatidic acid (LPA) secreted by OCC stimulates the

glycolysis of NFs and CAFs through the hypoxia-inducible factor

1-alpha (HIF1a), and the use of lysophosphatidic acid receptor

antagonist (Ki16425) and HIF1a-siRNA can inhibit the glycolysis

induced by lysophosphatidic acid, affecting the transformation of

NFs into CAFs and inhibiting the progression of ovarian cancer

(48). On the other hand, it is also possible to try to transform CAFs

back into NFs. In pancreatic ductal adenocarcinoma, CAFs have

been successfully transformed into NFs by restoring the level of

retinol. At present, there is no effective way to reverse CAFs in

ovarian cancer, so trying to transform CAFs into NFs can provide

new ideas for the development of new drugs for ovarian cancer (49).

Targeting ovarian cancer CAFs can not only inhibit the

proliferation and invasion and metastasis of tumors but also

increase the sensitivity of anticancer drugs by changing the tumor

microenvironment, reducing the drug resistance and immune

evasion of ovarian cancer, and playing an important role in

improving the poor prognosis of ovarian cancer, which can be
Frontiers in Oncology 06
applied to clinical treatment; secondly, by interfering with the

activation and reversing CAFs, effective treatment of ovarian

cancer can be achieved, which can be used as a starting point for

developing therapeutic drugs, making the treatment of ovarian

cancer targeting CAFs widely used in clinical practice (Table 2).
8 Summary

Cancer-associated fibroblasts (CAFs) assume a multifaceted

and pivotal role within the tumor microenvironment (TME) of

ovarian cancer. They actively foster the proliferation, invasion, and

metastasis of tumor cells, while also engaging in immune evasion

and the genesis of drug resistance. The heterogeneity of CAFs stems

from a diverse array of cell lineages, including normal fibroblasts,

epithelial cells, endothelial cells, bone marrow stem cells, adipose

stem cells, and pericytes, all of which undergo activation or

transformation through a spectrum of distinct signaling pathways.

CAFs directly or indirectly affect the progression of ovarian cancer

by secreting cytokines, chemokines, and extracellular matrix

remodeling factors. In addition, the role of CAFs in immune

evasion cannot be ignored. They help tumor cells evade the attack

of the immune system by secreting immunosuppressive factors and

regulating the function of immune cells. CAFs are also closely

related to the drug resistance of tumors, and they may reduce the

sensitivity of tumors to chemotherapy drugs by changing drug

metabolism or secreting drug pumps, etc.

The future research direction for the treatment of ovarian

cancer has been inclined to targeted therapy. Further exploring

different subpopulations of CAFs and finding new targets for

targeted therapy are key research directions. In addition, targeted

therapies for CAFs can be used in combination with other methods

to improve efficacy. Finding new immune checkpoint molecules

through the process of CAF-induced immune evasion also provides

new options for the treatment of ovarian cancer. In summary,

whether it is killing CAFs, interfering with the activation of CAFs,

or targeting signaling molecules and regulatory pathways related to

CAFs, a comprehensive understanding of the properties and

mechanisms of action of CAFs is needed to achieve precise

positioning. At present, many drugs targeting CAFs have

gradually been put into clinical use, but there are still many

difficulties that need further study.

Translating preclinical findings into effective clinical therapies is

a major challenge. The heterogeneity of ovarian cancer and the

variability in patient responses to treatment make it difficult to

predict the success of new therapies. Additionally, the invasive

nature of ovarian cancer and the high rate of recurrence require
TABLE 2 Potential CAF targets ovarian cancer.

Potential CAFs targets in
ovarian cancer

Identifying and
killing CAFs

Interfering the
activation of CAFs

Targeting signaling molecules and
regulatory pathways

Mode of action Surface Markers (PDGF-R,
FAP, a-SMA)

Metabolic Reprogramming
(glycolysis)

Signaling molecules and pathways (IL-8, CXCL12, LPP, GLIS1,
POSTN, NNMT, MFAP5, Smad pathways)

Research progress Preclinical Studies Preclinical Studies Preclinical Studies
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more robust and durable treatment strategies. Future research

should focus on deeper characterization of CAF subtypes and

their specific roles in ovarian cancer. Advanced imaging

techniques and single-cell sequencing technologies can provide

more detailed insights into the tumor microenvironment.

Additionally, combination therapies targeting multiple aspects of

the tumor microenvironment, including CAFs, immune cells, and

signaling pathways, may offer more effective treatment options.

To sum up, a more profound comprehension of the

heterogeneity and functionalities of CAFs is crucial for devising

innovative therapeutic strategies. It is imperative that future

research endeavors delve deeper into the specific mechanisms by

which CAFs operate within ovarian cancer, elucidate the

characteristics and roles of various CAFs subpopulations, and

investigate their interactions with other cellular elements within

the tumor microenvironment. Such inquiries are expected to

uncover more potent therapeutic targets, pave the way for the

development of novel therapeutic agents, and craft strategies that

will enhance the treatment of ovarian cancer, ultimately aiming to

bolster the quality of life and clinical outcomes for patients.
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