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tumor from pleomorphic
adenoma: a retrospective study
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1Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,
2CT Imaging Research Center, GE Healthcare, Shanghai, China
Introduction: Accurate differentiation between pleomorphic adenomas (PA) and

Warthin tumors (WT) in the parotid gland is challenging owing to overlapping

imaging features. This study aimed to evaluate a nomogram combining dual-

energy computed tomography (DECT) quantitative parameters and radiomics to

enhance diagnostic precision.

Methods: This retrospective study included 120 patients with pathologically

confirmed PA or WT, randomly divided into training and test sets (7:3). DECT

features, including tumor CT values from 70 keV virtual monochromatic images

(VMIs), iodine concentration (IC), and normalized IC (NIC), were analyzed.

Independent predictors were identified via logistic regression. Radiomic

features were extracted from segmented regions of interest and filtered using

the K-best and least absolute shrinkage and selection operator. Radiomic models

based on 70 keV VMIs and material decomposition images were developed using

logistic regression (LR), support vector machine (SVM), and random forest (RF).

The best-performing radiomics model was combined with independent DECT

predictors to construct a model and nomogram. Model performance was

assessed using ROC curves, calibration curves, and decision curve analysis (DCA).

Results: IC (venous phase), NIC (arterial phase), and NIC (venous phase) were

independent DECT predictors. The DECT feature model achieved AUCs of 0.842

and 0.853 in the training and test sets, respectively, outperforming the traditional

radiomics model (AUCs 0.836 and 0.834, respectively). The DECT radiomics

model using arterial phase water-based images with LR showed improved

performance (AUCs 0.883 and 0.925). The combined model demonstrated the

highest discrimination power, with AUCs of 0.910 and 0.947. The combined

model outperformed the DECT features and conventional radiomics models,

with AUCs of 0.910 and 0.947, respectively (P<0.05). While the difference in AUC

between the combined model and the DECT radiomics model was not
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statistically significant (P>0.05), it showed higher specificity, accuracy, and

precision. DCA found that the nomogram gave the greatest net therapeutic

effect across a broad range of threshold probabilities.

Discussion: The nomogram combining DECT features and radiomics offers a

promising non-invasive tool for differentiating PA and WT in clinical practice.
KEYWORDS

parotid tumor, dual-energy computed tomography, radiomics, machine learning,
combined nomogram, identification
1 Introduction

Parotid gland tumors represent approximately 2–3% of all head

and neck tumors, with approximately 80% being benign (1). Among

them, pleomorphic adenoma (PA) is the most common,

constituting a significant portion of parotid gland tumors of

epithelial origin. Although typically benign, approximately 3.2%

of PAs have the potential for malignant transformation (2, 3). In

addition, PA can infiltrate surrounding tissues, forming pseudopods

or satellite nodules, making complete excision using a traditional

debulking surgery challenging. This results in a risk of recurrence,

necessitating treatment via extracapsular dissection (ECD) (4, 5).

Warthin tumors (WT) account for approximately 15% of primary

parotid tumors, making them the second most common after PA

(6). WT predominantly affects middle-aged men and smokers, with

some cases involving both parotid glands. Although malignant

transformation and recurrence are very rare (7), WT often

triggers inflammatory reactions in surrounding tissues,

complicating surgical intervention. Consequently, conservative

treatment is typically preferred to avoid unnecessary surgical risks

(8, 9). Therefore, differentiating between PA and WT is crucial

because it directly influences clinical decision-making and

individualized surgical planning.

Fine-needle aspiration Biopsy (FNAB) is the current “gold

standard” for tumor diagnosis. However, it is an invasive procedure

with risks, including potential damage to the facial nerve, which can

lead to peripheral facial paralysis (10, 11). Ultrasound is effective in

detecting tumors in the superficial lobes of the parotid gland, but

visualizing deeper lesions can be challenging, and its accuracy is
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highly dependent on the operator’s experience (12). While magnetic

resonance imaging (MRI) offers high tissue resolution, its use is

limited by factors such as prolonged examination times and

sensitivity to metal implants, making it less ideal as a primary

diagnostic tool (13–16). Traditional computed tomography scans

provide detailed information about the tumor’s anatomical location

and lesion extent and can uniquely assess calcification and adjacent

vascular conditions (17, 18). However, traditional CT relies on

attenuation-based imaging, which lacks material-specific resolution.

Dual-energy CT (DECT) addresses this limitation by using

dual-energy spectra acquired simultaneously during CT scanning

to improve the analysis of physical and chemical properties. One

common method for obtaining dual-energy spectra is the

instantaneous switching between high and low tube voltages (140

kVp and 80 kVp) during data acquisition. DECT works by

converting the absorption data of the same material at different

energy levels into density data based on the variation in attenuation

coefficients of different substances exposed to varying X-ray energy

levels. This process produces material decomposition (MD) images

(19). Given that iodine is the primary material used in contrast

agents for enhanced scanning, measuring iodine concentration on

water-iodide MD images allows for a detailed visualization of iodine

distribution, which can reflect blood perfusion at lesion sites (20).

Radiomics involves using machine learning techniques to

extract information from medical images that are not visible to

the naked eye, capturing the microscopic characteristics of lesions.

This allows for predicting the biological behavior of lesions, as well

as patient prognosis and treatment outcomes. As a novel biomarker,

radiomics is valuable in differentiating tumor types by assessing

their heterogeneity (21). Radiomics has shown great promise in

improving noninvasive individualized treatment and monitoring by

differentiating parotid tumor types, evaluating the integrity of

benign tumor envelopes, grading malignant tumors, and

differentiating lymphoid lesions, and these studies use a variety of

imaging techniques such as CT, MRI, US, and PET-CT (22–26).

However, the current issue is the small number and varying quality

of studies in this direction, with none of them split at several time

points, prospectively verified, or cost-effective. The majority of the

studies did not disclose public data, and one of the issues was the

difficulty in reproducing the study (27). As a result, the clinical
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application needs to be further investigated. In this work, we

included the energy spectrum CT substance separation image

radiomics features and compared them to the performance of

traditional CT histology, with the goal of providing evidence for

the validity of radiomics in the parotid gland using a novel method.

The integration of radiomics with DECT has been increasingly

applied to disease identification and prediction across various organ

systems (28–30). However, its application to the parotid gland

remains limited. In one study, Ajmi et al. used virtual

monochromatic images from DECT combined with radiomics

analysis to differentiate between PA and WT. They found that

combining radiomics features from monochromatic images at

multiple energy levels significantly improved diagnostic accuracy

compared to using a radiomics model based on a single energy level

(65 keV) (31). However, the study did not explore the potential

value of radiomics features derived from MD images. We

hypothesized that radiomics based on MD images from DECT,

which quantitatively analyze iodine concentration differences

between lesions, along with microscopic image analysis, could

provide a novel approach for identifying parotid tumors in

clinical practice. Therefore, this study aimed to assess the value of

DECT MD image-based radiomics and evaluate the effectiveness of

a nomogram that combines radiomics with DECT-independent

predictors in differentiating the two most common parotid tumors,

playing an adjunctive role in the development of patient treatment

strategies using a non-invasive modality.
2 Materials and methods

2.1 Patient population

This retrospective study, which did not interfere with the

clinical diagnosis or treatment of any patients, was approved by

the Ethics Committee of the First Affiliated Hospital of Dalian

Medical University (approval number: PJ-KS-KY-2024-230; date:

April 3, 2024), with a waiver for written informed consent. We

collected data from 128 patients diagnosed with PA and WT of the

parotid gland who presented to our institution and underwent

DECT enhancement between October 2021 and October 2023. The

inclusion criteria were as follows: (1) primary parotid tumors with

all types confirmed by surgical pathology; (2) no prior treatment

before the CT examination; and (3) high-quality CT images without

factors affecting the measurement of DECT parameters. The

exclusion criteria were as follows: (1) history of chemotherapy or

radiotherapy for parotid tumors; (2) poorly visible lesions on

imaging; (3) incomplete clinical data; and (4) severe metallic or

motion artifacts in images. After applying these criteria, we

excluded one patient with extensive metal (denture) artifacts

obscuring the tumor, two with poorly visualized lesions, and five

with missing clinical data. This resulted in a total of 120 patients

being included in the study, comprising 66 cases of PA and 54 cases

of WT. The patients were randomly assigned to training and test
Frontiers in Oncology 03
sets in a 7:3 ratio, with 84 cases in the training set and 36 cases in the

test set. The patient selection process is illustrated in Figure 1.
2.2 DECT image acquisition

All patients underwent non-contrast and contrast-enhanced scans

from the superior orbital rim to the level of the aortic arch using a GE

Discovery CT 750 HD scanner. The scanning parameters were as

follows: instantaneous switching between high (140 kVp) and low (80

kVp) tube voltages, a tube current of 600 mA, a gantry rotation speed

of 0.6 seconds per rotation, a collimator width of 64 × 0.625 mm, and a

slice thickness and spacing of 2.5 mm. The contrast agent used was

iohexol (300 mg I/mL) administered at a dose of 100–200 mL via an

elbow vein injection. DECT scans in the arterial phase (AP) and venous

phase (VP) were initiated at 30 s and 60 s, respectively, after contrast

injection. Iodine- and water-based MD sequences of the non-contrast

(NP), arterial, and venous phases were reconstructed using Gemstone

Spectral Imaging (GSI) post-processing software. The images were then

imported into the picture archiving and communication system

(PACS) for analysis.
2.3 DECT characterization and assessment

The study workflow is outlined in Figure 2. Image processing

and data measurements were performed using GSI Viewer 4.5

software (GE Healthcare). Key features such as the number,

location, maximum diameter of the lesions, cystic changes,

calcifications, and lymph node status were recorded and analyzed

(Table 1). As illustrated in Figure 3, we examined 70 keV virtual

monochromatic images (VMIs) and MD images (iodine-based and
FIGURE 1

Flowchart of patient selection.
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water-based). A radiologist with three years of experience in head

and neck imaging, blinded to all pathological findings, measured the

DECT quantitative parameters by placing regions of interest (ROIs)

within the tumor and the ipsilateral common carotid artery. The

ROIs were positioned to encompass the entire tumor while avoiding

calcifications and prominent enhanced vessels. Measurements were

centered at the level of maximum lesion display, averaged across

three consecutive slices. Lesion attenuation (in Hounsfield units,

HU) was obtained from the 70 keV VMIs for the NP, AP, and VP.

Iodine concentrations for the tumor and common carotid artery

were assessed using iodine-based MD images. The degree of

enhancement and normalized iodine concentration (NIC) were

calculated using the following formulas:

ICCCAEnhancement degree

= attenuation in AP or VP – attenuation in NP

NIC = iodine concentration in the lesion(IC _ lesion)

=iodine concentration in the ipsilateral common carotid artery  

(IC _CCA)

The largest lesion was selected for analysis in cases with

multiple parotid lesions. Differences between WT and PA were
FIGURE 2

Overview of the study workflow of this study. DECT, dual-energy computed tomography; IC, iodine concentration; LASSO, least absolute shrinkage
and selection operator; NIC, normalized iodine concentration; ROI, region of interest; VOI, volume of interest.
TABLE 1 Clinical data of patients with PA and WT.

Clinical
characteristics

PA
n = 66

WT
n = 54

p value

Age, years a 47.23 ± 13.57 61.22 ± 8.20 < 0.001

Sex (male/female) b 28/38 50/4 < 0.001

Smoking history
(present/absent) b

22/44 46/8 < 0.001

Number of lesions
(single/multiple) b

65/1 42/12 0.001

Location (right/left) b 39/27 30/24 0.697

Deep lobe involvement
(present/absent) b

8/58 2/52 0.182

Cystic lesions (present/
absent) b

18/48 21/33 < 0.001

Calcification (present/
absent) b

2/64 1/53 0.999

Maximum diameter of
the tumor, cm c

2.00 (1.40, 2.70) 2.40 (2.00, 2.90) 0.008

Minor diameter of
lymph node, cm c

0.60 (0.50, 0.70) 0.60 (0.60, 0.80) 0.004
PA, pleomorphic adenoma; WT, Warthin tumors; a, Student’s t test; b, c2 or Fisher’s exact
test; c, Mann–Whitney U test.
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analyzed using univariate logistic regression. Significant variables

(p<0.05) were included in a multivariate logistic regression model to

identify independent predictors of DECT features and calculate

odds ratios (ORs) with 95% confidence intervals (CIs).
2.4 Segmentation of tumor ROI

Lesions were manually segmented using the open-source

software 3D Slicer (https://www.slicer.org). ROIs were delineated

slice by slice to generate the volume of interest (VOI), carefully

avoiding adjacent tissues and blood vessels. Layers heavily affected

by artifacts, such as those near the mandible, were excluded from

the segmentation. To assess intra- and inter-observer consistency,

30 patients (18 PA, 12 WT) were randomly selected, and their VOIs

were re-segmented after one month by the same radiologist to

evaluate intra-observer agreement. Another radiologist

independently repeated the segmentation to assess inter-observer

agreement. The reproducibility of radiomic features was quantified

using the intraclass correlation coefficient (ICC).
2.5 Radiomics feature extraction
and filtering

The segmented VOIs were imported into the United Imaging

Intelligence workstation (Shanghai, China). All sequences were

aligned and normalized in terms of window width and level. A

total of 2,048 features were extracted from each VOI, categorized
Frontiers in Oncology 05
into (1) Shape-based (2D/3D) features; (2) First-order histogram

features; and (3) Second-order texture features, including gray level

run length matrix (GLRLM), gray level co-occurrence matrix

(GLCM), gray level dependence matrix (GLDM), gray level size

zone matrix (GLSZM), and neighboring gray-tone difference matrix

(NGTDM). These first- and second-order features were extracted

not only from the original image but also from derived images

processed with 14 filters, such as Mean, Bilateral, and Speckle Noise.

The algorithms used for feature extraction follow the Image

Biomarker Standardization Initiative (IBSI) guidelines (32).

Features with intra- and inter-observer ICC values greater than

0.75 were retained and standardized using z-score normalization. The

optimal regularization parameters were determined through five-fold

cross-validation in the training set. Univariate analysis was conducted

using the K-best method with F-value tests to identify significant

differences between classifications, selecting the top 10 most important

features. These features were further refined using the least absolute

shrinkage and selection operator (LASSO) analysis based on the

feature coefficients at the maximum alpha value. The final model

was trained using the selected features, and its performance and

generalization ability were evaluated with the test set.
2.6 Development and assessment
of models

Predictive models were developed using logistic regression (LR),

support vector machine (SVM), and random forest (RF) algorithms

based on independent DECT predictors and filtered radiomic
FIGURE 3

Representative dual-energy CT (DECT) material decomposition (MD) images. (white arrows, A-D) PA in a 67-year-old woman. (red arrows, E-H) WT
in a 71-year-old man. (A, E) Iodine-based MD images in the arterial phase. (B, F) Water-based MD images in the arterial phase. (C, G) Iodine-based
MD images in the venous phase. (D, H). Water-based MD images in the venous phase.
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features. The diagnostic performance of each model was assessed by

comparing the area under the curve (AUC) of receiver operating

characteristic (ROC), as well as sensitivity, specificity, accuracy, and

precision. Significant DECT features were utilized to construct the

DECT-based model. Among the radiomics model, the best-

performing model from the 70 keV non-contrast and contrast-

enhanced sequences was selected as the conventional radiomics

model. In contrast, the top-performing model based on MD images

was selected as the DECT radiomics model. A combined model was

developed by calculating the Rad-score from the features of the best

MD model and integrating it with independent DECT predictors. A

nomogram was constructed for this combined model. Calibration

curves were generated to determine the goodness-of-fit between

predicted and actual values across the four models. Decision curve

analysis (DCA) was performed to assess the net benefit rates of each

model, providing insights into their clinical utility.
2.7 Statistical analysis

Statistical analyses were conducted using SPSS software (version

26.0, IBM) and MedCalc software (version 22.009, https://

www.medcalc.org). Quantitative parameters following a normal

distribution are presented as mean ± standard deviation (x ± s)

and were compared using the Student’s t-test. Non-normally

distributed data are expressed as median and interquartile range

[M (P25, P75)] and were analyzed using the Mann–Whitney U test

to assess between-group differences. Qualitative data were analyzed

using the chi-square test or Fisher’s exact test, depending on the

data characteristics. Univariate and multivariate logistic regression

analyses were employed to evaluate all parameters, with significant

variables sequentially filtered to identify independent predictors.

The Delong test was used to compare the differences in AUC values
Frontiers in Oncology 06
between the models, with a p-value of less than 0.05 considered

statistically significant.
3 Results

3.1 Patient information

A total of 120 patients (78 males, 42 females) were included in

this study, ranging in age from 24 to 78 years. Among them, 66 had

PA and 54 WT. Detailed clinical data for both groups are presented

in Table 1. Statistically significant differences were observed

between PA and WT patients in terms of age, sex, smoking

history, number of tumors, presence of cystic lesions, maximum

lesion diameter, and ipsilateral lymph node status (all p<0.05).
3.2 DECT parameter analysis and feature
model development

As presented in Supplementary Table S1, no significant differences

in DECT features were observed between the training and test sets.

Within the training set, significant differences were observed between

PA andWT in attenuation (NP andAP), enhancement degree (AP and

VP), IC, and NIC (all p<0.05). Specifically, NP attenuation, AP

attenuation, AP enhancement degree, IC, and NIC were significantly

higher in WT than in PA. However, the VP enhancement degree, IC,

and NIC were notably lower in WT (Table 2).

Logistic regression analysis (Table 3) identified IC (VP), NIC (AP),

and NIC (VP) as independent predictors for distinguishing PA from

WT. When these features were combined to construct the model, no

significant performance differences were observed among the LR,

SVM, and RF models (Supplementary Table S2 and Supplementary
TABLE 2 DECT features of PA and WT.

DECT features Training set (n = 84) Test set (n = 36)

PA (n = 46) WT (n = 38) p value PA (n = 20) WT (n = 16) p value

Attenuation (NP), HU b 32.44 ± 9.81 45.07 ± 9.54 <0.001 33.73 ± 13.39 49.14 ± 9.85 0.003

Attenuation (AP), HU b 53.44 ± 23.86 81.74 ± 23.46 <0.001 46.88 ± 20.81 84.04 ± 36.12 < 0.001

Attenuation (VP), HU b 71.92 ± 26.12 75.72 ± 11,51 0.200 70.35 ± 21.92 86.43 ± 14.59 0.017

Enhancement degree (AP), HU a 14.79 (6.03, 27.78) 32.27 (17.36, 55.00) 0.001 8.64 (4.47, 18.34) 31.44 (9.25, 46.42) 0.016

Enhancement degree (VP), HU a 38.72 (29.39, 48.70) 29.95 (22.75, 39.32) 0.012 30.70 (28.92, 44.33) 34.72 (29.72, 48.58) 0.464

IC (NP), 100 mg/cm³ b -9.42 ± 2.87 -10.14 ± 2.31 0.036 -10.11 ± 2.33 -8.70 ± 2.14 0.068

IC (AP), 100 mg/cm³ a -3.28 (-6.67, 2.46) 1.37 (-2.38, 7.62) 0.003 -4.23 (-8.32, -1.78) 2.67 (-4.71, 11.54) 0.005

IC (VP), 100 mg/cm³ a 3.17 (-1.69, 10.96) -0.48 (-3.87, 2.64) 0.016 -0.72 (-2.72, 5.17) 0.98 (-3.01, 4.39) 0.987

NIC (AP), % a -3.95 (-7.10, 2.79) 1.76 (-3.34, 8.89) 0.016 -5.41 (-9.60, -1.54) 3.19 (-5.12, 17.66) 0.013

NIC (VP), % b 14.98 ± 34.02 -5.42 ± 26.38 0.003 1.51 ± 30.66 1.25 ± 18.19 0.977
PA, pleomorphic adenoma; WT, Warthin tumors; DECT, dual-energy CT; HU, Hounsfield unit; NP, non-enhanced phase; AP, arterial phase; VP, venous phase; IC, iodine concentration; NIC,
normalized iodine concentration; a, Mann–Whitney U test; b, Student’s t-test.
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Figure S1). Given its relatively better performance in the test set, the LR

model was ultimately selected as the DECT feature model.
3.3 Traditional radiomics feature extraction
and model development

From the 70 keV VMIs across the non-contrast, arterial, and

venous phases, 784, 398, and 536 highly reproducible features

(ICC>0.75) were extracted, respectively. Subsequent K-best and

LASSO analyses retained two, four, and four non-zero coefficient
Frontiers in Oncology 07
features for each phase, respectively. Supplementary Table S3

provides details on the selected features and their corresponding

LASSO coefficients. Diagnostic models were constructed using LR,

SVM, and RF algorithms based on these selected features, with

model performance detailed in Supplementary Table S4 and

illustrated in Supplementary Figures S2-S4.

Among the models, the SVM model for the AP images

demonstrated superior performance as the representative

conventional radiomics model, achieving an AUC of 0.834 (95%

CI, 0.692–0.977). The LASSO filtering process for the AP radiomics

features is shown in Figure 4A.
TABLE 3 Univariate and multivariate logistic regression analyses of DECT features.

DECT features Univariate logistic regression analysis Multivariate logistic regression analysis

p value OR 95% CI p value OR 95% CI

Attenuation (NP), HU a < 0.001 1.135 1.081–1.192 0.749 NA

Attenuation (AP), HU a < 0.001 1.050 1.030–1.070 0.747

Attenuation (VP), HU a 0.054 NA

Enhancement degree (AP), HU a < 0.001 1.039 1.019–1.060 0.748

Enhancement degree (VP), HU a 0.072 NA

IC (NP), 100 mg/cm³ b 0.866 NA

IC (AP), 100 mg/cm³ a < 0.001 1.104 1.046–1.165 0.053

IC (VP), 100 mg/cm³ a 0.005 0.912 0.855–0.973 0.001 0.362 0.198–0.663

NIC (AP), % a 0.002 1.065 1.023–1.108 0.006 0.642 0.470–0.878

NIC (VP), % a 0.013 0.983 0.970–0.996 0.022 1.112 1.016–1.218
DECT, dual-energy CT; OR, odds ratio; CI, confidence interval; NA, not available; NP, non-enhanced phase; AP, arterial phase; VP, venous phase; IC, iodine concentration; NIC, normalized
iodine concentration; a, Mann–Whitney U test; b, Student’s t-test.
FIGURE 4

LASSO coefficient variation with hyperparameters for 10 features screened using the K-best method in AP 70kev images (A) and AP iodine-based
MD images (B). AP, arterial phase; LASSO, least absolute shrinkage and selection operator; VP, venous phase.
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3.4 DECT radiomics feature extraction and
model development

In the Iodine-based image analysis, we extracted 540, 884, and

674 features with ICCs greater than 0.75 in the non-contrast,

arterial, and venous phases, respectively. After screening, the top

four features were selected for each phase, resulting in AUCs

ranging from 0.767 to 0.907 for the training models and 0.638 to

0.703 for the test models. For the water-based image analysis, we

extracted 647, 639, and 548 features with ICCs greater than 0.75

across the three phases. The final selection included two, three, and

one key features, achieving AUCs ranging from 0.843 to 0.944 in the

training models and from 0.823 to 0.925 in the test models.

No significant differences were found among the LR, SVM, and

RF models for any sequence. The LR model of the arterial-phase

water-based images, which demonstrated the highest diagnostic

accuracy in the test set, was selected as the final DECT radiomics

model (Supplementary Table S5, Supplementary Figures S5-S10)

with an AUC of 0.925 (95% CI, 0.844–0.999). The LASSO selection

process for the arterial-phase water-based images is shown in

Figure 4B, while Figure 5 illustrates Rad-score differences

among patients.

The Rad-score formula is as follows:

Rad − score = 0:45 + 0:124� boxmean _ firstorder _ 90Percentile

− 0:016

�   specklenoise _ glrlm _ LowGrayLevelRunEmphasis

− 0:149�   specklenoise _ glcm _ JointEnergy
3.5 Nomogram development
and assessment

The nomogram for the combined model was constructed using

IC (VP), NIC (AP), NIC (VP), and Rad scores derived from the

arterial-phase water-based images (Figure 6A). The performance of

each model is shown in Supplementary Table S6 and

Supplementary Figure S11. Heat maps indicate that the Rad score
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contributed the highest weight among the features (Figures 6B–D).

A comparative analysis of the DECT features, traditional radiomics,

and DECT radiomics is presented in Table 4, summarizing the

combined model’s performance metrics. The ROC curves for all

four models are depicted in Figure 7. The integrated model achieved

AUCs of 0.91 in the training set and 0.947 in the test set, clearly

outperforming both the DECT feature and traditional radiomics

models. Although the AUC of the composite model was not

significantly different from that of the DECT radiomics model, it

exhibited greater specificity, accuracy, and precision. Calibration

curves confirmed good alignment between predicted and actual

outcomes for the training and test data (Figure 7). The DCA

(Figure 8) demonstrates that the combined nomogram offers a

higher net benefit across a wide range of threshold probabilities.
4 Discussion

Age, sex, smoking history, and cystic degeneration all showed

significant differences between adenolymphomas and pleomorphic

adenomas (P<0.001). These findings are in line with earlier research

that found adenolymphomas are more common in middle-aged and

older men and that nicotine from tobacco is a significant

pathogenetic factor in their development. Because of their faster

growth rate, adenolymphomas are more likely to experience cystic

degeneration and necrosis (33). The imaging presentations of various

parotid gland tumors often overlap, making accurate diagnosis using

conventional CT and MRI challenging. This diagnostic process

heavily relies on the clinician’s expertise, limiting reliability. The

diagnostic sensitivity of salivary gland tumors for FNAC varies

greatly, ranging from 71 to 93%, according to several earlier studies

(34). Aspiration is an invasive test, and there is a risk of facial nerve

damage, which is a drawback that is hard to totally prevent. Previous

studies have shown promising results by combining DECT with

radiomics for conditions such as pancreatic and lung tumors (28–30).

However, to our knowledge, the application of MD techniques

combined with radiomics for parotid tumor classification has not

been explored. In our study, we developed an MD image-based

radiomics model. We constructed a nomogram by integrating DECT
FIGURE 5

Rad-scores for all included samples in the training (A) and test (B) sets. Label 1 represents pleomorphic adenoma (PA), and Label 2 represents
Warthin’s tumor (WT).
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quantitative parameters with MD radiomics features to distinguish

PA from WT in the parotid gland. Our results indicate that MD

radiomics provides superior diagnostic accuracy compared to DECT

features and traditional radiomics alone. The combined model

showed further improved diagnostic accuracy and clinical utility

over the standalone DECT feature, traditional radiomics, and

DECT radiomics models. These results suggest that the nomogram

could serve as a valuable tool for the noninvasive preoperative

evaluation of PA and WT. Because the two cancers are treated

differently, using the nomograms to distinguish between them

helps with treatment decision-making.
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Additionally, our study underscored the utility of DECT

quantitative parameters in distinguishing between PA and WT.

Specifically, IC (VP), NIC (AP), and NIC (VP) were identified as

independent predictors. The IC obtained from iodine-based DECT

images reflects tumor blood perfusion. We found that the NIC (AP) of

WT was higher than that of PA, whereas IC (VP) and NIC (VP) were

significantly lower, consistent with previous studies (35, 36). This

phenomenon may be related to the pathological structures of the two

tumors. WT is a well-vascularized benign tumor with a dense

microvascular network and leaky blood vessels, resulting in rapid

contrast agent uptake during the arterial phase and quick washout
FIGURE 6

Radiomics nomogram was developed in the training set by combining IC(VP), NIC(AP), NIC(VP), and Rad-score. (B, C) Correlation heat maps for the
combined model. (D) Unsupervised hierarchical clustering of the combined model’s features. Feature 1: IC(VP); Feature 2: NIC(AP); Feature 3: NIC
(VP); Feature 4: Rad-score. AP, arterial phase; IC, iodine concentration; NIC, normalized iodine concentration; VP, venous phase.
TABLE 4 Diagnostic performance of the four models in the training and test sets.

Model AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) Precision (%)

Training set

DECT features 0.842 (0.747–0.937) 0.763 0.891 0.833 0.853

Traditional radiomics 0.836 (0.748–0.924) 0.789 0.739 0.762 0.714

DECT radiomics 0.883 (0.805–0.961) 0.763 0.935 0.857 0.906

Nomogram 0.910 (0.842–0.977) 0.789 0.935 0.869 0.909

Test set

DECT features 0.853 (0.718–0.988) 0.750 0.850 0.806 0.800

Traditional radiomics 0.834 (0.692–0.977) 0.812 0.750 0.778 0.722

DECT radiomics 0.925 (0.844–0.999) 0.688 0.900 0.806 0.846

Nomogram 0.947 (0.869–0.999) 0.812 0.900 0.861 0.867
DECT, dual-energy CT; AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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FIGURE 8

Decision curve analysis (DCA) for the classification of PA and WT in training (A) and test (B) sets. The nomogram provides the greatest net benefit
compared to the other three datasets. PA, pleomorphic adenoma; PA, pleomorphic adenoma WT, Warthin’s tumor.
FIGURE 7

Receiver operator characteristics (ROC) and calibration curves for the DECT features model, traditional radiomics model, DECT radiomics model,
and nomogram in the training (A, C) and test (B, D) sets. DECT, DECT, dual-energy CT.
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during the venous phase (37). In contrast, PA contains epithelial and

mesenchymal components with abundant intercellular mucin, leading

to slower contrast uptake due to limited vascularity (18). The combined

AUCs of the three independent predictors for the training and test sets

were 0.842 and 0.853, respectively, demonstrating the feasibility of

using DECT quantitative parameters to differentiate PA from WT.

The 70 keV VMI can simulate the attenuation characteristics of

conventional 120 kVp scans in head and neck imaging, making them

suitable alternatives for radiomic analysis in this region (38). In our

study, radiomic analysis using 70 keV images demonstrated superior

diagnostic efficacy during the arterial phase compared to other phases,

with a sensitivity and specificity of 0.812 and 0.75, respectively, in the

test set. Previous studies have highlighted the potential of traditional

CT radiomics in distinguishing PA from WT (23, 39). Feng et al.

identified the arterial phase as the most informative for differentiating

these tumors, with their findings generally aligning with our results

(22). Similarly, Jung et al. found no significant difference between

quantitative enhancement analysis and radiomics in distinguishing PA

from WT (40). This aligns with our results, where there was no

significant difference between the two methods, although traditional

CT radiomics performed slightly worse than the DECT feature model.

Radiomics enhances the analysis of MD images in DECT by

quantifying the distribution of substances such as iodine and water

into voxel relationships, offering a more precise and scientific. In our

study, after analyzing radiomic features from both iodine- and water-

based images across different phases, we found that the water-based

images in the arterial phase yielded the highest diagnostic performance.

The DECT radiomics model significantly improved the differential

diagnosis of PA andWT compared to traditional CT radiomics.Water-

based imaging, achieved through post-processing techniques that

remove iodine signals, reflects the relative water distribution in

tissues. We hypothesize that variations in the amount and

distribution of water within parotid malignancies led to the

maximum diagnostic efficacy of water-based images, which are based

on the imaging principle of eliminating iodine and emphasizing water.

The fact that Michela Gabelloni et al. were able to identify pleomorphic

adenomas and adenolymphomas of the parotid gland using radiomics

taken from T2WI sequences in MRI with similarly high sensitivity,

specificity, and accuracy supports the significant difference in water

content between the two benign tumors (41). This discrepancy might

be explained by the fact that adenolymphomas, which have closely

packed cells andmanymesenchymal components, including tiny blood

vessels, do not have a significant water content, while the majority of

pleomorphic adenomas have a high and widely distributed water

content due to their high mucus component content (42). This

approach, often referred to as virtual non-enhanced imaging, closely

mirrors the resolution and contrast of conventional non-enhanced

image (43, 44). Notably, in the present study, the radiomic features

derived from water-based images in the arterial phase outperformed

those from the non-enhanced phase. We hypothesize that the reason

for this phenomenon may be that virtual non-contrast images are

derived from enhanced images that are consistent with both the

position taken by the patient during scanning and the level of the

tumor display, whereas real non-enhanced images are difficult to match

exactly, leading to differences in final model performance. This also

suggests that virtual non-enhanced images could serve as a viable
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substitute for conventional non-enhanced scans, thereby reducing

redundant imaging and minimizing patient radiation exposure.

Interestingly, the radiomic features from iodine-based images across

all phases were less effective and even inferior to those of traditional CT

radiomics. This may be attributed to the fact that iodine-based images

primarily reflect iodine distribution, neglecting the contributions of

other substances. As a result, the contrast between tissues and lesions is

limited, leading to suboptimal image resolution and weaker diagnostic

performance. And it also indicates that iodine might have interfered

with the contrast-enhanced image histology model, making it perform

marginally worse overall than the virtual non-enhanced images.

Studies have demonstrated that LASSO-based feature selection

offers significant advantages in the differential diagnosis of parotid

tumors (45). In our study, three key radiomic features—firstorder-

90Percentile, glcm-Joint Energy, and glrlm-Low Gray Level Run

Emphasis—were identified from arterial-phase water-based images as

the most robust discriminators. These features were extracted from

images processed using boxmean and speckle noise filters, which

enhance edge definition and texture details. The boxmean filter

implements fast rectangular homogenization, while the speckle noise

filter introduces noise proportional to pixel intensity, thereby refining

texture analysis. The first-order features capture voxel intensity

distributions within a ROI, with the 90Percentile representing the

voxel intensity at the 90th percentile. GLCM features, such as Joint

Energy, describe the spatial relationships between voxel pairs, where

higher energy values indicate greater uniformity in gray-level

distribution. GLRLM, such as Low Gray Level Run Emphasis

measures the prevalence of consecutive low-intensity pixels, reflecting

textural uniformity and heterogeneity (46). These features can indicate

tumor heterogeneity through the uniformity of the texture. Consistent

with prior studies, WT exhibits higher texture heterogeneity owing to

its complex cellular makeup, which includes epithelial components and

lymphoid stroma, resembling the patterns often seen in malignant

tumors (37, 47). Furthermore, the higher Low Gray Level Run

Emphasis in WT than in PA suggests a greater presence of low-

intensity voxels, likely due to the cystic and necrotic regions commonly

found in WT. This observation aligns with our findings, which show

that cystic lesions are more frequent inWT than in PA, as noted in the

clinical characteristics of our patient cohort.

LR is one of the most commonly used machine learning

algorithms, applying the principles of linear regression of continuous

variables and using a logistic function to predict categorical outcomes.

In contrast, RF algorithm, which relies on ensemble learning via

decision trees, often underperforms when applied to small datasets

owing to attribute perturbation, leading to large generalization errors

(48, 49). SVMs are generalized linear classifiers that binarily classify

data in a supervised learning manner and can use slack variables to

avoid the influence of linearly indistinguishable data on the results;

thus, a smaller set of samples achieves the greatest possible effectiveness

(50, 51). In our study, although the differences in performance among

the LR, SVM, and RF models were not significant, the LR model

exhibited slightly higher AUC values across both the DECT features

and radiomics models. This suggests that the classification problem at

hand is primarily linear, explaining the marginally lower performance

of the nonlinear RF and SVM models. To our knowledge, this is the

first study comparing the effectiveness of multiple machine-learning
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models in distinguishing between PA and WT parotid tumors. A

previous study by Yu et al. indicated that radiomic features from

enhanced images often follow nonlinear patterns, favoring SVM and

RF models over LR (45). However, Zhiying et al. found that the

XGBoost algorithm outperformed SVM in classifying radiomics

features derived from T1WI and T2WI MRI sequences (52).

Our study has several limitations. First, it is based on a single-

center dataset with a small sample size, which restricts the robustness of

the test results. Multi-center studies with larger datasets are needed to

validate these findings. Second, we compared only three algorithms—

LR, RF, and SVM—while other machine learning techniques, such as

k-nearest neighbor (KNN) or XGBOOST, were not evaluated. Third,

our focus was limited to MD technology in radiomics, excluding other

DECT techniques, such as virtual monochromatic imaging, which

warrant further investigation. Furthermore, there are few prior studies

on radiomics in the parotid gland, the evidence is mixed, and there are

variations in scanning parameters between clinical practice and data

collection. As a result, it is challenging to create a consistent standard,

and there are some restrictions when applying it in a clinical setting. In

the future, we will increase the sample size for additional validation.

Finally, we analyzed only two common benign parotid tumors,

excluding other tumor types. Future studies should investigate

multiple parotid tumors to provide a more comprehensive analysis.
5 Conclusion

DECT quantitative features are valuable in discriminating

between the two most common parotid tumors. Additionally,

water-based radiomics models derived from arterial phase images

outperform traditional radiomics models. Our novel nomogram,

which integrates DECT quantitative features with arterial phase

water-based radiomics, further improves diagnostic accuracy. As a

non-invasive preoperative tool, this model provides more precise

guidance for individualized clinical treatment strategies.
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2. Hernandez-Prera JC, Skálová A, Franchi A, Rinaldo A, Vander Poorten V, Zbären
P, et al. Pleomorphic adenoma: The great mimicker of Malignancy. Histopathology.
(2021) 79:279–90. doi: 10.1111/his.14322

3. Levyn H, Subramanian T, Eagan A, Katabi N, Lin O, Badillo ND, et al. Risk of
carcinoma in pleomorphic adenomas of the parotid. JAMA Otolaryngol Head Neck
Surg. (2023) 149:1034–41. doi: 10.1001/jamaoto.2023.3212

4. Iro AK, Agaimy A, Müller SK, Sievert M, Iro H, Mantsopoulos K. Satellite nodules
in pleomorphic adenomas of the parotid gland: A nightmare for less invasive parotid
surgery? Oral Oncol. (2021) 115:105218. doi: 10.1016/j.oraloncology.2021.105218

5. Quer M, Vander Poorten V, Takes RP, Silver CE, Boedeker CC, de Bree R, et al.
Surgical options in benign parotid tumors: A proposal for classification. Eur Arch
Otorhinolaryngol. (2017) 274:3825–36. doi: 10.1007/s00405-017-4650-4

6. Aoki R, Tanaka T. Pathogenesis of Warthin’s tumor: Neoplastic or non-
neoplastic? Cancers (Basel). (2024) 16:912. doi: 10.3390/cancers16050912

7. Patel DK, Morton RP. Demographics of benign parotid tumours: Warthin’s
tumour versus other benign salivary tumours. Acta Oto-Laryngol. (2016) 136:83–6.
doi: 10.3109/00016489.2015.1081276

8. Psychogios G, Bohr C, Constantinidis J, Canis M, Vander Poorten V, Plzak J, et al.
Review of surgical techniques and guide for decision making in the treatment of benign
parotid tumors. Eur Arch Otorhinolaryngol. (2021) 278:15–29. doi: 10.1007/s00405-
020-06250-x

9. Quer M, Hernandez-Prera JC, Silver CE, Casasayas M, Simo R, Vander Poorten
V, et al. Current trends and controversies in the management of Warthin tumor of the
parotid gland. Diagnostics (Basel). (2021) 11:1467. doi: 10.3390/diagnostics11081467

10. Fisher R, Ronen O. Cytologic diagnosis of parotid gland Warthin tumor:
Systematic review and meta-analysis. Head Neck. (2022) 44:2277–87. doi: 10.1002/
hed.27099

11. Witt BL, Schmidt RL. Ultrasound-guided core needle biopsy of salivary gland
lesions: A systematic review and meta-analysis. Laryngoscope. (2014) 124:695–700.
doi: 10.1002/lary.24339

12. Rubini A, Guiban O, Cantisani V, D’Ambrosio F. Multiparametric ultrasound
evaluation of parotid gland tumors: B-mode and color Doppler in comparison and in
combination with contrast-enhanced ultrasound and elastography. A case report of a
misleading diagnosis. J Ultrasound. (2021) 24:337–41. doi: 10.1007/s40477-020-00469-4

13. Luna LP, Coffey W 3rd, Alvin MD, Shanechi AM, Sankaran N, Rodriguez EF,
et al. Parotid Warthin’s tumor: Novel MR imaging score as diagnostic indicator. Clin
Imaging. (2022) 81:9–14. doi: 10.1016/j.clinimag.2021.09.005

14. Maraghelli D, Pietragalla M, Cordopatri C, Nardi C, Peired AJ, Maggiore G, et al.
Magnetic resonance imaging of salivary gland tumours: Key findings for imaging
characterisation. Eur J Radiol. (2021) 139:109716. doi: 10.1016/j.ejrad.2021.109716

15. Friedman E, Cai Y, Chen B. Imaging of major salivary gland lesions and disease.
Oral Maxillofac Surg Clin North Am . (2023) 35:435–49. doi: 10.1016/
j.coms.2023.02.007

16. Abdel Razek AAK, Mukherji SK. State-of-the-art imaging of salivary gland
tumors. Neuroimaging Clin N Am. (2018) 28:303–17. doi: 10.1016/j.nic.2018.01.009

17. Zuo H. The clinical characteristics and CT findings of parotid and
submandibular gland tumours. J Oncol. (2021) 2021:8874100. doi: 10.1155/2021/
8874100

18. Kato H, Kawaguchi M, Ando T, Mizuta K, Aoki M, Matsuo M. Pleomorphic
adenoma of salivary glands: Common and uncommon CT and MR imaging features.
Jpn J Radiol. (2018) 36:463–71. doi: 10.1007/s11604-018-0747-y
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