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Microorganisms, including bacteria, viruses, and fungi, have been found to play

critical roles in tumor microenvironments. Due to their low biomass and other

obstacles, the presence of intratumor microbes has been challenging to

definitively establish. However, advances in biotechnology have enabled

researchers to reveal the association between intratumor microbiota and

cancer. Recent studies have shown that tumor tissues, once thought to be

sterile, actually contain various microorganisms. Disrupted mucosal barriers and

adjacent normal tissues are important sources of intratumor microbiota.

Additionally, microbes can invade tumors by traveling through the bloodstream

to the tumor site and infiltrating through damaged blood vessels. These

intratumor microbiota may promote the initiation and progression of cancers

by inducing genomic instability and mutations, affecting epigenetic

modifications, activating oncogenic pathways, and promoting inflammatory

responses. This review summarizes the latest advancements in this field,

including techniques and methods for identifying and culturing intratumor

microbiota, their potential sources, functions, and roles in the efficacy of

immunotherapy. It explores the relationship between gut microbiota and

intratumor microbiota in cancer patients, and whether altering gut microbiota

might influence the characteristics of intratumor microbiota and the host

immune microenvironment. Additionally, the review discusses the prospects

and limitations of utilizing intratumor microbiota in antitumor immunotherapy.
KEYWORDS
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1 Introduction

Cancer is a major societal, public health, and economic challenge in the 21st century (1).

According to the World Cancer Report 2022 published by the World Health Organization,

there were approximately 20 million new cancer cases and 9.7 million cancer-related deaths in

2022 (1). The human body hosts a diverse community of microorganisms, including viruses,
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bacteria, fungi, archaea, and unicellular eukaryotes. Remarkably, the

number of microbial cells in the human body is significantly greater

than the number of human cells (2). These microorganisms have

previously been found in various parts of the human body, including

the skin, mouth, gastrointestinal tract, respiratory tract, urogenital tract,

and other mucosal surfaces (3). With breakthroughs in techniques for

detecting low microbial biomass and in-depth research on host-

microbe interactions, tissues and organs once thought to be sterile,

including the liver, pancreas, lungs, breasts, and kidneys, have also

shown the presence of low biomass microbial communities (4). With

the deepening research on host-microbe interactions, the concept of

intratumor microbiota has been proposed.

Notably, recent studies have comprehensively described the cancer

mycobiome in 17,401 patient tissue, blood, and plasma samples across

35 cancer types from four independent cohorts, revealing the presence

of intratumor mycobiome in these 35 cancer types (5) (Figure 1). The

gut microbiome is known to play a significant role in tumor

development, resistance, and clinical efficacy (6–8). Similarly, the

intratumor microbiome has garnered increasing attention for its

involvement in tumor diagnosis, prognosis, and its interactions with

the immune system (9). Studies indicate that the diversity and

composition of the microbiome within tumor tissues influence

immune infiltration, ultimately affecting the survival rate of cancer

patients (10). Furthermore, the characteristics of the microbiome are
Frontiers in Oncology 02
associated with cancer type, cancer risk, pathological type, cancer

prognosis, and treatment response (10–13). Recent research has

revealed that the distribution of the intratumor microbiome is highly

organized, featuring immune and epithelial cell functions that promote

cancer progression (14). However, the relationship between the gut

microbiome and the intratumor microbiome in cancer patients, as well

as whether and how bacteria within tumor cells participate in tumor

development and influence treatment responses through immune

pathways, still requires further in-depth research. In this review, we

summarize the relationship between intratumor microbes and cancer

development and progression, and highlight the role of intratumor

microbiota in tumor immunity and therapeutic responses. We explore

the relationship between the gut microbiome and intratumor

microbiome in cancer patients, and propose the possibility of

applying intratumor microbiota as novel biomarkers and therapeutic

targets for cancer.
2 Evidence of intratumor microbiota
and classic research

In a stable state, commensal microbes have a symbiotic

relationship with the host, but microbiome dysbiosis can promote

the development of enteritis, pneumonia, and cancer (15). Since the
FIGURE 1

The diversity of intratumoral microbiota in cancers. Microbiota are detected in multiple tumors, including nasopharngeal carcinoma: epstein-Barrvirus,
staphylosoccus, corynebacterium, head and neck squamous cell carcinoma: staphylococcus, actinomyces, parvimonas, human papillomavirus type 16,
oesophageal cancer: campylobacter conisus, bone cancer: p.argentinensis, a.massiliensis, hepatocellular carcinoma: hepatitis B virus, Hepatitis C virus,
Rickettsiaceae, lactococcus, glioblastoma: Acinetobacter, E. cloacae, lung cancer: corynebacterium, K.pneumonia, thermus, acidovorax, lactobacillus,
pancreatic cancer: Malassezia, elizabethkingia, streptomyces, gastric cancer: helicobacter pylori, prevotella, colon cancer: Bacteroidetes, prevotella,
fusobacterium, alistipes, pseudomonas and bladder cancer: escherichina coli, oscillatoria. The figure was Created by Figdraw.
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20th century, people have gradually recognized microorganisms

that can induce cancer, such as Epstein-Barr virus, hepatitis B virus,

human papilloma virus, and Helicobacter pylori (11). The role of

gut microbiota in tumors has been extensively studied, and its

influence extends beyond just pathogenesis and cancer risk.

Microbial signaling also impacts the clinical course of tumors,

including the efficacy, bioavailabil ity, and toxicity of

chemotherapeutic and immunotherapy drugs (16). At the same

time, advances in detection techniques have provided

unprecedented opportunities to study the diversity and functional

characteristics of intratumor microbiota (17). Direct detection of

intratumor microbes provides the most compelling evidence of

their presence within tumor tissues (18). Various advanced

detection techniques, including correlative light and electron

microscopy (CLEM), fluorescence in situ hybridization (FISH)

and immunofluorescence (IF), play crucial roles in identifying

and studying intratumor microbes. Correlative light and electron

microscopy (CLEM) combines the advantages of optical and

electron microscopy (19), providing high resolution and

environmental context information, making it excellent for

detecting intratumor microbiota, but it is costly, time-consuming,

and technically complex. Fluorescence in situ hybridization (FISH)

has strong specificity and can quickly identify and detect various

intratumor microorganisms (20), but it has limited resolution and

quantification capabilities, and requires specific sample preparation.

Immunofluorescence (IF) offers high specificity and sensitivity,

allowing real-time observation and multiple staining, making it

very effective for detecting intratumor microbiota (21), though it

may suffer from fluorescence spectral interference, and is also costly

and technically demanding.

In contrast, high-throughput sequencing technologies, such as

16S rRNA gene sequencing and whole metagenome shotgun

sequencing (WMS), can provide more comprehensive microbial

data. These techniques not only accurately identify and classify

microorganisms but also analyze their taxonomic composition and

functional characteristics, despite being more complex and

expensive (22, 23). By combining these methods, the intratumor

microbiome can be studied more precisely and comprehensively.

While metagenomics and other methods provide a wealth of data

on intratumor microbiota, pure culturing of these microorganisms

remains crucial as it reveals their functions and related mechanisms.

Significant progress has been made in recent years in culturing

previously unculturable microbes. For instance, using methods that

simulate natural environments has successfully cultured Candidatus

Pelagibacter ubique and other microbes (24). Additionally, a

microfluidic intestine-on-a-chip was designed, successfully

culturing bacteria from 11 genera, and reverse genomics was used

to isolate and culture specific microbes (25). However, the

drawbacks of pure culturing include its complexity, high cost, and

the difficulty in isolating and successfully culturing low-biomass

intratumor microbes. Traditional in vivo and in vitro experiments,

such as flow cytometry, western blot , enzyme-linked

immunosorbent assay (ELISA), and mouse models, remain

crucial in tumor microbiology research, providing key

mechanistic insights by revealing the impact of intratumor

microbiota on immune cells and cancer development (18). Omics
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are used to study the molecular mechanisms between intratumor

microbiota and tumors. Additionally, single-cell RNA sequencing

(scRNA-seq) and spatial meta-transcriptomics can elucidate the

roles of intratumor microbiota in cancer initiation, progression,

metastasis, and treatment responses (26, 27). Other spatial multi-

omics techniques, such as spatial genomics, spatial proteomics, and

spatial metabolomics, remain indispensable for studying intratumor

microbiota and cancer (28). Due to the relatively low biomass of the

tumor microbiome, contamination of tumor samples with bacteria

or bacterial DNA during sample collection, preparation, and

processing can pose significant issues (18). Next-generation

sequencing technology acts as a double-edged sword in

microbiome research, as its sensitivity can effectively detect both

microbial DNA and contaminants, including cross-contamination.

Therefore, it is essential to reduce experimental bias and

contamination during sampling and processing, include control

groups throughout the entire process from sampling to sequencing,

and critically assess and report the impact of contamination during

analysis (23).
3 Origin and diversity of
intratumoral microbiota

Despite the considerable attention given to research on

intratumor microorganisms, their origins remain to be explored.

Tumors have characteristics that make them prone to bacterial

colonization: imperfect angiogenesis leads to leaky blood vessels,

allowing circulating bacteria to embed; tumors are immune-

privileged areas, enabling bacterial proliferation; low-oxygen

environments favor anaerobic bacteria; and necrotic regions are

nutrient-rich, promoting bacterial growth (29). It is currently

believed that intratumor microorganisms mainly originate from

the following sources: I) disrupted mucosal barrier sources.

Intratumor microorganisms may invade through mucosal

barriers, including in gastric cancer, colorectal cancer, pancreatic

cancer, lung cancer, and cervical cancer (30). The external cavities

of these organs are exposed, and during tumorigenesis, the

disruption of the mucosal barrier allows microorganisms

colonizing the mucosa to infiltrate the tumor.II) adjacent normal

tissues. Research has found a high similarity between the

microbiome of tumors and that of their adjacent normal tissues

(NAT), leading researchers to propose that intratumor bacteria may

originate from NAT (19). However, the source of microbes in NAT

is not fully understood and may also originate from the tumor

microenvironment. Therefore, more evidence is needed to

determine whether NAT is a source of intratumor microbiota.

III) Through the blood to the tumor site and infiltrate the tumor

through damaged blood. Animal experiments have revealed that

certain lymph node metastases (LNMs) resurface at distant

metastatic sites through blood vessels in the lymph nodes, rather

than through the traditionally assumed lymphatic route (31). In

colorectal cancer (CRC), bacteria disrupt the gut vascular barrier

(GVB) and disseminate to the liver, inducing the formation of a

premetastatic niche and promoting the recruitment of metastatic
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cells (32). Additionally, studies have shown that different cancer cell

clones from the primary tumor can colonize distant organs via the

systemic blood circulation, indicating that distant metastases may

occur independently of lymph node metastasis (32).

The tumor microbiomes of different cancer types exhibit high

heterogeneity (Table 1). A large-scale study by Ravid Straussman’s

team demonstrated that the microbial composition of each type of

tumor (including pancreatic cancer, breast cancer, lung cancer,

ovarian cancer, melanoma, brain cancer, and bone cancer) is

distinct, with intratumor bacteria primarily found in cancer cells

and immune cells (19). Although bacteria belonging to the

Firmicutes and Proteobacteria dominate the microbiota of all

cancer types, there is a high degree of heterogeneity in the

composition and abundance of bacteria in different cancer types,

and the composition of microbial species varies in different subtypes

of the same tumor type (17). For example, at the species level,

Fusobacterium nucleatum was enriched in breast and pancreatic

tumors. Saccharomycetes were more abundant in colon cancer,

whereas the relative abundance of Malasseziomycetes was higher in

melanoma (17). Additionally, the metabolic functions encoded by

intratumor bacteria are associated with the clinical characteristics of

certain tumor subtypes. For example, enzymes related to anaerobic

respiration are more abundant in breast cancer bacteria (19).

Bacteria dominate the tumor microbiome, while fungi are less

prevalent (5). The study by Galeano Nino et al. further revealed

the spatial and population heterogeneity of the intratumor

microbiome (14). The microbial distribution also differs between

tumor tissues and peritumoral tissues. For instance, the abundance

of certain oral microbes is significantly higher in esophageal and

gastric cancer tissues than in adjacent normal tissues (65, 66),

whereas Fusobacterium nucleatum, which is enriched in

colorectal cancer tissues, is not found in adjacent normal tissues

(67). An in-depth investigation of the composition and function of

the tumor microbiome will provide new opportunities for

cancer treatment.
4 The relationship between intratumor
and gut microbiota

Gut microbiota and intratumor microbiota are closely linked in

terms of their origins and their impact on immunity. First,

intratumor microbiota can originate from gut microbiota because

microorganisms from the intestines may be transported through the

blood to the tumor site (9). For example, the liver is connected to

the gut via the hepatic portal vein. Although the gut vascular barrier

restricts the dissemination of intestinal bacteria, when the gut

vascular barrier is impaired, intestinal bacteria can promote the

recruitment of immune cells in the liver, forming a pre-metastatic

niche that supports the metastasis of cancer cells to the liver (17).

Studies have found that the gut microbiome can colonize pancreatic

tumors in patients with pancreatic cancer, and this colonization can

alter the overall microbiome of the tumor (10). Most importantly,

both intratumor microbiota and gut microbiota have regulatory
Frontiers in Oncology
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may regulate the host immune response similarly to gut microbiota.

Gut microbiota has extensive effects on primary lymphoid organs

and adaptive immunity. Studies have shown that gut microbiota

significantly impacts immune reconstitution, treatment outcomes,

and side effects such as infections following hematopoietic stem cell

transplantation (HSCT) (68). Immune reconstitution after

allogeneic HSCT is closely related to the diversity of gut

microbiota, with higher diversity being significantly associated

with lower patient mortality. Moreover, gut microbiota influences

the host immune status during homeostasis and tumorigenesis.

Cancer therapies have demonstrated strong links between different

commensal bacteria and protective antitumor T cell responses.

Additionally, probiotics, particularly Lactobacillus and

Bifidobacterium, are considered safe (69) and have been used to

prevent and treat various diseases (70, 71). In cancer, strains of

Lactobacillus and Bifidobacterium can alleviate dysbiosis, enhance

antitumor immunity, and improve the efficacy of immune

checkpoint inhibitors (72–76). These studies indicate that gut

microbiota plays an important role in regulating immune

responses and antitumor therapies. Due to the complex

interactions between the microbiota and the immune system,

numerous studies have focused on how the microbiota influences

local and systemic anti-tumor immune responses (72). For example,

short-chain fatty acids, such as acetate, butyrate, and propionate,

are important energy sources for gut microbiota and play a crucial

role in regulating host physiology and immune responses (72).

With further research into intratumor microbiota, it has been

found that the tumor microbiome plays a crucial role in reshaping

the tumor immune microenvironment (17). When intratumor

microbiota is recognized by the innate immune system, the

adaptive immune system is activated, becoming a pillar of the

antitumor response (77). Tumor microecology helps recruit and

activate tumor-supportive immune cells. For example, intratumor

microbiota induces IL-17 production, supporting the infiltration of

B cells into tumor tissues, thereby promoting colon cancer

progression (78). Some intratumor microbiota also counteract

pro-tumoral immune responses. For instance, patients with F.

nucleatum-positive oral squamous cell carcinoma (OSCC) have

lower recurrence rates, less frequent lymph node invasion and

metastatic relapse, and longer overall survival (OS), relapse-free

survival (RFS), and metastasis-free survival (MFS) compared to

those with F.nucleatum-negative tumors (79).Intratumor

microbiota can slow cancer progression by enhancing antitumor

immunity. For example, gram-negative bacteria were detected in

the cytoplasm of osteosarcoma cells and tumor-associated

macrophages (TAMs). Patients with localized osteosarcoma had

an increased number of antitumor M1 macrophages, which may be

related to the abundance of gram-negative bacteria (80). The tumor

microbiome plays an essential role in tumor immune regulation,

with significant differences in the roles of different microbes in

various cancers. Future research should focus on elucidating the

interaction mechanisms between intratumor microbiota and the

host immune system to develop new cancer treatment strategies.
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TABLE 1 Characterization of introtumoral microorganisms across different cancers.

Tumor type Microorganisms Quantitative
dynamics

Ref

Oral cancer Genus Streptococcus Decrease (33)

Genus Fusobacterium Increase (34, 35)

Pseudomonas aeruginosa Increase (36)

Epstein-Barr virus Increase (37)

Oesophageal cancer Campylobacter conisus Increase (38)

Fusobacterium Nucleatum Increase (39)

Gastric cancer P. stomatis, S. exigua, P. micra, S. anginosus, D. pneumosintes Increase (40)

Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria Decrease (41)

Helicobacter pylori Increase (42)

Streptococcus, Prevotella, Veillonella, Neisseria, Haemophilus Increase (43)

Colorectal cancer Fusobacterium Increase (44)

Bacteroides Decrease (44)

Saccharomycetes Increase (5)

Fusobacterium nucleatum Increase (19)

Liver cancer Hepatitis B virus, hepatitis C virus Increase (45)

Species Helicobacter pylori Increase (46)

Family Streptococcaceae, genus Lactococcus, Gammaproteobacteria Increase (47)

Enterobacteriaceae Increase (48)

Caulobacteraceae, Rickettsiaceae Decrease (48)

Pancreatic cancer Malassezia Increase (49)

Acinetobacter, Pseudomonas, Sphingopyxis Increase (50)

Elizabethkingia Increase (7)

Breast cancer Pseudomonas, Porphyromonas, Azomonas, Proteus Increase (51)

genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus Increase (52)

enterotoxigenic Bacteroides fragilis Increase (53)

Streptococcaceae, phylum Bacteroidetes Increase (54)

phylum Actinobacteria Decrease (54)

Lung cancer Aggregatibacter, Lactobacillus Decrease (55)

Thermus Increase (56)

Nontypeable Haemophilus influenzae Increase (57)

Veillonella, Megasphaera Increase (58)

Acidovorax, Klebsiella, Anaerococcus Increase (59)

Prostatic cancer P. acnes Increase (60)

Human cytomegalovirus Decrease (61)

Staphylococcus aureus Increase (62)

Cutibacterium acnes Increase (63)

Shewanella Increase (64)
F
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5 Effect of the intratumor microbiota
on tumor invasion, metastasis, spatial
distribution, and heterogeneity

Increasing evidence has shown that intratumor microbiota can

have both positive and negative effects on tumor initiation and

progression through mechanisms such as DNAmutations, immune

evasion, promoting chronic inflammation, and inducing metastasis

(81–84) (Figure 2). Importantly, the process of cancer metastasis

includes stages such as invasion, dissemination, intravasation,

extravasation, and colonization (85). One of the main

characteristics of metastasis is its extreme inefficiency; Before

successfully reaching and settling in the target organ, cancer cells

need to cope with many physical, chemical, and biological

challenges (46, 47). Metastasis initiation occurs at an early stage

of tumor progression where cancer cells can remotely prepare the

pre-metastatic microenvironment (PMN) by secreting components

(86). When metastatic cells begin to migrate, they usually invade

neighboring tissues en masse to enhance their ability to colonize the

new microenvironment (87, 88). Cancer cells usually alter their

intrinsic programs to overcome various challenges during

metastasis. These programs include the stem cell program/

plasticity (for tumor initiation at new sites), the EMT program

(for cancer invasion and dissemination), the adhesion program (to

prevent apoptosis-induced cell death), and the mechanical stress
Frontiers in Oncology 06
response program (to resist damage induced by mechanical forces)

(89). In addition to directly regulating cancer cells, intra-tumoral

bacteria are important inflammatory mediators that shape the

specific microenvironment around cancer cells, thus indirectly

promoting cancer metastasis (89). Although the number of

intratumor microorganisms is low and their biological functions

are not yet clear, studies have shown that they are new key players in

influencing tumor metastasis and play an important role. For

example, studies in breast cancer have found that intratumor

bacteria promote host cell survival by reorganizing the actin

cytoskeleton, enhancing the resistance of circulating tumor cells

to fluid shear stress. The removal of intratumor bacteria can

significantly reduce lung metastasis without affecting the growth

of the primary tumor (90). Similarly, viable Fusobacterium and its

associated microbiota were retained during serial passage in mouse

xenografts of human primary colorectal adenocarcinoma (91).

Increasing evidence confirms that intratumor bacteria can

modulate the intrinsic properties of cancer cells and their external

environment, thereby enhancing cancer cell survival and paving the

way for cancer metastasis (89) (Table 2). Moreover, studies on

tumor-associated host-microbiota have primarily relied on bulk

tissue analysis, which obscures the spatial distribution and localized

effects of microbiota within tumors (14). Research has found that

the distribution of intratumor microbiota is highly organized within

tumors, clustering in microniches that are less vascularized, highly

immunosuppressive, and associated with malignant cells with lower
FIGURE 2

Effects of the intratumoral microbiota on cancers development. Intratumoral microbiota may influence the initiation and progression of cancer
through mechanisms such as DNA mutations, immune evasion, promotion of chronic inflammation, and induction of metastasis. The figure was
Created by Figdraw.
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levels of the cell proliferation antigen Ki-67. Bacteria-infected

cancer cells invade the surrounding environment as single cells

and recruit myeloid cells to bacterial niches. These findings

highlight the significant role of intratumor microbiota in

promoting cancer progression (14).
6 Intratumor microbiota for
treating cancer

Given that local microbial infections can cause tumor regression,

the engineering of microbiota to improve and enhance their

antitumor effects is being explored (9). The microbiota can serve as

bacterial vectors expressing cytotoxic drugs, either alone or in

combination with other antitumor agents. Tumor-targeting bacteria

demonstrate significant advantages as delivery vectors, including

enhanced penetration into tumor tissue, maximized efficacy of

chemotherapy agents, and reduced systemic toxicity (8). The

microbiota can serve as bacterial vectors expressing cytotoxic drugs,

either alone or in combination with other antitumor agents. For

example, by coupling the radioisotope 188 Rhenium with attenuated

Listeria monocytogenes, a unique radioactive Listeria (RL) was

created (97). In normal tissues, Listeria is cleared by the immune

system, but in the immunosuppressive tumor microenvironment, it is

not. In a highly metastatic pancreatic cancer mouse model, RL

effectively delivered radioactivity to metastases without harming

normal cells. Multiple low-dose RL treatments significantly reduced

the number of metastases (by approximately 90%) (97). Additionally,

microbiota can induce both innate and adaptive immune responses

against tumor cells. Bacterial therapy can activate the host immune

system via multiple mechanisms, including the delivery of cytokines,

short hairpin RNA (shRNA), and tumor-associated antigens (98).

Engineered bacteria can precisely deliver cytokines and short hairpin

RNA (shRNA) to tumor tissues, thereby inducing local inflammatory

responses and triggering cytotoxic cell death. Apoptotic or necrotic

cancer cells release tumor-associated antigens (TAAs) and various

stimulatory factors, promoting the maturation of dendritic cells and

triggering epitope spreading effects (98). Additionally, microbiota can

induce both innate and adaptive immune responses against tumor

cells. The systemic use of potent anticancer drugs such as tumor

necrosis factor alpha (TNFa) causes high levels of toxicity and severe
Frontiers in Oncology 07
side effects. Non-pathogenic Escherichia coli strain MG1655, used as

a tumor-targeting system to specifically produce TNFa within

tumors in mice, demonstrated the potential of non-pathogenic

bacteria as platforms for limiting the activity of potent anticancer

agents to tumors (99). At the same time, live microbiota can be used

as vectors expressing tumor antigens for tumor vaccination (100).

The safety and efficacy of bacterial immunotherapy has always been a

priority for clinical applications. Bacterial immunotherapy triggers

many of the same potential adverse effects as conventional

immunotherapy, including potential systemic immune responses,

hypertension and fatigue (98, 101).

Due to the specificity of intratumor microbiota across

different tumor types and subtypes, they hold potential as

diagnostic tools (Table 3). Studies have found that the presence of

oral pathogens, Porphyromonas gingivalis and Aggregatibacter

actinomycetemcomitans, is associated with an increased risk of

pancreatic cancer, while the phylum Fusobacteria and its genus

Leptotrichia are associated with a reduced risk of pancreatic cancer

(109). Clinical evaluations indicate that tissue and plasma

mycobiomes have prognostic and diagnostic capabilities, even in

stage I cancers, and exhibit synergistic predictive performance with

bacterial communities (5). Some studies have also found that the

intratumor microbiota is closely associated with patient prognosis.

For example, the prognosis of papillary thyroid carcinoma (PTC)

differs between genders and cancer subtypes (13). Further research

has found that PTC tissues significantly lack the microorganisms

present in adjacent normal tissues, suggesting that these

microorganisms are critical in controlling immune cell expression

and regulating immune and cancer pathways to slow cancer growth

(13). The intratumor load of F. nucleatum may be a potential

prognostic factor in stage II/III non-MSI-high/non-sigmoid/non-

rectal cancer subset CRC patients receiving oxaliplatin-based

adjuvant chemotherapy (110). Therefore, the intratumor

microbiota can serve as biomarkers for diagnosis and prognosis.
7 Conclusions

In conclusion, intratumor microbiota have diverse sources and

complex distribution within different tissues, and they are

intricately linked with gut microbiota. Intratumor microbiota
TABLE 2 Summary of recent intratumor microbiota studies related to metastasis.

Tumor type Microbiota type Effect Ref

Breast cancer Staphylococcus, Lactobacillus, and Streptococcus Promoting tumor metastasis (90)

Pancreatic cancer Fusobacterium nucleatum Promoting tumor metastasis (92)

Colorectal cancer Escherichia coli metastasizes to the liver (32)

Colorectal cancer H. pylori, Escherichia coli, and Fusobacterium nucleatum translocate into pancreatic tumors (93)

Bladder cancer E. coli, butyrate-producing bacterium SM4/1, and Oscillatoria correlates with EMT (94)

Pancreatic cancer Proteobacteria, Bacteroidetes, and Firmicutes Tumor progression (7)

Colorectal cancer Fusobacterium nucleatum Promoting tumor metastasis (95)

Oral squamous cell carcinoma Fusobacterium nucleatum promotes EMT (96)
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have potential in the early detection of cancer and in determining

patient prognosis. Targeting intratumor microbiota represents a

novel clinical approach to cancer treatment, which may improve the

efficacy of chemotherapy and enhance the effectiveness of

immunotherapy. It is worth noting that although some studies

have revealed the mechanisms by which intratumor microbiota

influence cancer development, metastasis, and regulation of the

tumor microenvironment, the therapeutic effects of microbiota-

based treatments may vary depending on tumor type and the

immune status of cancer patients. More clinical research is

needed to determine their actual value in aiding cancer

intervention. Although current experimental technologies have

provided us with a deeper understanding of the intratumoral

microbiota, we still have limited knowledge of its role in

tumorigenesis and progression. This is primarily due to the lack

of effective experimental methods to study the occurrence,

development, and metastasis of these microorganisms, as well as

their spatial distribution and dynamic changes within the tumor.

Although significant progress has been made in recent years in the

study of intratumor microbiota, current research still has limitations.

For example, the interactions between gut microbiota and intratumor

microbiota, and how changes in gut microbiota affect intratumor

microbiota and the immune microenvironment, are not well

understood. The therapeutic effects and impact of probiotics on

cancer and immunotherapy also remain unclear. Further exploration

is required to understand the mechanisms through which intratumor

microbiota influence antitumor immunity and treatment efficacy, as

well as how specific antibiotics can be used to remove

immunosuppressive microbes. Future researchers could explore the

role of probiotics, antibiotics, and FMT in regulating the intratumoral

microbiota in cancer, while dietary patterns also serve as an important

modulator of the microbiota.
Frontiers in Oncology 08
Author contributions

PF: Conceptualization, Investigation, Project administration,

Validation, Writing – review & editing. JY: Conceptualization,

Investigation, Validation, Writing – original draft. HZ:

Conceptualization, Formal Analysis, Validation, Visualization,

Writing – original draft. DS: Formal Analysis, Resources,

Supervision, Writing – review & editing. ML: Investigation,

Methodology, Validation, Visualization, Writing – review &

editing. LC: Conceptualization, Methodology, Resources, Writing

– review & editing. LL: Conceptualization, Supervision, Validation,

Visualization, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Foundation of The First Hospital of Lanzhou

University, China (ldyyyn2021-91).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
TABLE 3 The effects of introtumoral microbes on cancer diagnositic/prognostic.

Diagnostic/
prognostic

Microbiota Tumor type Clinical role Ref

Diagnositic Capnocytophaga Oral Squamous Cell Carcinoma high accuracy in predicting advanced cancer (102)

Fusobacterium Colorectal cancer Related to tumor metastasis and progression (44)

Acinetobacter, Pseudomonas, Sphingopyxis Pancreatic cancer predictive value (50)

Porphyromonas gingivalis pancreatic cancer contributes to the progression of cancer (103)

Veillonella, Megasphaera Lung cancer diagnostic biomarker of tumour; (58)

Staphylococcaceae Prostate cancer Cancer oncogenesis (104)

Prognosis

genus Leptotrichia Head and Neck Cancer improve patient prognosis (105)

F. nucleatum colorectal cancer associated with shorter survival (106)

Genus Fusobacterium Oesophageal cancer great efficacy in predicting the prognosis (39)

Actinomycetales, Pseudomonadales non-small cell lung cancer associated with disease-free survival (107)

Pseudomonadaceae Liver cancer associated with prognosis (48)

Helicobacter pylori Gastric cancer associated with progression-free survival (108)
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