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Objectives: This study aimed to evaluate the effectiveness of deep learningmodel in

assisting dermatologists in classifying basal cell carcinoma (BCC) from seborrheic

keratosis (SK). The goal was to assess whether AI-assisted diagnostics could improve

accuracy, reduce misdiagnoses, and potentially enhance clinical outcomes.

Methods: This prospective study included 707 patients with histopathologically

confirmed BCC or SK as an internal dataset (validation cohort), along with 5572

patients from the ISIC public dataset as an external dataset (split into training and test

cohort). The images were preprocessed and augmented before being fed into a

deep learning model based on the CLIP ViT-B/16 architecture. The model’s

performance was assessed using the area under the receiver operating

characteristic (ROC) curves (AUC). Two dermatologists, one with 3 years of

experience and another with 15 years of experience, reviewed the cases before

and after receiving the deep learning model’s predictions. Net reclassification index

(NRI) and integrated discrimination improvement (IDI), was used to quantify the

improvement in reclassification performance.

Results: The model achieved an AUC of 0.76 in the training cohort and 0.79 in the

test cohort for differentiating between BCC and SK. In the validation cohort, the

model demonstrated an AUC of 0.71. Dermatologist 1’s AUC improved from 0.75 to

0.82 with deep learning model assistance, while Dermatologist 2’s AUC increased

from0.79 to 0.82. NRI and IDI analysis revealed statistically significant improvements,

with Dermatologist 1 showing a 18% improvement and Dermatologist 2 showing a

11% improvement. Additionally, attention mechanisms like Grad-CAM provided

insights into the model’s decision-making process, enhancing the interpretability

of its predictions.

Conclusion: The deep learning model demonstrated significant potential in aiding

dermatologists in classifying BCC from SK.
KEYWORDS

basal cell carcinoma, seborrheic keratosis, deep learning, dermatologist assistance, skin
cancer diagnosis
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1 Introduction

Basal cell carcinoma (BCC) is the most prevalent form of skin

cancer, accounting for approximately 75% of non-melanoma skin

cancers globally. Early and accurate diagnosis of BCC is crucial to

ensure appropriate treatment and to prevent progression (1).

Seborrheic keratosis (SK) is a benign lesion (2). Differentiating SK

from pigmented BCC can be clinically challenging, particularly in

individuals with dark skin. Dermoscopically, pigmented basal cell

carcinoma (BCC) in darker skin can manifest as pigmented

nodules, patches, or plaques, as well as ulcers, red nodules, red

patches or plaques, or lesions resembling scars, depending on the

specific BCC subtype and location on the body (3).

Current diagnostic methods of BCC and SK, including

dermoscopy and histopathological examination, which are reliable

but time-consuming. Additionally, dermoscopic interpretation

depends heavily on the expertise of the dermatologist, which

introduces a risk of human error, particularly in ambiguous cases

(4). As a result, the need for non-invasive, efficient, and accurate

diagnostic tools is becoming a clinical urgent.

Deep learning is a subset of artificial intelligence, which has

made significant strides in the field of medical diagnostics in image

classification, particularly. Deep learning models can be trained to

identify patterns in medical images, enabling them to assist

healthcare professionals in diagnosis. In dermatology, deep

learning models have demonstrated remarkable accuracy in

distinguishing between various types of skin lesions, offering a

promising tool for reducing diagnostic workload and improving

accuracy (5). Deep learning models are particularly well-suited to

tackle image classification tasks, which is critical in the potential

useful in differentiating benign lesions from malignant ones (6, 7).

However, despite these advancements, there is a gap in the literature

regarding the application of deep learning to the specific problem of

assisting dermatologists in classifying BCC from SK. These two

conditions that can appear visually similar (3, 8).

We assumed that deep learning can improve diagnostic

accuracy to achieve this task. Thus, the aim of this study is to

evaluate the performance of deep learning algorithms in assisting

dermatologists in classifying BCC from SK. By comparing the

diagnostic accuracy of dermatologists with and without the

assistance of deep learning model, we seek to determine whether

deep learning can serve as a valuable decision-support tool. The

successful integration of these models into clinical practice could

potentially reduce unnecessary biopsies and enhance early detection

of BCC, improving overall patient care.
2 Materials and methods

2.1 Ethics

This prospective study adhered to the principles outlined in the

Declaration of Helsinki and received approval from the

Institutional Review Board of Jinshan Hospital (JIEC 2023-S85).

Prior to enrollment, all participants provided written informed
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consent for the publication of any potentially identifiable data

or images.
2.2 Dataset

Between November 1, 2023, and November 1, 2024, adult

patients who underwent surgical resection for skin neoplasm were

included in the study. The inclusion criteria were: (1)

Histopathologically confirmed BCC or SK; and (2) Age ≥ 18

years. Exclusion criteria were: (1) Presence of systemic infection;

(2) Incomplete clinical data; and (3) Images with motion blur or

artifacts. A total of 707 patients with BCC or SK were ultimately

enrolled, forming the internal dataset. The image were captured by

both dermoscopy and smart devices with cameras. Additionally, the

international skin imaging collaboration dataset (ISIC, https://

www.isic-archive.com) was accessed with the same inclusion

criteria. Images with visible artifacts or interference from nearby

structures were excluded. Finally, 5,572 patients with BCC or SK in

the external dataset (images from both dermoscopy and other

devices were included).
2.3 Data split

The external ISIC dataset was divided into training and test

cohorts in a 9:1 ratio. The internal hospital dataset was used as a

validation cohort to evaluate the model’s performance and verify

the effectiveness of deep learning model in assisting dermatologists

in classifying BCC from SK.
2.4 Preprocessing and image resizing

All images were resized to a standard size compatible with the

input layer of the deep learning model and converted into tensor

format. Additionally, the preprocessing phase involved data

augmentation techniques such as random cropping, rotation,

flipping, and color adjustments. Random cropping provided

image information from varying locations, while rotation and

flipping helped the model recognize objects from different

orientations. Meanwhile, color adjustments increased the model’s

robustness to changes in lighting and color variations.
2.5 Normalization

The normalization process involved subtracting the mean value

of the entire dataset and dividing by the standard deviation,

bringing pixel values into a standardized range. This operation

minimized brightness differences and color biases between images,

allowing the model to focus on relevant features rather than noise or

irrelevant details. By normalizing the data, the issues of gradient

explosion and vanishing gradients during training were effectively

mitigated, leading to improved model stability and faster
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convergence. Additionally, normalization ensured that the model

remained sensitive to the scale of input data, enhancing its

robustness when handling images of varying scales.
2.6 Deep learning model architecture

The deep learning model utilized was based on the multimodal

pre-trained CLIP model (9), employing the ViT-B/16 architecture (10).

In the ViT-B/16 architecture, images were divided into fixed-size

patches, with each patch flattened and embedded into a vector.

These vectors were then fed into the Transformer encoder to capture

global image relationships. Using the self-attention mechanism, the

Transformer learns connection between different image regions and

generates a comprehensive image representation. This representation

was subsequently processed through several fully connected layers to

produce the final classification or regression outputs.
2.7 Feature extraction

The feature extraction process of the CLIP model converted raw

image data into normalized high-dimensional feature vectors. The

input images were divided into fixed-size patches, and each patch was

mapped to a low-dimensional space via a learnable linear projection,

creating an embedding vector for each patch. To capture the spatial

relationships between the patches, position encodings were added to

these embedding vectors. The Transformer encoder was then

employed to process the sequence of embedding vectors, utilizing

self-attention mechanisms and fully connected feed-forward networks

to extract semantic information and contextual relationships between

image patches. After encoding, a fixed-length vector representation was

obtained through feature pooling, which was then projected via a fully

connected layer into the same embedding space as the text features. In

addition, CLIP simultaneously learned semantic information from

both images and text.
2.8 Training

The model was trained using the stochastic gradient descent

(SGD) optimizer, a widely-used method for deep learning tasks that

works by updating the model’s weights at each iteration to minimize

the loss function. To enhance convergence speed, SGD with

momentum was applied, helping the model reach local optima more

efficiently during training. The initial learning rate was set at 0.002,

with a momentum value of 0.9 and a weight decay parameter of 0.005.
2.9 Loss function

The loss function used was CrossEntropy Loss, which quantified

the difference between the model’s predictions and the true labels. In

this function, the model’s outputs were first passed through a softmax

layer to convert them into a probability distribution. These predicted
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probabilities were then compared to the true labels to calculate the

cross-entropy loss, which measured the negative log-likelihood of the

correct class. For each sample, the loss reflected the confidence of the

model in its prediction for the true label. The goal of this loss function

was to minimize the disparity between the predicted probability

distribution and the true labels, thus enabling the model to improve

its accuracy in classifying the samples.
2.10 Training process

The training approach employed CoOp, a parameter-efficient fine-

tuning technique (11). CoOp focused on freezing the parameters of the

model backbone while introducing a learnable text prompt parameter

at the input of the text encoder. This parameter was learned during

training, allowing it to adapt to specific downstream tasks, thus

achieving effective fine-tuning with minimal computational

resources. Following the prompt-learning methodology of CLIP, each

class name was integrated into a prompt, generating a set of prompts

for the text encoder in a given classification task. Each prompt included

a common set of learnable parameters along with a specific class name.

These prompts were fed into the text encoder to generate

corresponding feature vectors. Simultaneously, training images were

processed through the image encoder to produce their respective

feature vectors. The next step involved calculating the normalized

similarity between the image feature vector and each output feature

vector from the text encoder. Finally, CrossEntropy Loss was computed

against the ground truth labels to optimize the model’s performance. A

linear classifier was attached to the CLIP image encoder as an

evaluation module for the downstream task.
2.11 Evaluation metrics

To explore the clinical application of the deep learning model,

two dermatologists (dermatologist 1 with 3 years of experience and

dermatologist 2 with 15 years of experience) reviewed the images of

each case to identify BCC or SK without access to histopathological

data. Afterward, the dermatologists were presented with the

classification results generated by the deep learning model. Any

reclassification decisions made by the dermatologists following the

presentation of the model’s results were documented. The area

under the receiver operating characteristic (ROC) curves (AUC)

were used to evaluate the clinical application of the deep learning

model in assisting dermatologists. Attention mechanisms were

employed to visualize the regions of interest that the model

focused on during image recognition. Specifically, attention maps

were generated to illustrate which parts of the images the model

emphasized, such as color, shape, or texture. Gradient-weighted

Class Activation Mapping (Grad-CAM) was used to highlight the

areas in the images that the model deemed most important for

predicting the corresponding labels. Additionally, an analysis was

conducted on cases where the model underperformed or failed. This

included investigating the characteristics of such cases and

identifying potential reasons for the model’s performance issues.
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2.12 Computational requirements and
runtime

Our server was equipped with two NVIDIA RTX 4090 GPUs, each

offering 24 GB of memory. The central processing unit (CPU) was an

Intel Core i9-13900Kwith 24 cores and 36 threads. The system had 256

GB of DDR4 RAM, ensuring ample memory for large datasets and

computational tasks. Data storage was handled by a 1 TB SSD, which

provided high-speed data read and write operations. The operating

system was Ubuntu 20.04, and the software environment included key

tools and libraries such as PyTorch 1.10, CUDA 11.2, Anaconda 23.3.1,

CUDA 12.0, cuDNN v8.8.1, PyTorch 1.13.1, and Python 3.7.16. For the

public ISIC dataset, the total training time for 100 epochs was around

1.1 hours, and the average inference time per instance was 20.50

milliseconds. For the internal dataset, the total runtime for 100 epochs

was approximately 3 minutes, and the average inference time per

instance was 2.56 milliseconds.
2.13 Clinical usefulness analysis

The net reclassification index (NRI) and the integrated

discrimination index (IDI) were calculated to compare the

discrimination performance between the dermatologists’

classifications and the results assisted by the deep learning model.

These metrics provided insight into how well the model improved

diagnostic accuracy and reclassification compared to human

performance alone.
2.14 Statistical analysis

Statistical analysis was conducted using R software (version 4.3.2;

https://www.r-project.org/). The normality of the data was assessed

using the Shapiro-Wilk test, and the homogeneity of variance was

evaluated using Levene’s test. For continuous variables, independent-

samples t-tests were used to compare groups if the data met the

assumptions of normality and homoscedasticity. In cases where these

assumptions were not satisfied, the non-parametric Mann-Whitney U

test was applied. Categorical variables were analyzed using the chi-

squared test or Fisher’s exact test, depending on the expected cell

counts. A p-value of less than 0.05 was considered statistically

significant in all analyses.
3 Results

3.1 Data sets

The workflow of this study is illustrated in Figure 1. Two case

examples of BCC and SK are provided in Figure 2. The training dataset

(external dataset) consisted of 5038 patients (1916 females and 3113

males with 9missing), with an average age of 65 ± 14.6 years (range 20-

85). This included 554 females and 848 males in the SK group (aged 63
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± 14.3 years, range 20-85) and 1362 females and 2265 males

(5 missing) in the BCC group (aged 66 ± 14.6 years, range 20-85).

The test dataset (external dataset) contained 534 patients (200

females and 334 males), with an average age of 65 ± 15.6 years

(range 20-85). Within the SK group, there were 135 females and 244

males (aged 66 ± 15.3 years, range 25-85), while the BCC group had

65 females and 90 males (aged 62 ± 15.9 years, range 25-85).

The validation cohort (internal dataset) included a total of 707

patients (389 females and 318 males), with an average age of 56 ± 13.6

years (range 21-91). Among these patients, 610 were diagnosed with SK

and 97 with BCC. Specifically, the SK group included 328 females and

280 males (aged 56 ± 13.4 years, range 21-91), while the BCC group

consisted of 61 females and 38males (aged 60 ± 14.2 years, range 25-88).
3.2 Model performance in the training and
test cohort

The architecture of the deep learning model is depicted in

Figure 3. The initial performance metrics in the training cohort

revealed an AUC of 0.76, reflecting a moderate discrimination

ability to differentiate between BCC and SK. The model showed a

sensitivity of 0.58 and a specificity of 0.94, with positive predictive

value (PPV) and negative predictive value (NPV) of 0.79 and 0.85,

respectively. In the test cohort, the model exhibited an AUC of 0.79.

The model achieved a sensitivity of 0.65 and a specificity of 0.94,

with a PPV of 0.81 and an NPV of 0.87. For the validation cohort,

the model exhibited an AUC of 0.71, with a sensitivity of 0.92,a

specificity of 0.51, a PPV of 0.92 and a NPV of 0.52 (Table 1).
3.3 The interpretability of the model

The results revealed that the model primarily relied on color

features to classify sample categories. When making correct

predictions, the model often focused on both color and shape

characteristics of the target objects. Specifically, the model identified

that SK and BCC shared a reliance on the background color (base) of

the images. SK typically presented with light brown or brown hues,

while BCC was characterized by light red or dark red shades.

Additionally, surface features such as papules or patches were also

key factors in the model’s classification. SK generally exhibited black

papillomatous hyperplasia on the surface, whereas BCC often showed

light-colored, damaged nodular hyperplasia. The smoothness of the

skin surface also played a role in the model’s predictions, with SK

typically having a smoother surface compared to the damaged and

rough surface seen in BCC (Supplementary Figure 1).

The model’s misclassifications were attributed to four primary

factors: Color blending: The color of the affected area was altered by

surrounding skin or external influences, such as post-scratch erythema

or sun exposure, causing a blend of colors. Superficial red coloration

due to sunlight exposure might coexist with the brown base of

seborrheic dermatitis, leading the model to mistakenly identify the

erythema as basal erythema or capillary dilation. Blurry images: Image

quality issues, such as blurriness from improper handling or equipment
frontiersin.org

https://www.r-project.org/
https://doi.org/10.3389/fonc.2025.1507322
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mei et al. 10.3389/fonc.2025.1507322
malfunction, affected the model’s ability to accurately recognize color

and shape, which impacted prediction accuracy. Ensuring high-quality

images is therefore crucial for improving the model’s performance.

Interference from similar colors: The model sometimes struggled to

differentiate between lesions that shared similar color features, such as

BCC and SK. The close resemblance in color could confuse the model,
Frontiers in Oncology 05
resulting in mispredictions. Enhancing the model’s ability to

distinguish these subtle differences will be essential in future training

iterations. Small sample-specific features: Certain cases with unique

characteristics, such as seborrheic skin with enlarged pores, posed

challenges to the model’s predictions. Differences in skin smoothness

between affected and normal skin could aid the model in making
FIGURE 1

The process flow for the deep learning model developed to classify basal cell carcinoma (BCC) and seborrheic keratosis (SK). This flow includes data
collection, preprocessing, model training, feature extraction, classification, reclassification, and validation.
FIGURE 2

The structure and process flow of the deep learning model used for distinguishing BCC and SK, based on the CLIP architecture with ViT-B/16.
Images are divided into uniform patches, embedded, and processed through a Transformer encoder that captures relationships across image
regions to produce a comprehensive representation.
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FIGURE 3

Case examples of BCC and SK classification. (A) An incorrectly classified BCC lesion by Dermatologist 2, which was correctly reclassified as BCC with
the model’s assistance, matching the histopathological diagnosis. (B) An incorrectly classified SK lesion by Dermatologist 2, correctly reclassified as
SK using the model, with alignment to histopathological findings. (C) Histopathological findings of the BCC case in (A), showing typical features such
as atypical keratinocytes, parakeratosis, and an irregular stratum corneum. (D) Histopathological findings of the SK case in (B), displaying features like
acanthosis, hyperkeratosis, and horn cysts.
TABLE 1 Area under the curve (AUC) for model performance and dermatologist assessments.

AUC 95%CI SPE SEN NPV PPV

Training cohort DL model 0.76 0.75-0.77 0.94 0.58 0.85 0.79

Test cohort DL model 0.79 0.75-0.83 0.94 0.65 0.87 0.81

Validation cohort

DL model 0.71 0.66-0.76 0.51 0.92 0.52 0.92

Dermatologist 1 0.75 0.71-0.8 0.66 0.85 0.42 0.94

Dermatologist 1 with DL model 0.82 0.78-0.87 0.72 0.93 0.61 0.95

Dermatologist 2 0.79 0.74-0.83 0.66 0.91 0.56 0.94

Dermatologist 2 with DL model 0.82 0.77-0.86 0.69 0.95 0.67 0.95
F
rontiers in Oncology
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 fro
AUC, Area Under the Curve; DL, deep learning; PPV, Positive Predictive Value; NPV, Negative Predictive Value; SEN, Sensitivity; SPE, Specificity.
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correct predictions, but when these differences were less pronounced,

the model struggled (Supplementary Figure 2).
3.4 Comparative analysis with
dermatologists and reclassification results

The internal dataset was used for comparative analysis with

dermatologists and reclassification results in classifying SK from

BCC. Dermatologist 1 achieved an AUC of 0.75 with sensitivity,

specificity, PPV and NPV of 0.85, 0.66, 0.94, 0.42, respectively.

Dermatologist 2 achieved an AUC of 0.79 with sensitivity, specificity,

PPV and NPV of 0.91, 0.66, 0.94, 0.56, respectively. After incorporating

the model’s prediction results, Dermatologist 1 achieved an AUC of

0.82 with sensitivity, specificity, PPV and NPV of 0.93, 0.72, 0.95, 0.61,

respectively. Dermatologist 2 also showed an improved performance,
Frontiers in Oncology 07
with an AUC of 0.82 with sensitivity, specificity, PPV and NPV of 0.95,

0.69, 0.95, 0.67, respectively.

The NRI and IDI were 0.64 (P = 0.006) and 0.18 (P < 0.001) for

Dermatologist 1 with the assistance of the model’s prediction results

in discrimination between BCC and SK. The NRI and IDI were 0.06

(P = 0.049) and 0.11 (P < 0.001) for Dermatologist 2 with the

assistance of the model’s prediction results in discrimination

between BCC and SK (Figure 4). The score achieved by the

model and dermatologists is shown in Figure 5.
4 Discussion

This study built and validated the capability of the multimodal

pre-trained model CLIP in distinguishing between BCC and SK,

achieving high accuracy across both the training, test and validation
FIGURE 4

Net reclassification improvement (NRI) analysis for the deep learning model’s classification of BCC and SK. NRI measures the improvement in
diagnostic accuracy with the model’s input compared to the initial assessments by dermatologists. Red connections represent patients incorrectly
reclassified, while green connections indicate correct reclassifications, with patient numbers specified. (A) NRI for Dermatologist 1’s classification (left
half circle) and reclassification (right half circle) of BCC with model assistance. (B) NRI for Dermatologist 1’s classification and reclassification of SK
with model assistancel. (C) NRI for Dermatologist 2’s classification and reclassification of BCC. (D) NRI for Dermatologist 2’s classification and
reclassification of SK with model assistance.
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cohorts. The model’s robust performance is reflected in the AUC

values, particularly in the test and validation cohorts, underscoring

its high discriminative power. Furthermore, the deep learning

model demonstrated significant potential in aiding dermatologists

in classifying BCC from SK, improving diagnostic performance.

The result of this study is consistent with previous studies that have

shown that transformer-based architectures, such as Vision

Transformers (ViT), have demonstrated strong potential in medical

image classification tasks, including dermatology (12). These models

offer improved global context awareness over traditional CNNs, which

is particularly beneficial in recognizing complex visual patterns present

in pigmented lesions. Recent studies also demonstrated that transformer

based models, when trained on large and diverse datasets, achieve high

accuracy in classifying skin cancers (13). Transformers can outperform

CNNs in identifying melanoma, BCC, and other pigmented skin

disorders due to their ability to model long-range dependencies and

attend to subtle lesion features (14). Our findings corroborate these

studies by showing the deep learningmodel’s capacity to handle the task

of distinguishing between BCC and SK with comparably to or exceeded

the diagnostic accuracy of experienced dermatologists.
Frontiers in Oncology 08
The reclassification analysis provided further evidence of the

model’s utility. Both the NRI and IDI showed significant

improvements, indicating that the model could effectively refine its

predictions with additional data or through iterative adjustments (15).

Dermatologist 1 and Dermatologist 2, after being assisted by the model,

achieved AUCs of 0.80 and 0.89, respectively, indicating that deep

learning models integration can enhance diagnostic capabilities and

reduce the subjectivity inherent in human diagnosis. Interestingly,

without the help of the deep learning model, dermatologists tended

to diagnose ambiguous cases as benign SK. However, after seeing the

prompts of the deep learning model, dermatologists tended to revise

the previously uncertain cases into malignant BCC. This phenomenon

was more significant in the junior dermatologist.

The study also underscores the importance of generalization in

deep learning models, which is a critical factor for their clinical

application. The ability of our model to maintain high performance

across both the training and test cohorts reflects its adaptability. This is

further reinforced by its performance in external validation datasets,

which confirmed the model’s robustness when applied to new data.

This generalization ability is vital for clinical applications, especially
FIGURE 5

Comparative performance of the deep learning model, dermatologists (with/without deep learning model assistance), and pathologically confirmed
cases (reference = 100%) on the external validation dataset. Bar plots display the classification scores for (A) BCC and (B) SK. Deep learning model
assistance improved diagnostic accuracy for both dermatologists, bringing their scores closer to model and confirmed values. Der, dermatologist.
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when preformed on diverse patient populations and image qualities

(16). The consistent performance of the model across different cohorts

suggests that the integration of deep learning into dermatological

practice could yield significant clinical benefits. Deep learning

models, including ours, typically exhibit high sensitivity and

specificity, reducing the potential for misdiagnosis (17, 18).

Additionally, the attention-based mechanisms embedded in the

CLIP model provided interpretable results, allowing us to visualize

the areas of the images that the model focused on during

classification. This feature is not only useful for improving the

model’s transparency but also assists dermatologists in validating

the deep learning models’ decisions. Similar techniques have been

employed in other deep learning models to enhance diagnostic

accuracy and interpretability in clinical settings. As a previous study

incorporated deep learning models in clinical practice to further

improve diagnostic performance (7).

One major limitation is the skewed gender distribution within

the dataset, which may limit the generalizability of our findings

across more diverse populations. Expanding the dataset to include a

broader demographic and geographic range will be important for

enhancing the model’s robustness. In addition, variations in image

acquisition protocols, device resolutions, and population

demographics across institutions may influence the performance

of deep learning models. Future studies should incorporate with

detailed information on imaging devices to better understand and

mitigate these effects. Moreover, integrating multi-modal data, such

as patients’ clinical histories or histopathological information, could

further improve the model’s diagnostic performance (9).

Furthermore, to guarantee the model’s practical utility and its

tangible effects in real-world scenarios, it is crucial to validate it

across a range of clinical environments that have different levels of

institutional resources.
5 Conclusion

In conclusion, this study demonstrates that the CLIP-based

deep learning model can significantly enhance the diagnostic

capabilities of dermatologists when distinguishing between BCC

and SK.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Jinshan Hospital (JIEC 2023-S85). The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Frontiers in Oncology 09
Author contributions

L-HM: Writing – original draft, Data curation. M-KC: Writing –

original draft, Data curation. JL:Writing – original draft, Data curation.

X-GY: Writing – original draft, Data curation. X-DL: Writing – review

& editing. GY: Writing – review & editing, Supervision.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1507322/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The results revealed that the model primarily relied on color features to
classify sample categories. Whenmaking correct predictions, themodel often

focused on both color and shape characteristics of the target objects.
Specifically, the model identified that SK and BCC shared a reliance on the

background color (base) of the images. SK typically presented with light
brown or brown hues, while BCC was characterized by light red or dark red

shades. Additionally, surface features such as papules or patches were also

key factors in the model’s classification. SK generally exhibited black
papillomatous hyperplasia on the surface, whereas BCC often showed

light-colored, damaged nodular hyperplasia. The smoothness of the skin
surface also played a role in the model’s predictions, with SK typically having a

smoother surface compared to the damaged and rough surface seen in BCC.

SUPPLEMENTARY FIGURE 2

These insights underscore the importance of addressing factors such as color
blending, image quality, and feature similarity in future model training to

improve its prediction accuracy and robustness.
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