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Cervical cancer remains a significant global health concern, characterized by

high morbidity and mortality rates. High-dose-rate brachytherapy (HDR-BT) is a

critical component of cervical cancer treatment, requiring precise and efficient

treatment planning. However, the process is labor-intensive, heavily reliant on

operator expertise, and prone to variability due to factors such as applicator shifts

and organ filling changes. Recent advancements in artificial intelligence (AI),

particularly in medical image processing, offer significant potential for

automating and standardizing treatment planning in HDR-BT. This review

examines the progress and challenge of AI applications in HDR-BT treatment

planning, focusing on automatic segmentation, applicator reconstruction, dose

calculation, and plan optimization. By addressing current limitations and

exploring future directions, this paper aims to guide the integration of AI into

clinical practice, ultimately improving treatment accuracy, reducing preparation

time, and enhancing patient outcomes.
KEYWORDS

artificial intelligence (AI), cervical cancer, high-dose-rate brachytherapy (HDR-BT),
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Introduction

Cervical cancer is a leading cause of cancer-related deaths among women worldwide,

with high morbidity and mortality rates (1). High-dose-rate brachytherapy (HDR-BT) is an

effective treatment method for cervical cancer, offering precise dose delivery to the tumor

while sparing surrounding healthy tissues (2). However, HDR-BT treatment planning is a

complex and time-sensitive process, requiring meticulous delineation of target areas (TVs)

and organs at risk (OARs), accurate applicator reconstruction, and optimized dose

calculations. The quality of the treatment plan is heavily dependent on the operator’s
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expertise, and delays between applicator insertion and treatment

execution can compromise accuracy due to applicator shifts and

changes in organ filling status (3, 4).

Recent advancements in artificial intelligence (AI) for medical

image processing have introduced new opportunities to address

these challenges. AI-driven methods, particularly deep learning

(DL) models, have demonstrated significant potential in

automating key steps of HDR-BT treatment planning, including

segmentation, reconstruction, plan optimization and dose

calculation. This review provides a comprehensive overview of the

current state of AI applications in HDR-BT for cervical cancer,

highlighting their potential to enhance clinical workflows, improve

treatment accuracy, and reduce patient discomfort. Additionally, we

discuss the challenges and limitations of AI integration in this

field and propose future research directions to facilitate its

clinical adoption.
The application of AI in cervical
cancer HDR-BT

Automatic segmentation

UNet (5) is a popular convolutional neural network (CNN)

architecture designed for effective image segmentation. Its unique

U-shape structure makes it particularly well-suited for medical

image segmentation, as it can handle features at multiple scales

with excellent localization precision. The name “UNet” originates

from its distinctive shape, comprising a contracting path to capture

the global image context and a symmetric expanding path for

precise localization. This design allows the network to efficiently

extract relevant information from images while accurately

classifying individual pixels. The application of UNet and its

variants in the automatic segmentation of TVs and OARs during

high-dose-rate brachytherapy (HDR-BT) for cervical cancer has

been reported in several studies. For instance, Zhang et al. (6)

developed a model named DSD-UNET based on the three-

demensional (3D) UNet archeitecture (7) for the automatic

contouring of the high-risk clinical target volume (HRCTV) and

OARs. The model integrates an expansion convolution module in

the middle part, utilizing convolutional kernels with different

expansion rates to capture multi-scale features, thus achieving

more accurate and stable image segmentation. Furthermore, the

model introduces deep supervision in the expansion path, allowing

it to generate the final output at different stages by integrating

segmentation layers. The fusion of these multi-level feature map not

only improves the reliability of segmentation, but also accelerates

the training process. To evaluate model performance, the Dice

similarity coefficient (DSC), Hausdorff distance (HD), and Jaccard

index (JI) were used as evaluation metrics. The results showed that

the DSD-UNET model performed significantly better than the 3D

UNet model. Mohammadi et al. (8) designed the ResU-Net model

by combining the characteristics of ResNet (9) and U-Net, which is

used for the automatic segmentation of OARs. The model improves

the efficiency and accuracy of the feature extraction process through

long and short skip connections. Compared to manually defined
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standard OARs contours, the segmentation results show good

consistency and outperform the classical U-Net model in all

evaluation metrics. Jiang et al. utilized the RefineNet network

model for automatic segmentation of HRCTV and OARs (10).

RefineNet’s multi-path refinement network architecture excels at

extracting raw contextual information directly from input images.

Additionally, remote residual connections facilitate the learning of

multi-scale and multi-level features, effectively enhancing higher-

level convolutional layers with contextual details. This method had

demonstrated high adaptability to variations in factors such as

organ size, body shape, and age, successfully handling images with

significant differences (11). The evaluation metrics, including DSC,

HD, and overlap index (OI), indicated high consistency between

automatic and manual delineation results for HRCTV and

satisfactory performance for OARs like the bladder and rectum.

However, the complex shapes and higher variability of the small

intestine and sigmoid colon presented challenges for automatic

delineation. Li et al. (12) used the adaptive ensemble network nnU-

Net (13) for the automatic segmentation of HRCTV and OARs.

They trained and integrated three different network architectures:

2D U-Net, 3D U-Net, and 3D Cascade U-Net. The results, evaluated

quantitatively using metrics such as DSC, HD, ASD, and dosimetric

parameters, showed that the 3D Cascade U-Net performed best in

the segmentation of the bladder, rectum, and HRCTV. The

dosimetric bias between automatic and manual delineation was

within a clinically acceptable range. Cao et al. proposed a dual-path

asymmetric weighting (DPAW) CNN-based segmentation method,

aiming to leverage delineated HRCTV on MRI images before

applicator insertion to guide automatic segmentation on post-

insertion planning CT images (14). This method can overcome

the issue of anatomical changes caused by the implantation of the

applicator, vaginal filling, and the filling state of organs.

Comparative analyses demonstrated that the dual-path CNN

model outperformed its single-path counterpart in multiple

dimensions, including diagnostic efficacy, segmentation accuracy,

MRI data utilization, and model stability. Furthermore, the dual-

path asymmetric weighting model surpassed the dual-path

symmetric weighting model. To overcome the limitations of U-

Net in extracting 3D information, Zhu et al. introduced the 2.5D

model named SERes-u-net, which combines squeeze and excitation

blocks with the ResNet network (15). By considering four adjacent

slices across five channels as input, the model effectively manages

complex and variable anatomical structures and spatial

relationships, particularly in the intestine and sigmoid colon.

Evaluations by clinical experts and quantitative metrics, including

DSC and HD, confirmed the model’s strong performance in

segmenting HRCTV, bladder, rectum, sigmoid colon, and

intestine. While clinical assessments validated the model’s

acceptability for critical organ segmentations, they also identified

room for enhancement in sigmoid colon segmentation, which will

be a future improvement area. Xue et al. developed the 3D Prompt-

ResUNet module, integrating a prompt-based model with 3D nnU-

Net for automatic segmentation (16). This module outperformed

other state-of-the-art models, including nnU-Net and SAM-Med3D

(17), in segmenting HRCTV, bladder, rectum, and sigmoid colon,

as evidenced by superior DSC values. Yoganathan et al. designed
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three independent 2D networks for transverse, sagittal, and coronal

planes, followed by constructing a 2.5D network, to automatically

segment tumor target areas and OARs in MRI images (18).

Evaluations using DSC, HD, and dosimetric parameters indicated

significant advantage for the 2.5D network over the 2D network,

with the InceptionResNetv2 model showing superior performance

to ResNet50. Rodrıǵuez et al. employed 3D nnU-Net for automatic

tumor target segmentation and performed evaluations using

metrics such as Dice, HD, and MSD, along with dosimetric

assessments (19). Their research demonstrated the effectiveness of

this automatic segmentation approach, with a median DSC of 0.73

and no significant differences in geometric and dosimetric

performance compared to manual segmentation.

The self-attention mechanism in the Transformer architecture

has the capability to capture long-range dependencies in images,

effectively alleviating the limitations of convolutional neural networks

(CNNs) in terms of their receptive fields. Zhu et al. developed a deep

learning model called CoTr for automated tumor segmentation in

cervical cancer magnetic resonance imaging (MRI) by integrating

deep neural networks with the Vision Transformer (ViT)

architecture. The CoTr model exhibited superior performance in

segmentation tasks on contrast-enhanced T1-weighted (ceT1W) and

T2-weighted (T2W) MR images, achieving average Dice similarity

coefficients (DSCs) of 0.83 and 0.82, respectively. These results

significantly outperformed other models that solely relied on CNN

architectures, such as U-Net, Attention U-Net, and V-Net (20).

Moreover, recent advancements in multimodal image fusion

segmentation algorithms have shown significant promise in

improving segmentation accuracy for cervical cancer radiotherapy.

Sun et al. proposed a novel segmentation network approach that
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employs synthetic images. Their method initially utilizes a generative

network to transform CT images into T1W MR images. The

synthesized MR images are then combined with the original CT

images, allowing for automatic contouring of the CTV. This process

mitigates the limitations of single-modality image information by

harnessing the advantages of both CT and MRI. Specifically, it

leverages the superior bone imaging capability of CT and the soft

tissue contrast of MRI. Results demonstrate that this strategy

effectively improves the accuracy of CTV delineation for clinical

tumor targets in cervical cancer cases (21). Table 1 summarizes the

literature on AI-based automatic contouring in HDR-BT for

cervical cancer.

Overall, the automatic contouring models currently used for

HDR-BT perform well in the segmentation of the bladder and

rectum, essentially achieving the precision of manual contouring.

However, for the small intestine and sigmoid colon, due to their

complex morphology and high variability, the performance of

automatic contouring is still insufficient. Although the literature

reports satisfactory results for the automatic contouring of tumor

target areas, there is a lack of a gold standard and multicenter

validation. Therefore, when applying AI technology to clinical

HDR-BT for automatic contouring, careful verification of the

structures outlined automatically and necessary manual

adjustments are required. Additionally, most current research

focuses on the automatic segmentation of CT images, while MRI

guidance, as the gold standard for HDR-BT, benefits from its

superior soft tissue contrast, which is conducive to more precise

positioning and contouring of the HRCTV and OARs (22).

Utilizing large standardized datasets for training is crucial for

enhancing the generalization ability of automatic contouring
TABLE 1 Literature summary of AI-based auto-contouring in high-dose-rate brachytherapy for cervical cancer.

Authors Literature Imaging
Network
model

HRCTV Bladder Rectum Sigmoid
Small

intestine

DSC HD DSC HD DSC HD DSC HD DSC HD

Zhang et al. (6) CT DSD-UNET 0.82 / 0.87 / 0.83 / / / / /

Mohammadi
et al.

(8) CT ResU-Net / / 0.96 4.1 0.97 2.0 0.92 3.2 / /

Jiang et al. (11) CT RefineNet 0.86 6.0 0.86 20.0 0.86 12.3 0.66 98.4 0.56 68.1

Li et al. (12) CT nnU-Net 0.84 7.4 0.94 3.5 0.83 7.6 / / / /

Gao et al. (14) CT 3D asymmetric CNN 0.79 5.5 / / / / / / / /

Zhu et al. (15) CT SERes-u-net 0.81 5.2 0.92 4.8 0.85 4.1 0.60 30 / /

Xue et al. (16) CT 3D Prompt-ResUNet 0.92 8.5 0.93 3.1 0.87 3.5 0.76 7.5 / /

Yoganathan
et al.

(18) MRI (T2W) ResNet50 0.85 4.9 0.90 6.3 0.77 8.2 0.65 20.4 0.54 22.3

Rodrıǵuez
et al.

(19) MRI (T2W) 3D nnU-Net
0.73 6.8 / / / / / / / /

Zhu et al.
(20)

MRI (T1W
+ T2W)

CoTr
0.83 8.5 / / / / / / / /

Sun et al. (21) CT + MRI (T1W) GSN 0.95 0.9 / / / / / / / /
frontiers
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models, learning deep features, optimizing network contouring

accuracy, and improving robustness. The implementation of

artificial intelligence technology to automatically segment the

tumor target areas and OARs in cervical cancer HDR-BT can

significantly reduce the time required for contouring and improve

consistency. This not only reduces the waiting time for patients after

brachytherapy applicator placement but also enhances the accuracy

of treatment and patient comfort.
Applicator reconstruction

Catheters reconstruction, the process of localizing the source path

in the treatment planning image, is another crucial step in the HDR-

BT treatment planning procedure. In this process, potential dwell

positions are arranged on the digitized applicator channel, and dwell

times are calculated to achieve dosimetric objectives. Given the

unique steep dose gradient characteristic of HDR-BT, where

radiation intensity rapidly decreases with distance from the source,

the accuracy of applicator reconstruction significantly impacts the

dosimetric outcomes of the treatment plan (23–25). Currently,

applicator reconstruction in clinical practice is mostly performed

manually by medical physicists, which is a subjective and time-

consuming task. Therefore, fully automating reconstruction in 3D

image-based HDR-BT treatment is particularly urgent, as it is vital for

ensuring the accuracy and efficiency of the treatment plan. The

applicator template library integrated into the treatment planning

system serves as a powerful tool for clinical automatic digitization,

significantly reducing uncertainties in the reconstruction process and

improving efficiency. The library enables manual alignment based on

virtual applicator models and predefined source paths, facilitating the

digitization of the channel and ensuring its accurate location in the

planning image. However, it is noteworthy that despite the significant

advantages of the reconstruction method based on the template

library in terms of efficiency and accuracy, it does not achieve full

automation due to the requirement for manual alignment of the

library models. Moreover, the applicability of this method is limited

by the types of applicators available in the library. In the field of

HDR-BT research, electromagnetic tracking technology, as an

emerging approach, has recently been successfully applied to the

source applicator digitization process. While this technology provides

highly accurate digitization results, the additional hardware and

complex procedures it requires pose potential barriers to its

widespread adoption (26, 27). Dise et al. (28) combined the region

growing algorithm with spline model of the catheters to successfully

automate the source applicator digitization process, effectively

avoiding incorrect digitization issues caused by overlapping sources

and air bubble interference. However, it is worth noting that this

method relies on manual seed point selection, and the reconstruction

outcome is significantly influenced by the seed point location.

In recent years, AI has been gradually introduced for the automatic

reconstruction of applicators in HDR-BT. Deufel et al. (29) employed

a U-Net model to automatically segment and reconstruct the Fletcher

applicator used in cervical cancer HDR-BT from CT images. The

results demonstrated excellent performance in terms of segmentation

accuracy and reconstruction time, with an average DSC of 0.89, a HD
Frontiers in Oncology 04
of 1.66 mm, and a reconstruction time of only 17.12 seconds.

The dose differences in HRCTV and OARs between automatic and

manual reconstruction were within acceptable limits. Jung (30) first

utilized a U-net network to segment interstitial needles in CT images,

followed by clustering the segmented voxels into different needle

groups and generating corresponding central trajectories. The results

showed that the DSC between automatic and manual segmentation

reached an average of 0.93, with a HD of approximately 0.71 mm for

needle trajectories and an average deviation of less than 0.63 mm for

needle tip positions, exhibiting clinically acceptable accuracy.

Additionally, the entire digitization process could be completed

within 5 minutes, highlighting the high efficiency of this method in

clinical practice. Hu et al. (31) designed a 2D U-Net model to

segment the contours of the applicators on the treatment planning

CT images and employed a clustering algorithm to sort the channels.

They utilized a polynomial curve-fitting method to obtain the central

axis of the catheter and evaluated dose differences using a criterion of

twice the maximum axis error (1 mm). The results indicated that the

difference in the dose received by 90% of the volume of HRCTV

between automatic and manual reconstruction was very small, less

than 0.30%. The maximum difference in D2cm3 for OARs was 2.64%.

Weishaupt et al. (32) successfully automated the digitization of

titanium applicator in formatted CT images of prostate cancer

patients undergoing HDR-BT. They first employed a U-Net

architecture for automatic segmentation of the applicator contours

in 2D sagittal plane slices and then applied a density-based clustering

algorithm to classify the 3D applicator. The results demonstrated

excellent consistency, with deviations in the apical and axial

directions of -0.1 ± 0.6 mm and 0.13 ± 0.09 mm, respectively,

compared to the standard manual reconstruction. Xie et al. (33)

conducted training and testing based on a dataset of 70 cervical

cancer patients who underwent CT-guided HDR-BT treatment,

utilizing the nnU-Net network. The average DSC for automatic

segmentation of three interstitial metal needles were 0.88, 0.89, and

0.90, respectively, and there were no significant differences in organ

structure dose volume metrics between the manual and automatic

reconstruction methods. Wang et al. (34) proposed an attention-

gated AI model for the automatic digitization of metal interstitial

needles in CT-guided cervical cancer HDR-BT. The results

demonstrated that a 3D convolutional neural network (CNN) with

spatial and channel attention mechanisms outperformed traditional

CNNs in needle feature extraction. This method significantly

improved the accuracy of interstitial needle localization, reducing

the positioning errors of the needle tip and needle axis to 1.1 mm and

1.8 mm, respectively, from 2.0 mm and 3.3 mm. For MRI-guided

HDR-BT, Dai et al. (35) developed a U-Net model incorporating an

attention-gating mechanism and employed total variation

regularization to enhance the accuracy of applicator localization. In

the detection of 299 source catheters from 20 patients, the localization

errors of the applicator tip and axis were 0.37 ± 1.68 mm and 0.93 ±

0.50 mm, respectively, demonstrating excellent accuracy and

reliability. Shaaer et al. (36) utilized two independent U-net models

to automatically segment plastic applicator in T1-weighted (T1W)

and T2-weighted (T2W) MRI images, respectively. Subsequently, by

integrating the catheter location information from the T1W and

T2W images through a post-processing step, the complementary
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information from the two sequences improved the accuracy of the

automatic reconstruction. The results exhibited remarkable accuracy,

with an average deviation of only 0.97 ± 0.66 mm for automatic

reconstruction relative to the standard manual reconstruction.

AI technology significantly reduces the time required for applicator

reconstruction in HDR-BT and enhances reconstruction accuracy and

consistency. However, strict quality control procedures must be

implemented before applying an automatic applicator reconstruction

model in clinical practice, with particular attention to factors such as

image quality and artifacts that may impact the detection of the source

applicator tip. These factors must be comprehensively considered

during the model development and performance evaluation stages to

ensure the model’s stability and accuracy.
Plan optimization

Plan optimization is a crucial component of the HDR-BT

treatment planning and includes both forward and inverse

optimization methods. Early HDR-BT plans often employed

forward optimization, where medical physicists manually adjusted

the dwell positions and durations of the radiation source to meet

clinical dose targets. This approach is heavily dependent on the

experience of medical physicists and is a time-intensive process. As

a result, inverse optimization techniques, which offer greater

efficiency, have gained wider adoption in clinical settings. Inverse

optimization calculates variables such as dwell positions and times

by establishing objectives and constraints based on clinical

requirements for the target area and OARs. This ensures that the

desired clinical requirement is achieved in the target area while

adhering to dose limitations for OARs. Currently, two inverse

optimization algorithms, inverse planning simulated annealing

(IPSA) (37) and hybrid inverse treatment planning optimization

(HIPO) (38), are commonly applied in commercial treatment

planning systems. Several studies have successfully utilized deep

reinforcement learning (DRL) to optimize HDR-BT plans for

cervical cancer. Shen et al. (39) developed a weight-tuning policy

network (WTPN) that optimizes weight factors for various organs

based on the dose volume histogram of the plan. Their results

indicated that the WTPN generated plans with a quality score

approximately 8.5% higher than that of initial plans and 10.7%

higher than manually designed plans by medical physicists. Pu et al.

(40) introduced an intelligent treatment planning network (ITPN)

based on DRL, which enhances treatment plan quality by adjusting

dwell times of the radiation source. Compared to the traditional

IPSA optimization method, ITPN showed superior performance in

improving dose distribution, homogeneity, and conformity index

for the bladder, rectum, and sigmoid colon. Kallis et al. (41)

optimized dwell times using 3D dose prediction, demonstrating

the potential for improved efficiency and consistency in treatment

planning. Oud et al. (42) proposed a multi-criterial automatic

planning method, achieving comparable or better target dose

distribution while reducing exposure to the bladder and rectum.

The work of Dickhoff et al. (43) introduced an adaptive objective

configuration method, utilizing the multi-objective real-valued

gene-pool optimal mixing evolutionary algorithm (MO-RV-
Frontiers in Oncology 05
GOMEA) to balance target coverage and organ protection for

individual patients, addressing complexity and personalized

needs. Stenhouse et al. (44) validated the effectiveness of a

machine learning (ML) model in selecting intracavitary tubes and

hybrid interstitial needles, finding that replanning with ML-

predicted configurations improved plan quality and reduced

radiation exposure to OARs.

AI has shown great promise in optimizing HDR-BT plans for

cervical cancer, enhancing work efficiency, plan homogeneity, and

overall quality, while reducing potential errors associated with

manual planning. However, it is important to acknowledge that

the current body of research primarily focuses on single-tube or

specific types of applicators, which may limit the generalizability of

AI models to broader contexts.
Dose calculations

Dose calculations in high-dose-rate brachytherapy (HDR-BT) are

typically based on the dose distribution model outlined in the TG-43

report. This model characterizes the behavior of radiation emitted

from a radioactive source in water, taking into account the source’s

radioactive activity, dwell position, and dwell time. However, it does

not consider the potential effects of applicator attenuation and tissue

heterogeneity (45). The Monte Carlo (MC) algorithm, a gold

standard in radiotherapy dose calculations, determines dose

deposition by statistically modeling the probability distribution of

particles within the human body (46). However, the lengthy

computation times associated with MC algorithms limit their

applicability in time-sensitive HDR-BT workflows. To address this,

Mao et al. (47) developed RapidBrachyDL, a 3D deep neural network

(DNN) model capable of rapidly predicting radiation dose

distribution for 192Ir-based HDR-BT. The model exhibited high

consistency with the MC method regarding dose volume histogram

(DVH) and critical dose metrics, coupled with a 300-fold

enhancement in computation speed. Additionally, Akhavanallaf

et al. (48) created an MC-based personalized dose simulator

(PBrDoseSim) and employed DNN to predict patient-specific dose

distributions. Their results demonstrated a strong agreement between

the DNN-predicted dose and the MC method, with a computational

efficiency improvement of approximately 5,400 times compared to

conventional MC techniques. Generative adversarial networks

(GANs) have emerged as a powerful tool for optimizing dose

distribution in HDR-BT. Oud et al. demonstrated the use of GANs

for personalized treatment planning, achieving multi-objective

optimization that balances target coverage and organ protection.

This approach enhances the precision and efficiency of dose

calculations, paving the way for more personalized and effective

HDR-BT treatment plans (42).

While the aforementioned studies highlight the potential of AI

in HDR-BT dose calculations, current research in this domain

remains limited, and existing studies lack adequate clinical

validation. Moreover, although AI methods significantly enhance

computational efficiency, they necessitate substantial computational

resources for model training and implementation, which may strain

the computational capabilities of certain medical institutions.
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Conclusion

This paper presents a summary of the recent developments in the

application of AI technology for cervical cancer high-dose-rate

brachytherapy (HDR-BT) treatment planning. AI has demonstrated

significant potential in the automatic segmentation of target areas and

OARs, applicator reconstruction, plan optimization, and dose

calculation. With the help of AI technology, the process of cervical

cancer HDR-BT treatment planning is expected to be streamlined by

achieving full automation and standardization, thus reducing treatment

preparation time, alleviating patient discomfort, and enhancing

treatment accuracy and efficacy. However, it is important to

acknowledge that the application of AI in this field remains in its

initial exploratory stages and faces several challenges, including limited

high-quality training data, intricate model construction and

optimization processes, and suboptimal result repeatability. To

address these challenges and advance the field, future endeavors

should focus on the development of open-source algorithm

frameworks and the availability of large-scale open datasets to

enhance research reproducibility and improve the generalizability

and credibility of AI models. Additionally, establishing standardized

data collection and annotation procedures, as well as enhancing the

interpretability of models, are crucial directions for future research to

facilitate the effective translation of AI technology into clinical practice.
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