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Identifying new therapeutics
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enhanced drug delivery in the
management of glioblastoma
Ryan Holman* and Nathan McDannold

Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston,
MA, United States
Glioblastoma, a grade IV astrocytoma, typically has a poor prognosis, with most

patients succumbing within eighteen months of diagnosis and few experiencing

long-term survival. Focused ultrasound, an emerging localized therapy, has

shown promising results in early-phase studies for glioblastoma by improving

the uptake of temozolomide and carboplatin. The blood-brain barrier is critical to

homeostasis by regulating the movement of substances between the

bloodstream and the central nervous system. While this barrier helps prevent

infections from bloodborne pathogens, it also hinders the delivery of cancer

therapies to gliomas. Combining focused ultrasound with circulating

microbubbles enhances local blood-brain barrier permeability, facilitating the

intratumoral uptake of systemic cancer therapies. The purpose of this study was

to identify promising new therapeutics in the treatment of glioblastoma for

localized drug delivery via focused ultrasound. This review provides an overview

of the current standard of care for newly diagnosed and recurrent glioblastoma,

identifies current therapies indicated for the treatment, discusses key aspects of

microbubble resonators, describes focused ultrasound devices under evaluation

in human trials, and concludes with a perspective of emerging therapeutics for

future studies.
KEYWORDS
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1 Introduction

The World Health Organization CNS5 classification categorizes adult glioblastoma

multiform (GBM) as isocitrate dehydrogenase wild-type adult-type diffuse astrocytoma

with one or more biomarkers, such as necrosis, microvascular proliferation, mutation of the

TERT promoter gene, chromosomes +7/-10 copy number changes, or amplification of

endothelial growth factor receptor (EGFR) genes (1). Newly diagnosed GBM elicits a poor
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prognosis with a 14–18 month median overall survival (mOS), a 2-

year survival rate of 27%, and a 5-year survival rate of 6% following

standard-of-care resection and chemoradiation (2–4). O6-

methylguanine DNA-methyltransferase (MGMT) methylation

presents with a more favorable prognosis, with a 23 month mOS

and a 49% 2-year survival rate, relative to a 13 month mOS and 12%

2-year survival rate for MGMT-promoter unmethylated GBM (4).

Focused ultrasound (FUS) holds promise in improving GBM

outcomes by enhancing the blood-brain barrier (BBB) permeability

to facilitate the localized uptake of systemic therapies. This review

explores current and emerging GBM therapies, along with ongoing

FUS-enhanced research applications.
2 Conventional treatment of newly
diagnosed glioblastoma

Newly diagnosed GBM is typically treated with tumor resection

preceding concomitant temozolomide (TMZ) chemoradiation and

subsequent maintenance (adjuvant) TMZ therapy (4–6). The United

States Food and Drug Administration (FDA) has approved five

pharmaceuticals and one device for GBM: TMZ, oral lomustine

(CCNU), bevacizumab, intravenous carmustine (BCNU), carmustine

wafers, and tumor-treating fields (TTFs) (7). Regorafenib and

procarbazine hydrochloride-lomustine-vincristine sulfate (PCV)

combination therapy are also listed in the United States National

Comprehensive Cancer Network (NCCN) guidelines as preferred

treatments for recurrent GBM (rGBM) (2, 8).

Resection is often limited to tumor debulking and histological

sampling (4). GBM tumors can grow along vessels and fiber tracts

microscopically several centimeters beyond the macroscopic tumor

region (9, 10). Early glioma hemispherectomies saw recurrence in

the contralateral hemisphere (11). Radiotherapy targets the excision

cavity and remnant tumor sites, typically with 2 Gy fractions

totaling 60 Gy over 6 weeks, concurrently with TMZ (2, 12).

TMZ is an alkylating agent activated at physiological alkalinity

to 5-(3-methyl)-1-triazen-1-yl-imidazole-4-carboxamide (MTIC)

within approximately 2 hr of oral administration, and passively

diffuses across vascular endothelial cell membranes (13–17). TMZ

levels in brain parenchyma are typically less than 20% of blood

plasma (18–21). Improved outcomes occur with MGMT-promoter

methylated GBM, where epigenetic silencing by methylation of

CpG (5’—Cytosine—phosphate—Guanine—3’) sites within the

MGMT gene promotor region reduces the reparation of TMZ-

induced alkylation (22, 23).

TTFs with maintenance TMZ were FDA-approved and

incorporated into NCCN guidelines after improving median

progression-free survival (mPFS) and mOS for newly diagnosed

GBM (NCT00916409) (2, 24, 25). The Optune Gio (Novocure,

Haifa, Israel) is FDA-approved for recurrent and newly diagnosed

GBM (26). Alternating electric fields of 0.7 V.cm-1 and 200 kHz

create dielectrophoretic movement of charged organelles and

dipolar macromolecules to induce cell death of proliferating

tumor cells (27–30).
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3 Treatment for recurrence

Recurrence rates and mOS are about 90% and 7–9 months,

respectively (12, 31, 32). rGBM treatment options include further

surgical resection, TMZ rechallenge, alkylating agents, PCV

chemotherapy, re-irradiation, bevacizumab, TTFs, regorafenib,

palliative care alone, and experimental techniques (2, 12).

Molecular structures and pharmacological properties of GBM

therapeutics are shown in Figure 1E and Table 1.

Regorafenib is an anti-angiogenic multi-kinase (VEGFR1-3,

TIE2) inhibitor added to NCCN rGBM guidelines after

improving mOS compared to lomustine (2, 33, 34). TTFs are a

chemotherapy-free treatment option that can improve toxicity and

quality of life (2, 35). Lomustine is the de facto standard, with

improved outcomes for MGMT-promoter methylated GBM, and is

frequently a control arm in clinical trials, with a 2 months mPFS,

20% 6-month PFS, and a mOS of 6–9 months (36). Anti-angiogenic

bevacizumab is a monoclonal antibody that neutralizes circulating

vascular endothelial growth factors (VEGF) (2, 37, 38). Debate

exists regarding improved mOS, but the treatment can reduce

steroid use and enhance quality of life (39).
4 The blood-tumor barrier

The BBB provides an interface between the brain parenchyma

and capillaries, regulating homeostasis by managing blood flow,

oxygenation, glucose, essential amino acids, and other metabolite

levels (40, 41). During progression, the BBB changes can be

distinguished as the blood-tumor barrier (BTB), which features

disrupted tight and adherens junctions, extensive BBB fenestration,

and inhibition of receptor-mediated transcellular pathways (40, 42).

Natural BTB disruption enhances BBB permeability, but drugs often

remain less than ten times higher than in healthy brain tissue (40).

The BTB allows the passage of small ions and molecules but restricts

the entry of larger therapeutics (18, 40, 41). Lipinski’s rule of 5

predicts passive BBB permeability, indicating that no more than one

of the following criteria can be violated: less than six hydrogen bond

donors, less than eleven hydrogen bond acceptors, a molecular weight

of less than 500 Da, and a lipophilicity octanol-water partition

coefficient less than five (43, 44).
5 Focused ultrasound-mediated
blood-brain barrier opening

5.1 Microbubbles

Microbubbles are used off-label as resonators for BBB opening.

Optison (GE Healthcare, Chicago, IL, USA), SonoVue/Lumason

(Bracco S.P.A., Milan, Italy), and Definity/Luminity (Lantheus

Medical Imaging, North Billerica, MA, USA) have received FDA

approval for contrast-enhanced ultrasonography (45, 46). Human

FUS studies have often used Definity and SonoVuemicrobubbles (47).
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Clinical FUS studies with the Exablate Neuro have been

performed with both microbubble bolus doses (48) and infusion

rates of 0.24–0.8 µL.kg-1.min-1 (49, 50), with possible treatment

durations around 3 hr (50). Mechanical index (MI) thresholds for

stable and inertial cavitation are temperature and tissue-dependent

(51). The in vivo thresholds with Definity for FUS-enhanced BBB

opening and inertial cavitation have been measured near 0.46 and

0.72–1.15, respectively (52, 53). The mean diameters for Definity

microbubbles are 1.1–3.3 µm, with 98% less than 10 µm, and 100%

less than 20 µm (54). Definity bolus doses exhibit a mean blood

plasma half-life of 1.3–1.9 min, achieve intravascular equilibrium

within 1 min, have a maximum serum concentration near 2 min,

and become undetectable after 10–14 min (54–56). The C3F8 gas is

inert, with low solubility, is eliminated non-metabolized through

the lungs, and, in the presence of dissolved respiratory gas allows

extended dissolution rates (57). The shell reduces perfluorocarbon

gas diffusion, prevents coalescence, and reduces the immune

response (57).

The microbubble mechanisms of BBB opening are believed to

be independent of bulk heating and inertial cavitation (58). The

acoustic radiation force propels the microbubbles toward the

capillary walls, where microbubble oscillations trigger events,

including shear stresses and microstreaming, that culminate in

BBB opening (41, 58, 59). The enhanced drug uptake occurs

largely through disturbance of the tight junctions, dysregulation

of efflux transporters, and increased caveolae formation (60). BBB

closure occurs over approximately 4–6 hr, with complete closure

within 24 hr (58, 61). Influential factors include the MI,

microbubble dose, duty cycle, vessel to bubble diameter ratio,
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frequency, tissue properties, and sonication duration (58, 62).

Many cavitation-related bioeffects remain unknown, such as

effects from microjetting, reactive oxygen species, ballistic motion,

and bubble clusters (62).

Functionalizing microbubbles and altering their shape and size

can prolong the circulatory half-life and improve drug delivery to

smaller capillaries for more uniform concentrations (63).

Nanobubbles increase disruption in smaller 2–6 µm rodent

capillaries (64). Antibody-microbubble conjugates can target

microscopic metastatic brain tumor sites for use with large-

volume ultrasound fields (65). Perfluorocarbon droplets are

similar colloids to microbubbles with a liquid rather than gaseous

core and have shown potential for drug delivery (66). Droplets are

size-tunable (67), integrate chemotherapeutics (68), prolong

systemic circulation (69), increase inertial cavitation thresholds

(70), enable 19F MRI (71), and potentially exhibit a unique

cavitation mechanism (72). Other formulas incorporate metal

chelates (73, 74), allow partial oxygen measurements in gliomas

(75–77), can track macrophages after re-irradiation in glioma-

bearing mice (78), and incorporate within clinical cell therapies

for cell tracking (79, 80) and measuring apoptotic cell fraction (81).

Nanodroplets have also exhibited the ability to permeabilize the

BBB (82–84).
5.2 FUS devices

Devices and drugs for BBB disruption include FUS, laser

ablation, mannitol, RMP-7, and regadenoson (85). Other localized
FIGURE 1

This illustration provides an overview of a hemispherical array used in blood-brain barrier (BBB) opening procedures, along with the molecular
structures of selected glioblastoma therapies. (A) An example of a peripheral tumor site, which leads to high incidence angles for many elements
during ray tracing. The application is intended for ablative treatments to deactivate elements, but illustrates the extent of incidence angles beyond
30°. (B) An illustration of the incidence angle distribution in relation to the skull surface. The red circles represent elements with incidence angles
more than 30°, and the green circles represent those less than 30°. Figure made with Kranion and datasets from The Cancer Imaging Archive (182,
183). (C) A simulated normalized pressure field for a 220 kHz Exablate 4000 Type 2.0 transducer model, without aberration correction, recreated
using settings described previously (184). (D) An image of an Exablate 4000 Type 1.0 transducer system used for ablative procedures. (E) The
molecular structure of pharmaceuticals approved by the United States Food and Drug Administration (FDA) or recommended by the United States
National Comprehensive Cancer Network (NCCN) for the treatment of glioblastoma (185, 186).
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drug delivery approaches include convection-enhanced delivery,

intra-arterial catheter delivery, reservoir implants, stereotactic

injections, and carmustine wafers placed in the resection cavity (86).

Thermoablative procedures are the only FDA-approved FUS

modalities for neurological disease, and the 670 kHz Exablate Neuro

4000 Type 1.0/1.1 (InSightec, Haifa, Israel) is the only system both

FDA-approved and Conformité Européenne (CE)-marked (87).

Additional research applications include hyperthermia,

sonothrombolysis, neuromodulation, histotripsy, sonodynamic

therapy, and liquid biopsy (60, 87). At least three FUS devices

have been used in early-phase clinical trials for BBB opening in

GBM, including the NaviFUS (NaviFUS Corp., Taipei, Taiwan),

Exablate Neuro 4000 Type 2.0 (InSightec, Haifa, Israel), and

SonoCloud-9 implant (CarThera, Paris, Il̂e-de-France, France)

(47, 60, 88–90).

The 220 kHz Exablate Neuro 4000 Type 2.0 system is a

hemispherical phased array transducer with ±25 mm electronic

steering and treatment volumes beyond 30 cm2 (49, 91). Ray tracing

aberration correction incorporates the shear sound speed with
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incidence angles beyond 30° (91). The transducer integrates with

existing neuroablation systems and can treat conditions beyond

GBM. Repeated BBB opening during maintenance TMZ has

illustrated prolonged survival, with no adverse events or TMZ

neurotoxicity (NCT03712293) (19, 48). Elevated concentrations

have been observed with liposomal doxorubicin, TMZ, and

fluorescein (NCT02343991, NCT03322813) (92, 93). The device

has completed Phase 2 trials for sonodynamic therapy in newly

diagnosed GBM (NCT04845919) and is ongoing for carboplatin

monotherapy for rGBM (NCT04417088, NCT04440358). A safety

and feasibility study was recently completed for maintenance TMZ

in newly diagnosed GBM (NCT03551249) (49, 91, 94).

Hemispherical arrays are monitored with embedded acoustic

receivers for microbubble harmonic emissions. Numerous

approaches have been developed for feedback control (95). The

Exablate algorithm is proprietary but generates a cavitation score

from the harmonic emissions, and allows altered sonication

duration, applied power, gain, and cavitation dose goal (49).

Human GBM studies observed lower microbubble concentrations
TABLE 1 Pharmacological Information of Selected Therapeutics to Treat Glioblastoma Multiforme.

Metric Temozolomide
(13, 15, 43, 187, 188)

Bevacizumab
(38, 43, 189–192)

Lomustine (CCNU)
(36, 43, 193–196)

Carmustine (BCNU)
(43, 196–200)

Regorafenib
(34, 201)

Active Metabolites MTIC unknown cis-4-hydroxy-CCNU
trans-4-hydroxy-CCNU

2-chloroethyl isocyanate M-2
M-5

Excretion Route feces
1%

urine
38%

unknown urine
50%

respiration
10%

urine
65%

feces
71%

urine
19%

Dose concomitant
75 mg.m-2 for 42 d

adjuvant
150 mg.m-2 daily for 5 d
of a 28 d cycle

10 mg.kg-1 every 2 wk 130 mg.m-2 every 6 wk 150-200 mg.m-2 every 6 wk 160 mg daily for 3
wk of a 4 wk cycle

Cmax temozolomide
7.5 µg.mL-1 (38.6 µM)

MTIC
282 ng.mL-1 (1.5 µM)

284 µg.mL-1 (1.9 µM) cis-4-hydroxy-CCNU
0.3 µg.mL-1 (1.2 µM)

trans-4-hydroxy-CCNU
0.5 µg.mL-1 (2.0 µM)

1.0 µg.mL-1 (4.7 µM)
(530 mg.m-2)

2.5 µg.mL-1 (5.0 µM)

t1/2 1.8 hr 20 d cis-4-hydroxy-CCNU
1.3-2.9 hr

trans-4-hydroxy-CCNU
1.3-2.5 hr

22 min (530 mg.m-2) M-2
25 hr

M-5
51 hr

regorafenib
28 h

AUC temozolomide
23.4 µg.hr.mL-1

MTIC
0.9 µg.hr.mL-1

3.2 mg.d.mL-1 cis-4-hydroxy-CCNU
0.8–1.6 µg.hr.mL-1

trans-4-hydroxy-CCNU
1.4–2.3 µg.hr.mL-1

4.1 µg.hr.mL-1 (530 mg.m-2) 70.4 µg.hr.mL-1

Lipinski Rule of 5 Yes No Yes Yes Yes

Molecular Weight 194.2 Da 149 kDa 233.7 Da 214.1 Da 500.8 Da

GI50 100 µM NA 31.6 µM 52.1 µM 8.0 µM

LC50 U87
82.3 µM

U87-MGMT
>200.0 µM

NA 328 µM 173 µM unknown
AUC, mean plasma area under the curve; CCNU, chloroethyl-cyclohexyl-nitrosourea; Cmax, maximal blood plasma levels; GI50, concentration needed for 50% cell growth inhibition; LC50,
concentration needed for 50% cell death; M-2, regorafenib N-oxide; M-5, N-desmethyl-regorafenib; MTIC, 5-(3-methyl)1-triazen-1-yl-imidazole-4-carboxamide; t1/2, mean elimination half-life;
TMZ, temozolomide.
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than in animals, the need for improved receiver sensitivity, and

relatively hypovascular white matter targets that reduced

microbubble concentrations (49). Sites near the skull surface can

lead to standing waves, reflections, and impact focusing (49).

Figures 1A–D illustrates the system and the incidence angle

distributions at a peripheral target site.

The Sonocloud-9 is a 1 MHz MRI-compatible, minimally

invasive, transcranial implant placed in the location of the bone

flap after tumor resection or biopsy (96, 97). Clinical studies include

carboplatin for rGBM (NCT03744026), checkpoint inhibitors for

metastases (NCT04021420), carboplatin for pediatric gliomas

(NCT05293197), nanoparticle albumin–bound paclitaxel (nab-

paclitaxel) for rGBM (NCT04528680), anti-programmed cell

death protein 1 (aPD-1) and anti-cytotoxic T-lymphocyte-

associated protein 4 (aCTLA-4) monoclonal antibodies and

liposomal doxorubicin in newly diagnosed GBM (NCT05864534),

and adjuvant TMZ for newly diagnosed GBM (NCT04614493)

(96, 98–100). The device can target large volumes (∼45 cm2),

features short procedure times, and is not influenced by skull

aberration (89). Thus avoiding aberration correction, MRI

guidance, feedback control, and can be performed on an

outpatient basis (88, 101–103). Safety and feasibility studies

showed tolerability and evidence of improved mOS for

carboplatin delivery in rGBM (NCT02253212, NCT03744026)

(96, 98, 103–105), and a Phase 3 trial is underway (NCT05902169).

NaviFUS is a 500 kHz 256-channel neuronavigational phased

array system attached to a mechanical arm designed to be used

without a stereotactic headframe (NCT03626896, NCT04446416,

NCT04988750) (106–109). Studies have used ramped-up feedback

control at 0.5–0.68 MI (107, 109). Position sensors register the

device to pretreatment imaging for 3D focal tracking. The system

integrates intraoperative pressure simulations, lowers cost, increases

portability, with treatment durations below 15 min, and negates

intraoperative MRI guidance (88, 108, 109). The device

has evaluated enhanced bevacizumab delivery for rGBM

(NCT04446416) (109) and illustrated a possible synergistic effect

with radiotherapy (NCT04988750) (107). An rGBM Phase 3 trial is

evaluating bevacizumab delivery (NCT06496971).

Previously suggested technical improvements include whole-brain

electronic steering, cavitation mapping, simulation-based focusing,

and holography (91, 110). Passive acoustic mapping has been limited

by axial resolution (109) but could be correlated with bioeffects, tumor

response, and local drug concentrations (62, 111). The approach is

feasible with neuronavigational systems (112, 113) and hemispherical

arrays (114, 115). Receiver arrays within custom hemispherical

transducers could enable MRI-free procedures (116, 117).

Diagnostic extra-cranial systems have been adapted for acoustic

mapping for drug delivery to colorectal liver metastases

(ISRCTN17598292) (118).
5.3 Pharmaceuticals in development with
focused ultrasound

Thorough lists of GBM clinical trials and preclinical

studies evaluating a range of therapeutics are provided elsewhere
Frontiers in Oncology 05
(47, 88–90, 119–122). Briefly, therapeutics evaluated in animal

models include TMZ, methotrexate, irinotecan, carboplatin,

paclitaxel, carmustine, doxorubicin, cisplatin, etoposide, MGMT

inactivators, targeted therapies like bevacizumab, and

immunotherapies like checkpoint inhibitors and CAR T-cell

therapy. Many of these drugs are used off-label and have been

evaluated by systemic administration or loading within

nanocarriers and microbubbles (119). Pharmaceuticals evaluated

in clinical studies include TMZ, doxorubicin, liposomal

doxorubicin, aPD-1 antibodies, aCTLA-4 antibodies, fluorescein,

bevacizumab, paclitaxel, nab-paclitaxel, and carboplatin (90, 96, 99,

100, 120). FUS-mediated BBB opening is also being evaluated for

Parkinson’s disease (50, 123, 124), Alzheimer’s disease (125–132),

amyotrophic lateral sclerosis (133), and metastatic brain

tumors (134).

FUS can modulate the innate immune response, improve the

penetrance of targeted therapies and immunotherapies, and improve

survival in rodents (99, 100, 119, 122). A number of immunotherapies

are being evaluated clinically in combination with FUS for primary and

secondary brain tumors. Balstilimab, botensilimab, and

pembrolizumab are being studied for newly diagnosed and rGBM

(NCT05864534) (99, 100). Pembrolizumab is being assessed in a Phase

3 trial for non-small cell lung cancer brain metastases (NCT05317858).

Nivolumab, pembrolizumab, and ipilimumab are being evaluated for

melanoma brain metastases (NCT04021420).

Drug-loaded microbubble and nanocarriers, along with drug

conjugates, offer alternatives to systemic administration (111, 119).

Nanoparticle therapeutics increase preclinical survival times

and relative concentrations than systemic antibodies and

chemotherapies (111). The nanocarrier hydrodynamic diameters

ideally remain below 100 nm (119, 135), with a trade-off between

increased permeation and clearance rates (136). Nanocarrier ligand

groups target vascular or tumor surface receptors and allow

internalized and externally activated drug release (119).
5.4 Challenges to translation

Overcoming the BBB is the main challenge to GBM therapies

(137). Difficulties in focused ultrasound adoption include

establishing standardized treatment settings and rigorous safety

studies (138). Hypovascular white matter targets reduce drug

delivery (49, 105). Further, concurrent anesthetic administration

can alter hemodynamics, vasoactivity, and temperature to confound

permeability and cavitation thresholds (63). New GBM animal

models are needed to better account for surgical resection,

recurrence, and immunological response (119). The disease is

rare, with about 8–11% clinical trial participation (7), and only

three pivotal studies between 2005–2022 prolonged survival (139,

140). With hemispherical arrays, individual patient characteristics

can influence outcomes, such as skull characteristics on feedback

control (49). Ablation is complicated by bone attenuation,

impedance mismatch, skull heating, and bone heterogeneity (141,

142). These aspects are less problematic for BBB opening because

the lower frequencies and powers reduce acoustic absorption,

aberrations, and risk of thermal damage (142, 143).
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6 Emerging GBM therapeutics

At least two additional therapeutic regimens have improved

mOS in Phase 3 trials in recent years, but had contentious trial

designs (144, 145). Autologous tumor lysate-dendritic cell vaccine

(DCVax-L) reported improved mOS for newly diagnosed and

recurrent GBM (NCT00045968) (146, 147). Lomustine-TMZ

combination therapy improved mOS for newly diagnosed

MGMT-promoter methylated GBM compared to standard-of-care

chemoradiation (NCT01149109) (148). TTFs with maintenance

TMZ arguably provide the best survival rates in newly diagnosed

GBM (24), and a pragmatic approach would be evaluating FUS-

enhanced adjuvant TMZ with TTFs (119). TTFs with Withaferin A

illustrated a synergistic effect, suggesting increased vulnerability to

anti-mitotic chemotherapies (30, 149, 150). Immunotherapies have

mostly lacked survival benefits in Phase 3 trials (151). New targets

such as immunosuppressive CD73 myeloid cells have been

proposed with anti-CD73 antibodies in combination with

aCTLA-4 and aPD-1 therapies (152–154).

Theranostics can measure longitudinal pharmacokinetics,

biodistribution, and drug concentrations for association with

treatment response (155). R1 relaxation rates and volumetric transfer

coefficients are surrogates for drug concentration (156–158). In vivo

radiolabeled GBM therapeutics can be quantitatively imaged with

nuclear imaging, with or without FUS, using 11C-TMZ (half-life: 20.3

min) (159), 68Ga-bevacizumab (half-life: 68 min) (160, 161), and 89Zr-

cetuximab (half-life: 78.4 hr) (162, 163). 89Zr-bevacizumab has been

evaluated without FUS in pediatric diffuse intrinsic pontine glioma

(164), a condition under evaluation for FUS-mediated drug delivery

(165). Radionuclide therapeutics for metastatic prostate cancer and

somatostatin receptor-positive gastroenteropancreatic neuroendocrine

tumors received regulatory approval with [177Lu]Lu-PSMA-617 and

[177Lu]Lu-DOTA-TATE, respectively (166, 167). These therapies

along with [131I]-IPA, [177Lu]Lu-NeoB, [177Lu]Lu-FF58, and [177Lu]

Lu-6A10-Fab fragments are in clinical trials for GBM (166, 168, 169).

Carrier-mediated L-type amino acid transporters (LAT-1) such as

small molecule [131I]-IPA (NCT03849105, NCT05450744) have high

BBB permeability and would allow quantitative comparison of drug

delivery with FUS (137, 170–173). [14C]-regorafenib has been used in

human pharmacokinetic studies (174), and 3.0 T and 9.4 T 19F-MRI

has illustrated longitudinal measurements of trifluoro-methylated

pharmaceuticals, similar to regorafenib, in murine models

(175, 176). Fluorine-containing metastatic chemotherapies with less

than two rule of 5 violations include abemaciclib (177), larotrectinib,

encorafenib, and vemurafenib (178). Larotrectinib has no rule of 5

violations (178), has shown promise for pediatric neurotrophic

tyrosine receptor kinase (NTRK) fusion-positive gliomas (179, 180),

and in adults NTRK gene fusions are most frequently found in

GBM (181).
7 Discussion

While most studies have been to establish safety and feasibility,

limiting inclusion criteria to MGMT-promoter methylated GBM for

FUS-enhanced TMZ therapies could improve outcomes due to
Frontiers in Oncology 06
epigenetic silencing. TTFs, lomustine-TMZ combination therapy,

and DCVax-L have demonstrated improved mOS in Phase 3 trials

of newly diagnosed GBM, and have not been evaluated in conjunction

with FUS. Studies of FUS-enhanced drug delivery with lomustine

have been relatively limited. 19F-MRI might allow for longitudinal

drug concentrations in preclinical survival studies, using regorafenib,

larotrectinib, drug-loaded perfluorocarbon nanodroplets, or cell

therapies labeled with perfluorocarbon emulsions. Radionuclide

theranostics like LAT-1 [131I]-IPA or [177Lu]Lu-DOTA-TATE

could be used similarly with nuclear imaging.

In conclusion, FUS-enhanced delivery of systemic therapies has

demonstrated safety, tolerability, and evidence of efficacy in

preclinical and early-phase clinical studies and presents a

promising localized delivery technique with the potential to

improve the standard-of-care management for GBM.
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glioblastoma treatment through the integration of tumor-treating fields. Front Oncol.
(2023) 13:1274587. doi: 10.3389/fonc.2023.1274587

31. Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of
recurrent glioblastoma—are we there yet? Neuro-Oncology. (2012) 15:4–27.
doi: 10.1093/neuonc/nos273

32. Chaul-Barbosa C, Marques DF. How we treat recurrent glioblastoma today and
current evidence. Curr Oncol Rep. (2019) 21:1–8. doi: 10.1007/s11912-019-0834-y

33. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, et al.
Regorafenib compared with lomustine in patients with relapsed glioblastoma (regoma):
a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. (2019)
20:110–9. doi: 10.1016/S1470-2045(18)30675-2
34. Stivarga. Highlights of prescribing information. Available online at: https://www.

accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf (Accessed January 22,
2025).
35. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al.

Novottf-100a versus physician’s choice chemotherapy in recurrent glioblastoma: A
randomised phase iii trial of a novel treatment modality. Eur J Cancer. (2012) 48:2192–
202. doi: 10.1016/j.ejca.2012.04.011

36. Weller M, Le Rhun E. How did lomustine become standard of care in recurrent
glioblastoma? Cancer Treat Rev. (2020) 87:1–8. doi: 10.1016/j.ctrv.2020.102029
37. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al.

Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. (2017)
377:1954–63. doi: 10.1056/NEJMoa1707358
38. Avastin. Highlights of prescribing information. Available online at: https://www.

accessdata.fda.gov/drugsatfda_docs/label/2020/125085s332lbl.pdf (Accessed January
22, 2025).

39. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M.
Management of glioblastoma: State of the art and future directions. CA Cancer J Clin.
(2020) 70:299–312. doi: 10.3322/caac.21613

40. Steeg PS. The blood–tumour barrier in cancer biology and therapy. Nat Rev Clin
Oncol. (2021) 18:696–714. doi: 10.1038/s41571-021-00529-6

41. Burgess A, Shah K, Hough O, Hynynen K. Focused ultrasound-mediated drug
delivery through the blood–brain barrier. Expert Rev Neurother. (2015) 15:477–91.
doi: 10.1586/14737175.2015.1028369

42. Lamsam L, Johnson E, Connolly ID, Wintermark M, Gephart MH. A review of
potential applications of mr-guided focused ultrasound for targeting brain tumor
therapy. Neurosurg Focus FOC. (2018) 44:1–7. doi: 10.3171/2017.11.FOCUS17620
frontiersin.org

https://doi.org/10.1093/neuonc/noab106
https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf
https://www.nice.org.uk/guidance/NG99
https://www.nice.org.uk/guidance/NG99
https://doi.org/10.1093/annonc/mdu050
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.3390/biomedicines9030324
https://doi.org/10.1310/hpj5202-98
https://doi.org/10.5772/22085
https://doi.org/10.1056/NEJM200101113440207
https://doi.org/10.1056/NEJM200101113440207
https://doi.org/10.3389/fonc.2014.00126
https://doi.org/10.3389/fonc.2014.00126
https://doi.org/10.1093/neuonc/noaa106
https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021029s031lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021029s031lbl.pdf
https://doi.org/10.1016/S1470-2045(01)00489-2
https://doi.org/10.1634/theoncologist.5-2-144
https://doi.org/10.1016/j.ejpb.2019.01.015
https://doi.org/10.2174/1381612828666220603152918
https://doi.org/10.2174/1381612828666220603152918
https://doi.org/10.1093/ons/opz374
https://doi.org/10.3389/fonc.2020.01663
https://doi.org/10.1158/1078-0432.CCR-09-1349
https://doi.org/10.1158/1078-0432.CCR-03-0807
https://doi.org/10.1158/1078-0432.CCR-03-0807
https://doi.org/10.1093/neuonc/noy132
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1001/jama.2017.18718
https://doi.org/10.1001/jama.2015.16669
https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100034s013b.pdf
https://doi.org/10.1111/nyas.12112
https://doi.org/10.1093/neuonc/now182
https://doi.org/10.1093/neuonc/now182
https://doi.org/10.1016/j.pbiomolbio.2022.12.002
https://doi.org/10.3389/fonc.2023.1274587
https://doi.org/10.1093/neuonc/nos273
https://doi.org/10.1007/s11912-019-0834-y
https://doi.org/10.1016/S1470-2045(18)30675-2
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf
https://doi.org/10.1016/j.ejca.2012.04.011
https://doi.org/10.1016/j.ctrv.2020.102029
https://doi.org/10.1056/NEJMoa1707358
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125085s332lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125085s332lbl.pdf
https://doi.org/10.3322/caac.21613
https://doi.org/10.1038/s41571-021-00529-6
https://doi.org/10.1586/14737175.2015.1028369
https://doi.org/10.3171/2017.11.FOCUS17620
https://doi.org/10.3389/fonc.2025.1507940
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Holman and McDannold 10.3389/fonc.2025.1507940
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