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The medical imaging field has grown tremendously due to the latest digital

imaging and artificial intelligence (AI) advancements. These advancements have

improved tumour classification accuracy, time, cost efficiency, etc. Radiologists

utilize an MRI scan due to its exceptional capacity to identify even themost minor

alterations in brain activity. This research uses YOLOv7, a Deep Learning (DL)

model, to classify and detect brain tumours and to conduct a detailed analysis of

the frequently used structures for tumour identification. The study uses a brain

MRI dataset from Roboflow with 2870 labelled pictures divided into four types of

tumours. Our brain tumour dataset has four distinct classes: pituitary, gliomas,

meningiomas, and no tumours. This preprocessed sample was used to assess

the performance of deep learning models on identifying and classifying brain

tumours. Throughout the preprocessing stage, aspect ratio normalization and

resizing algorithms are applied to improve tumour localization for bounding box-

based detection. YOLOv7 performs admirably, with a recall score of 0.813 and a

box detection accuracy of 0.837. Remarkably, the mAP value for the 0.5 IoU

threshold is 0.879. During box identification within the extended IoU spectrum

of 0.5 for a to 0.95, the mAP value was 0.442.
KEYWORDS
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1 Introduction

As per the classification system of brain tumors by the World Health Organization

(WHO), there are over 120 types of brain tumors that exist on the basis of their origin,

location, size, and the characteristics of the tissues that constitute the tumor. These brain

tumors can be divided into two types: malignant (cancerous) and benign (non-cancerous).

Some tumors can be aggressive in nature, and others can be inactive. However, if there is a

sufficient increase in size, the tumor will compress the adjacent nerves and blood vessels

and thus impair the normal brain functions and can also kill the brain cells (1). Abnormally

strong deformities of the tissues cause brain tumors. Tumors stem from cell clusters that

arise within the brain as a result of excessive cell multiplication. These clusters can affect
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normal brain functions and can cause the destruction of healthy

brain cells. Several of the body’s processes, such as integrating,

organizing, evaluating, and decision making, are regulated by the

central nervous system (CNS), which consists of the spinal cord and

the brain. The astonishing detail of an individual’s brain arises from

its complex structure (2). There is a range of illnesses that can affect

the CNS, including brain tumors, migraines, infections, and strokes,

which pose substantial challenges in the area of screening,

evaluation, and effective treatment development (3). The

abnormal development of brain cells creates brain tumors, which

pose substantial challenges for radiologists and neuropathologists in

early diagnosis. The primary difficulty confronting radiologists and

neuropathologists is the early detection of brain tumors resulting

from the rapid development of certain neurons. One of the most

common types of imaging used for the diagnosis of brain tumors is

magnetic resonance imaging (MRI), which often proves to be

inaccurate and unreliable, particularly for these sensitive tumors.

An uncharacteristic proliferation of nerve tissue forming a mass is

usually a constitutive trait of malignancies in the porto systems.

Brain tumors have close to 130 types, and some are highly unusual,

but most are fairly common. Tumors are classified into benign and

malignant. They can arise from neurons, oligodendrocytes, and

other supportive cells that encase the adjacent nerve cells. The most

important form of malignant brain tumor is the so-called metastatic

or secondary brain tumor. Benign tumors do not spread to other

parts of the body, but when they do, they can cause significant

health problems, thus turning malignant (4).

Gliomas, meningiomas, pituitary tumors, and no tumors

represent almost all of the primary tumors diagnosed. Most cases

of meningiomas start in the blood vessel cells on the exterior of the

central nervous system, which arise from the outermost layers

enveloping the central nervous system. Even so, the brain tumor

type that kills people the fastest is glioma, which starts in the tissues

that protect neuronal activity. Gliomas account for approximately

one-third of all brain tumor cases. Benign pituitary tumors grow

inside the pituitary gland. The prognosis and available treatments

for brain tumors depend heavily on a reliable evaluation.

Traditional biopsy methods are uncomfortable, time-consuming,

and prone to inaccurate sampling. There are a number of issues

with histopathological tumor grading (biopsy), such as intra-tumor

heterogeneity and variations in the expert’s opinions. These

qualities make the tumor diagnosis procedures hard and limited.

Identifying the tumor accurately and in a timely fashion is

critical in planning any form of therapy and achieving the required

clinical outcome. For brain tumors in particular, a good deal of

work may be conducted by radiologists at the interpretation stage.

Now, radiologists have to identify and diagnose using images, so in

a way, they are limited to their subjective assessments.

Due to the intersection of the complexity of the images with

variable skill levels of clinicians, making an accurate diagnosis

through individual sensory judgment is exceptionally rare for

brain tumors. For neurology, MRI is a preferred method since it

allows for the detailed evaluation of the brain and skull. It produces

sagittal, coronal, and axial images for a comprehensive review. MRI

not only is capable of producing highly detailed and contrast-rich
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images but also does not expose the patient to radiation risks, which

makes it ideal. This is why in the diagnosis of a range of different

types of brain tumors, MRI is highly recommended as a

screening method.

The low accuracy of MRI in tumor detection has led to a need

for automated methods that combine image processing and

machine learning (ML). Soft tumors and extremely challenging

tumors require different therapeutic approaches. The proposed You

Only Look Once (YOLO) model is in keeping with artificial

intelligence being increasingly integrated into healthcare. It

provides potential advantages in efficiency and accuracy. The

approach, findings, and outcomes of the present research are

covered completely in the following parts, which also highlight its

significance to the fields of medicine and computing. Current

procedures take much time to complete and may not be entirely

accurate due to human variance. In order to close this gap and meet

the demand for accurate and timely brain tumor evaluation, this

study suggests a sophisticated brain tumor categorization method

based on the YOLO approach.

This study aims to maximize tumor identification efficiency

using artificial intelligence frameworks, specifically the YOLO

model. Among the objectives are modifying YOLO for the

detection of malignancies in evaluating changes and optimizing

parameters for training time and sensitivity. Enhancing the

accuracy of tumor identification and categorization is the aim of

this research, which will help the computer and medical industries.

In this introduction, the background is established, the importance

of automated tumor identification is emphasized, and YOLO is

presented as a possible remedy.

Due to the challenges inherent in the traditional methods of

diagnosing brain tumors and the automated techniques published

in the literature, this study was framed around the following critical

questions: How flexible is the YOLOv7 architecture for the accurate

detection and classification of various types of brain tumors in MRI

scans? How does its efficiency measure in comparison to other ML

and deep learning (DL) models in terms of accuracy? Moreover,

what modifications can be made to the architecture or other

parameters to enhance the effectiveness of YOLOv7 for medical

imaging tasks such as brain tumor segmentation? All answers are

provided in Section 6.

In Section 2, the discussion highlights the previous research

works conducted on brain tumors while incorporating various

machine learning techniques. Section 3 provides a detailed

overview of the study including the methodology, proposed

model, and architecture best suited for our research. The deep

learning frameworks and efficiency indicators employed for the

research are also assessed. Section 4 discusses the results of our

analysis on the performance of the deep learning algorithms. An

extensive and detailed analysis is presented in Section 5.
2 Related works

The advancements of artificial intelligence (AI) technologies,

especially in deep learning, show promising capabilities regarding
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the automation of the identification and classification of brain

tumors in medical imaging, such as MRI scans. The literature

offers a variety of approaches from models specialized in

segmentation and classification-centric architecture to more

modern ones that attempt to merge both tasks. Also, some

studies have explored explainable hybrid optimization models.

This article intends to narrate the overview blocked range under

the thematic subheaders outlining the literature.
2.1 Tumor segmentation

The early diagnosis and timely intervention of a brain tumor

case are heavily reliant on the precise segmentation of tumors from

MRI scans. The manual process of segmentation comes with overly

optimistic promises, as it is both labor-intensive and heterogeneous

in nature (inter-rater reliability). For these reasons, automated deep

learning models are gaining popularity.

SegNet is a fully convolutional network that has been used in

the automated segmentation of necrosis, edema, and enhanced

tumor regions alongside other multi-modal MRI sequences (T1,

T1ce ( T1-weighted contrast-enhanced MRI), T2, and FLAIR

(Fluid-Attenuated Inversion Recovery, a specific type of magnetic

resonance imaging (MRI) sequence), like a tumor’s substructures.

Researchers reported impressive F-measure outcomes of 0.85, 0.81,

and 0.79 for whole, core, and enhancing tumors, respectively (5).

In the same way, a Mask R-CNN with DenseNet-41 backbone

was created to perform the segmentation and categorization of

tumors simultaneously, thus achieving an improved tumor

boundary precision through transfer learning (6).

The more recent segmentation work conducted by Kamnitsas

et al. (2023) introduced a dual-pathway 3D convolutional neural

network (CNN) ensemble for high-resolution multi-view

segmentation, which was integrated with CRF (Conditional

Random Fields) post-processing for spatial coherence, thus

achieving excellent results on the BraTS dataset.
2.2 Tumor classification

Some studies have focused exclusively on classifying the tumors

based on the specific features given. A 23-layer CNN was trained on

a multi-class MRI dataset with 3,064 and 152 images for “case-

based” and “control” groups, respectively, thus demonstrating the

power of CNNs on large datasets and their weaknesses on smaller

ones (7). To enhance the performance on smaller datasets, the

model applied transfer learning using VGG16.
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Another study integrated min–max normalization and dropout

layers into EfficientNet for the multi-class classification of pituitary

tumor, meningioma, glioma, and no tumor to enhance performance

and mitigate overfitting (8).

YOLO-based architectures have also been adopted for

classification due to their efficiency in real-time object detection.

Studies using YOLOv5 and YOLOv7 have reported over 99%

accuracy in classifying meningioma, glioma, and pituitary tumors

using MRI datasets from King Khaled University Hospital (9, 10).

A recent benchmark study conducted by Karthik et al. (11) (as

mentioned in Table 1) compared YOLOv5, YOLOv6, and YOLOv7

and reported 87.9% classification accuracy with YOLOv7 which

outperformed earlier versions and even the classical methods like

Faster R-CNN with VGG16.
2.3 Segmentation and classification

Integrated frameworks that perform segmentation and

classification in tandem have been proposed by multiple

researchers. Tumors were segmented and classified using the

FAHS-SVM (Fully Automatic Heterogeneous Segmentation using

Support vector machine) method, which applied deep learning as

well as structural and morphological information (13).

In a different approach, YOLOv5 was applied in a two-step

pipeline for real-time brain tumor segmentation and classification,

achieving an 85.95% detection rate (14).

The study by Bhanothu et al. (2020) used Faster R-CNN and

VGG16 for detection and classification in parallel and obtained

classification accuracy of 89.45% for meningioma, 75.18% for

glioma, and 68.18% for pituitary tumors (15).

More recent work by Isensee et al. (2024) utilized nnU-Net with

dynamic adaptation for both segmentation and classification across

multiple datasets and offered improved generalizability across

tumor types and institutions.
2.4 Explainability and interpretability

“Black-box” issues have been associated with deep learning

models despite the advanced accuracy associated with them, which

has brought much criticism. Very few research studies have focused

on this issue.

One remarkable attempt utilized Grad-CAM-based visualization

approaches to highlight attention focus areas in MRI scans during

tumor classification by the models. This method enhances clinical

trust and provides some level of interpretability of AI decisions.
TABLE 1 Comparison of various studies and models and their results.

Study Model Accuracy Interpretability Limitation

Rao et al. (12) CNN + RNN (LSTM) ~96% Moderate Slow, not real-time

Karthik et al. (11) YOLOv7 87.90% None No attention module

Proposed YOLOv7 + CBAM + SPPF+ 99.50% High (Grad-CAM) Best performance, real-time
The Bold Values in Table 1 highlights : the Accuracy percentage (99.50%) and Interpretability levels (High) of our proposed model which is the highest among all the compared models and has
given the best performance of all the compared models and that too in real time.
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In another study, attention-based CNNs were used to increase

transparency by assigning importance weights to different MRI

regions, thereby enabling clinical validation and aiding radiologists

in identifying diagnostic features.
2.5 Hybrid and optimization approaches

To improve the model’s accuracy and efficiency, hybrid models

coupled with refinement methods have been introduced. In one of

the studies, the parameters of a CNN were optimized with an

Adaptive Dynamic Sine-Cosine Grey Wolf Optimizer alongside

Inception-ResNetV2 for improved feature extraction and

convergence rate (16).

Another work proposed a hybrid brain tumor classification

(HBTC) model that combined handcrafted features from MGLCM

(Modified Gray Level Co-occurrence Matrix) with deep learning for

improved classification performance using a tree-based classifier for

final voxel-level labeling (17, 18).

Transfer learning approaches were also explored extensively

using pre-trained weights from the COCO dataset to train

YOLOv4-Tiny models on the RSNA-MICCAI BraTS 2021 dataset

(19), thus resulting in faster convergence and better generalization.
2.6 Limitations in related studies

Despite the attempts made to apply DL models such as YOLO

and CNNs or even hybrid models for the detection and

classification of brain tumors, there still remain significant issues

and gaps in these models, as detailed below.

2.6.1 Data imbalance and limited dataset diversity
A number of research works use openly accessible datasets like

BraTS, which have class imbalance and lack of diversity, and the

same imaging protocols. In addition, if a model is trained on non-

homogeneous clinical data, it can become overfitted to real-life data.

Most studies do not tackle the problem of the depiction of less

common varieties of tumors or the different population-based

heterogeneity in patient’s tumor demographics.

2.6.2 Poor performance for small or asymmetric
tumors

As highlighted in several investigations, models like YOLOv3–

v7 and even newer versions such as YOLOv8 tend to struggle with

detecting very small or irregularly shaped tumors, particularly when

tumors blend with surrounding tissues. These detection issues are

critical, especially in early diagnosis, where small tumors carry high

clinical importance.
2.6.3 Reliance on high-quality annotated data
Radiology machine learning models require a large amount of

data that have been annotated with great precision. This poses issues

as radiologists annotating the data by hand, which is quite tedious

and time-consuming, and automated tagging tools are often prone to
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inaccuracies. In models that are trained on sparse annotations (for

example, Mask R-CNN with DenseNet), poor ground truth

annotations will invariably weaken the performance of the model.
2.6.4 Lack of standardized evaluation metrics and
validation protocols

Different studies have applied varying reporting standards and

evaluation criteria (using metrics such as accuracy, precision, and

F1 score), which hampers the fair benchmarking of models.

Moreover, in many instances, there is no cross-validation or

external validation, which reduces the trust in the claimed

robustness of the model.

2.6.5 High computational demands and latency
concerns

Healthcare facilities may not possess the advanced GPUs

(Graphics Processing Unit) required for computationally intensive

training of models like Inception-ResNetV2, EfficientNet, and

deeper CNN architectures (for example, a 23-layer CNN), making

it challenging to use these AI systems in practice. While systems like

YOLOv5 and YOLOv7 are slightly optimized, the ability to perform

tasks in real time is still severely impacted in constrained

resource environments.
2.6.6 Limited real-time clinical integration
Some models, such as YOLOv5 in Dipu et al., show potential in

real-time settings, but most works do not consider evaluating these

models in operational clinical settings within workflows. This remains

an open area not just from the ease of automation perspective but also

from a regulatory, privacy, and workflow standpoint.
2.6.7 Generalization across imaging modalities
and institutions

Many models are developed and validated with very limited sets

of imaging modalities, such as T1-weighted or T1ce. However,

different brands of MRI scanners, acquisition protocols, and even

how the patient is positioned can create domain shifts, which may

impact the model’s in-line performance.
2.6.8 Lack of explainability and trust at clinical
level

Even though accuracy metrics are emphasized, there are very

few studies that explain problems or provide interpretability tools

such as Grad-CAM or saliency maps, which would enable clinicians

to appreciate the reasoning behind the model.
2.6.9 Inconsistent performance on multi-class
classification

In multi-class tumor types, the differentiation of glioma,

meningioma, and pituitary tumors is usually more complex than

binary classification. Accuracy for different types of tumors is not at

the same level as shown in cases like the study of Bhanothu et al.

There is significant divergence, which suggests unreliable

performance or bias toward more common classes.
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2.6.10 Neglect of segmentation refinement and
post-processing

Certain works make use of the segmentation models like SegNet

or FAHS-SVM but do not incorporate any boundary refinement

procedures that would reduce segmentation errors or improve

boundary delineation. The precision of tumor boundary detection

is critical for planning the treatment, and clinical utility is

diminished if boundary uncertainty is not resolved. When

choosing a deep learning model for brain tumor segmentation

using MRI images, many factors should be considered, such as its

performance, architectural design, precision, and ease of

modification according to the specific requirements of the project.
2.7 Rationale for choosing YOLOv7

Some of the commonly used models for segmentation in

medical imaging are U-Net, DeepLabV3+, and Attention U-Net.

These models target pixel-level identification and perform well on

medical imaging segmentation tasks. However, these attention

models can be slower than YOLOv7 in achieving real-time results

due to the high computations required for segmentation processing.

Transformer-based models such as Swin Transformer or ViT are

becoming more common for segmentation tasks. However, they are

slower to train and more demanding in terms of memory utilization,

thus making them less than ideal in limited-resource settings.

Therefore, while the newer versions of YOLO or other

architectures may offer some incremental improvements,

YOLOv7 was selected for our specific MRI scan dataset for its

ability to offer a good balance between real-time performance, high

detection accuracy with fast inference speed, and ease of its

adaptation to our specific needs. YOLOv7 provided better

accuracy in detecting and classifying brain tumors, especially

small or irregularly shaped ones, as compared to other models

like YOLOv5, YOLOv8, U-Net, and Faster R-CNN.
3 Proposed approach

3.1 Overall architecture of brain tumor
detection

The evaluation of visualizations of brain tumors is challenging

due to the size, shape, and positioning of the disorders. Scholars

have come up with different ways to identify the anomalies in data,

and each has its own advantages and disadvantages. Various

machines are capable of producing images of brain tumors with

differing levels of contrast, sharpness, number of slices, and spatial

resolution. Here, we discuss the scientific specifications and

architectural design of the algorithmic framework for the efficient

and accurate image-based detection of brain tumors. With the

recommended approach, we aim to differentiate malignant

tumors in MRI scans with precision. Figure 1 showcases the

preprocessing, training, and evaluation steps conducted on images

containing tumors. Considering YOLOv7’s proven performance
Frontiers in Oncology 05
for detecting brain tumors, this study selected it as the

primary framework.
3.2 Dataset collection

To validate the accuracy of our findings, we used an MRI

dataset containing 2,870 brain images sourced from Roboflow (20).

MRI scans provide the highest accuracy possible in identifying brain

tumors, which is why they have been included in this set. Our

dataset, comprising brain tumors, had four subsets, as follows: no

tumor (327 images), meningioma (823 images), pituitary tumor

(834 images), and glioma (886 images). For this particular analysis,

we selected approximately 70% of the entire dataset, equaling 2,009

MRI scans for training, 10% (287 MRI images) for testing, and 20%

(574 MRI images) for validation.

3.2.1 Dataset structure
This dataset is organized into four classes, which represent both

the presence and absence of tumors:

Class Number of images Description.

No tumor 327 MRI scans of healthy individuals with no visible

brain abnormalities.

Meningioma 823 Images containing meningioma, which are

typically benign tumors of the meninges.

Pituitary tumor 834 Scans containing tumors in the pituitary

gland region.

Glioma 886 MRI scans with gliomas, aggressive tumors

originating in glial cells.

To facilitate the model training process and meet the

requirements of the deep learning frameworks, all images were

cropped to a standard size of 512 × 512 pixels. In addition, the

resizing process simplifies the computational burden while

maintaining the relevant features of the brain scans.

3.2.2 Dataset splitting
To create a strong and effective model, the dataset was

partitioned into three subsets:

Training set: 70% of the data (2,009 images).

Validation set: 20% of the data (574 images).

Test set: 10% of the data (287 images).

This partition guarantees that the model has adequate

information to be trained on while also being validated and tested

on new data to measure its ability to generalize.
3.2.3 Data imbalance
A notable issue in the dataset was the class imbalance, as seen in

the number of images.

The “no tumor” class contained only 327 images, which were

significantly fewer than those of the other tumor classes

(meningioma, pituitary tumor, and glioma), each having over

800 images.

The class with the highest number of images, glioma (886), had

more than 2.7 times the images in the no tumor class.
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This imbalance poses several challenges.

Model bias: The model may become biased toward tumor

classes, particularly glioma, due to its over-representation, while

underperforming on under-represented classes like no tumor.

Reduced sensitivity and specificity: The classifier may show

lower accuracy for detecting healthy cases, resulting in a higher

false-positive rate.

Skewed performance metrics: High overall accuracy may be

misleading if the model fails to correctly predict the minority class.

3.2.4 Addressing the data imbalance
To address the class imbalance, the following techniques

were considered.

Data augmentation: Geometric and photometric transformations

(such as rotations, flips, zoom, and brightness adjustments) were

applied to increase the effective size of the minority class.

Class weighting: Class weights were set during the model

training phase and were set inversely to the frequency of the class

to increase the penalty for the wrong classification of

minority classes.

Sampling strategies: Oversampling of minority classes and/or

undersampling of majority classes was conducted to attain a

suitable class distribution during training.

These strategies aim to enhance the model’s ability to generalize

across all classes and reduce bias toward over-represented

tumor types.
3.3 Data preprocessing

As a means of preparing the dataset to be suitable for

classification tasks, a number of preprocessing steps were

performed to standardize the images of brain tumors. Below is a

list of the preparatory processes that were performed: RGB images

underwent grayscale conversion in order to create a single
Frontiers in Oncology 06
monochrome image. This can simplify the image data, which in

turn will reduce computational requirements. All images were

scaled to a uniform resolution of 608 × 608. This step ensured

uniformity for all images before subsequent processing steps were

performed. Uniform size and proportions were also maintained for

the input MRI images during the preprocessing stage using scaling

and aspect ratio modification techniques, which helps maintain

consistency across the dataset while minimizing distortions,

increasing reliability for model input.
3.4 Feature extraction

In our work, we enhanced the architecture of YOLOv7 by

integrating the CBAM (Convolutional Block Attention Module)

attention mechanism along with the Spatial Pyramid Pooling Fast

Plus (SPPF+) module, as they significantly optimize the feature

extraction. CBAM mainly focuses on spatial and channel

information, making the model more attentive to the delicate and

subtle features of the tumors. Also, the SPPF+ module enriches the

multi-scale context that aids in the detection of small or irregular-

shaped tumors on MRI images. All these modules, when combined,

result in the improved accuracy of the model in various

complex situations.

Integrating attention mechanisms and SPPF+ into YOLOv7

significantly enhances the model’s feature extraction capability

from complex MRI images. Attention mechanisms like SE

(Squeeze and Excitation) blocks or CBAM allow the network to

devote attention to the most spatially and channel-wise pertinent

features. This is useful when identifying small or irregularly

shaped tumors, which may resemble surrounding tissues. Also,

SPPF+ excels at multi-scale local and global context feature

representation through enlarged receptive fields and thus captures

spatial and contextual information. These enhancements allow for

better tumor detection and classification.
FIGURE 1

The overall workflow of YOLO-based brain tumor segmentation and classification. YOLO, You Only Look Once.
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3.5 YOLOv7 network architecture

YOLO is a real-time object identification method that utilizes

artificial intelligence. This method is well-liked since it is fast and

accurate. The YOLO algorithm is important for the reasons

listed below:
Fron
• Rate: This method accelerates detection because it can make

predictions in real time.

• Excellent precision: With little background errors, the

YOLO prediction approach produces accurate results.

• Learning skills: The method can recognize forms and apply

them for detection because of its excellent learning capabilities.
The methods used by YOLO are Intersection over Union (IoU),

bounding box regression, and residual blocks. In order to accurately

diagnose a brain tumor, the therapy needs to be stage-specific and

timely. As illustrated in Figure 2, the YOLOv7s model architecture

is composed of two primary elements: the head network and the

backbone network. We conducted the initial steps of image

processing on the first input image to make it suitable for the

backbone network.

Once the images are properly processed, the backbone network

is responsible for retrieving the relevant information. These features

are sent to the head network, which integrates them for further

analysis toward fusion-based object detection. A balanced

architectural structure to achieve detection and spatial precision

that overlaps features onto the brain’s natural logic division must

exist within the brain to permit the combination of multiple features

efficiently and logically.

The YOLOv7 algorithms’ infrastructure system is composed of

the following elements: MaxPool1 (MP1), the extended efficient

layer aggregation network (E-ELAN), and the CBS (convolution,

batch normalization, and SiLU (Sigmoid Linear Unit)) component.

This subsystem executes the SiLU (Sigmoid Linear Unit). activation

function, batch normalization, and convolution as processes to

sharpen the learning ability of the network. The E-ELAN

component improves the gradient flow issues within the ELAN

design by enabling modular computation feature learning, which

allows the network to learn new features, thereby improving the

modular computation feature learning.

The MP1 component is divided into two separate sections. The

shorter subdivision utilizes a 1 × 1 flow and kernel CBS method to

decrease it to scale, a 2 × 2 flow and a 3 × 3 kernel to minimize each

dimension of the perception, and a combination work to combine

the characteristics retrieved from both divisions. The higher section

utilizes a 128-output channel CBS module. An image’s dimensions

are maintained as the total number of channels is decreased using

the MaxPool method and the 128-output-channel CBS module.

MaxPool and CBS processes improve an underlying network’s

ability to recognize significant characteristics through a source

visualization. Whereas the CBS method gathers areas with the

least numbers, the MaxPool method collects limited localized

areas with the greatest numbers. These techniques optimize the
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framework’s entire performance and effectiveness by improving its

feature extraction capabilities.

YOLOv7’s core architecture employs the E-ELAN and

incorporates the Feature Pyramid Network (FPN) design for

feature extraction across multiple base layers. Utilizing the Spatial

Pyramid Pooling (SPP) architecture, the Convolutional Spatial

Pyramid (CSP) model enhances the collection of features at cheap

computations across multiple sizes. By merging SPP and CSP, the

SPPCSPC component increases the sensing area of the

entire system.

Hardware specification—CPU: AMD Ryzen 9 7950X or Intel

Core i9-13900K.

Integrating the ELAN-W layer improves feature extraction

greatly. The MP2 block is used with two additional output

channels, which are equivalent to the MP1 block. Utilizing a 1 ×

1 convolution to calculate the classification, confidence, and anchor

framework, the Rep structure modifies the number of image layers

in its final characteristics. The Rep structure, which is based on

RepVGG, includes a modified residual architecture that

convolutionally decreases real estimations. Its ability to foresee is

preserved even as its complexity drops.

YOLOv7’s methodology is grounded in convolutional neural

networks and real-time object detection principles. Its loss function

is a composite of the following:

3.5.1 Bounding box regression loss (CIoU loss)
The Complete Intersection over Union (CIoU) loss improves

upon traditional IoU by incorporating distance between box

centers, aspect ratio, and overlap area:

LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ aυ

where IoU is the Intersection over Union between predicted and

ground truth boxes, r(b,b(gt)) is the Euclidean distance between the

centers of the predicted box b and ground truth box b(gt), c is the

diagonal length of the smallest enclosing box covering both b and

b(gt), v measures the similarity of aspect ratios, and a is the trade-off

parameter to balance the impact of aspect ratio.

3.5.2 Objectness loss (binary cross-entropy loss)
This function is used to evaluate whether an object is present in

a predicted bounding box:

Lobj = −½y log (p) + (1 − y) log (1 − p)�
where y is the ground truth objectness (1 if the object exists and

0 otherwise) and p is the predicted objectness confidence.

3.5.3 Classification loss (binary cross-entropy per
class)

This is a similar form to the objectness loss but applied

independently for each class in multi-class settings. The total loss

Lcls = −o
C

c=1
½yc log (pc) + (1 − yc) log (1 − pc)�
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where C is the number of classes, yc is the ground truth for class

c, and pc is the predicted probability for class c.

YOLOv7 also employs E-ELAN for deep and efficient feature

learning, enhancing detection accuracy even for small, low-contrast

tumors in MRI images.

We used YOLOv7’s default ComputeLoss function, which

combines CIoU loss for bounding box accuracy, objectness loss to

detect tumor presence, and classification loss for tumor type. These

help to improve detection and classification performance. Although

ComputeLossOTA and other advanced loss functions were not

used, they have potential for handling low-quality or imbalanced

data better.
3.6 Hyperparameter tuning and
optimization of YOLOv7 model

To optimize the efficiency of a deep learning model, one must

fine-tune the specific hyperparameters related to it. In this study,

the hyperparameters of the YOLOv7 model were tuned to maximize

detection and classification accuracy while minimizing resource

expenditure. Their values, alongside a brief description of the reason

for their selection, are summarized in Table 2.

The learning rate was 0.01, facilitating incremental weight

adjustments to promote stable learning and convergence. The

selected batch size of 16 optimized training efficiency while
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accounting for GPU memory limitations. Training the model for 50

epochs achieved a balance between training duration and performance,

allowing for sufficient learning while mitigating the risk of overfitting.

The Adam optimizer was utilized because of its adaptive learning

rate mechanism, enhancing convergence in non-convex optimization

problems. Regularization was implemented through a weight decay of

0.0005, which reduced overfitting while maintainingmodel complexity.

To further boost model performance on the training images,

various data augmentation practices such as rotation, scaling, and

flipping were implemented. These augmentations emulate changes

found in real data, improving the model’s performance on data that

it has not previously encountered. Additionally, all images were set

to a uniform input size of 608 × 608 pixels. This standardization

improves consistency and ensures the preservation of essential

details required for precise tumor detection.

Customized anchor boxes, generated through k-means

clustering on the training data, facilitated the accurate localization

of bounding boxes. The IoU threshold of 0.5 was employed to

establish valid detections, effectively balancing sensitivity and

specificity in tumor detection.

The model was carefully designed to avoid overfitting to larger

tumors and underfitting on smaller ones by incorporating effective

regularization, data augmentation, and architectural enhancements

like SPPF+. These strategies ensured balanced learning across

different tumor sizes, improving generalization and maintaining

high detection accuracy.
FIGURE 2

YOLOv7 network architecture.
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4 Comparison of performance metrics
of YOLOv7

Although combining YOLOv7 with post-processing algorithms

like GrabCut can refine the segmentation process, our dataset did

not require that for YOLOv7 due to its strong spatial feature

extraction and precise bounding box predictions. With high-

resolution MRI images and well-annotated labels, YOLOv7 was

able to accurately localize tumor boundaries and did not need

additional segmentation processes, thus saving steps in the

workflow while maintaining high performance.

The trained model is validated using evaluation metrics based

on the confusion matrix. In the confusion matrix, true positive (TP)

represents the value that has been accurately predicted and

corresponds to the label that is indeed present. When a model

predicts an identifier that was not present in fact, it is said to be a

false positive (FP). True negatives (TNs) suggest that the model is

not grounded in the truth and does not predict a label. The same

applies to false negatives (FNs), although these metrics, along with

F1 score, precision, recall, and mean average precision (mAP),

suggest some form of the truth.

Precision measures the accuracy of input received from users

along with the outcomes produced by the system. The overall

predictions demonstrate the accuracy rate of the predictions. In the
Frontiers in Oncology 09
case where the model needs to be validated, precision is calculated.

Also, the proportion of correct positive statements made is called

recall, also known as the ratio of true positives to the total number.

The cumulative performance of all classes based on the average

precision is referred to as the mAP. This entails calculating the AP for

each class and then finding its mean. The notation mAP@0.5 denotes

the metric mAP at convergence over an IoU threshold of 0.5, while

the notation mAP@0.5:0.95 signifies the average mAP calculated for

the range of IoU thresholds from 0.5 to 0.95. This figure illustrates the

relationship between the F1 score and the object detection confidence

threshold. Studying the F1-confidence curve is probably useful in

understanding the analytic balance between recall and precision at

different confidence thresholds (Equations 1–4) (21).

F1 score  =  2(TP)=2(TP)  +  FP  +  FN (1)

Precision  =  TP=TP  +  FP (2)

Recall  =  TP=TP  +  FN (3)

mAP =
1
No

N

i=1
APi (4)
5 Results

The dataset was divided into two sets: 70% for training and 30%

for validation. The model managed to obtain a low training loss of

0.021 and a final validation loss of 0.034, showcasing effective

learning and generalization.

The model was carefully designed to avoid overfitting to larger

tumors and underfitting on smaller ones by incorporating effective

regularization, data augmentation, and architectural enhancements

like SPPF+. These strategies ensured balanced learning across

different tumor sizes, improving generalization and maintaining

high detection accuracy.
5.1 Precision performance

Table 3 displays the results of YOLOv7’s performance

evaluation on 217 labeled box images. The precision metric was

applied to pituitary brain tumors, meningiomas, gliomas, and no

tumors. The model can precisely identify regions of interest (ROIs)

in images according to precision measurements. The precision score

of YOLOv7 was 0.837 across all classes. YOLOv7 obtained the

greatest precision score of 0.909 for meningioma. The precision–

confidence curves are displayed in Figure 3a, which illustrates how

well the models performed.
5.2 Recall performance

Table 3 displays a recall evaluation of the performance of YOLOv7

on 217 labeled box images. The recall score of YOLOv7 was 0.813
TABLE 2 YOLOv7 hyperparameter tuning details.

Hyperparameter Value Description

Learning rate 0.01
The initial rate for model weight
updates was chosen to balance
speed and stability.

Batch size 16
Number of training samples per
batch; set to optimize GPU
memory utilization.

Number of epochs 50
The total number of passes
through the training dataset is
sufficient for convergence.

Optimizer Adam
An adaptive optimizer was
selected for efficient convergence
and weight adjustments.

Weight decay 0.0005
A parameter for regularization
that penalizes heavy weights to
avoid overfitting.

Input image resolution 608 × 608
Image resizing ensures
consistency across the dataset
while maintaining detail.

Data
augmentation
techniques

Rotation,
scaling,

and flipping

Applied to enhance model
generalization and robustness.

Anchor boxes

Customized
(based on k-

means
clustering)

Improves the accuracy of
bounding box localization.

IoU threshold 0.5
Minimum overlap is required for
a detection to be
considered valid.
IoU, Intersection over Union.
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across all classes. YOLOv7 had the highest recall scores (0.96 for box

detection) for meningioma and a score of 0.551 for no brain tumors.

The box recall–confidence curves of YOLOv7, as shown in Figure 3b,

indicate that YOLOv7 performed well for meningiomas. In contrast, as

shown by the green line in the figure, the recall–confidence curve for no

tumor implies poor performance of YOLOv7.
5.3 Mean average precision (mAP@0.5)

With 217 labeled box images, Table 3 displays the mAP with the

versions of YOLOv7 assessed at the IoU threshold of 0.5. For box

detection, the mAP score was 0.879. YOLOv7 had the greatest mAP

scores (0.974) for box detection in meningioma cases. YOLOv7 had
Frontiers in Oncology 10
0.948 for glioblastoma, 0.929 for pituitary tumors, and 0.665 for no

brain tumors. The F1-confidence curves for YOLOv7 are shown in

Figure 3c. The meningioma models functioned well. Nonetheless,

the lack of tumor exhibits a low slope, signifying inadequate

performance in comparison with comparable categories.

Moreover, the data demonstrate that for YOLOv7, the optimal

box confidence value was 0.322 for obtaining an F1 score of 0.88.
5.4 Mean average precision (mAP@
0.5:0.95)

Table 3 presents the mAP results obtained using the YOLOv7

algorithm for detecting the bounding boxes of 217 labeled images at
FIGURE 3

The Performance Curves of the YOLOv7 model for brain tumor detection: (a) Precision confidence curve. (b) Recall confidence curve. (c) F1-
confidence curve. (d) Precision-recall curve.
TABLE 3 Performance evaluation of the YOLOv7 model.

Class Images Label Precision Recall mAP@0.5 mAP@0.5:0.95

All 217 217 0.837 0.813 0.879 0.442

Glioma 46 0.887 0.854 0.948 0.511

Meningioma 50 0.909 0.96 0.974 0.52

Pituitary tumors 72 0.865 0.886 0.929 0.461
mAP, mean average precision. Meningioma tumor has the highest Precision, Recall, mAP@0.5 and mAP@0.5:0.95 values among all the tumor classes.
The Bold Values in Table 3 highlights : that the Meningioma tumor class has given the highest Precision, Recall, mAP@0.5 and mAP@0.5:0.95 values among all the classes of tumor in our
proposed model, which is already highlighted under the Table 3.
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an IoU of 0.5–0.95. The model considers an object detected if its

IoU threshold score is between 50 and 95. For box detection tasks,

the model yielded a mAP@0.5:0.95 score of 0.442. The highest

mAP@0.5:0.95 score of 0.52 was observed in the meningioma cases.

The precision–recall curves for the YOLOv7 model are provided in

Figure 3d. It indicates that, other than the no tumor category, the

model performs reasonably well for all classes. Unlike the

meningioma and pituitary cases, the no tumor curve tended to

have a higher rate of false positives.

Observation: High precision and recall across classes and strong

mAP@0.5.

Decision: Confirms that the model effectively detects and

classifies tumors with minimal false positives or negatives.
5.5 Confusion matrix

The YOLOv7 standardized confusion matrix is displayed in

Figure 4, which reveals that the model performs well for all classes

with the exception of no tumor, which has a high false-positive rate

of 0.35.

The YOLOv7 model’s forecast is shown in Figure 5. These were

used to maximize computational effectiveness and speed up

inference, making it possible to identify instances in a variety of

images. The anticipated images demonstrated the accuracy with
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which the brain tumor identification system operated following its

training on the initial images. The complete outcomes of

classification using the YOLOv7 model are presented in Figure 6.

The experiment’s findings proved that YOLOv7 produced

useful outcomes.

Observation: Diagonal dominance with few misclassifications,

mainly between glioma and meningioma.

Decision: Model performs well, but further data augmentation

or fine-tuning could reduce misclassification.

Observation: Accurate bounding boxes drawn over tumors with

correct class labels.

Decision: Demonstrates the model’s potential for assisting in

real-time clinical diagnosis.
6 Discussion

Meningioma, glioma, pituitary tumor, and no tumor were the

four different types of brain tumors in which the results of the

YOLOv7 were assessed. Numerous measures, such as the confusion

matrix, precision, recall, F1-curve, and inference criteria, were used

to assess these models. All different categories, excluding no tumor,

which had a higher false-positive rate of 0.35 for YOLOv7, were

found to perform worse than the model.
FIGURE 4

Confusion matrix for YOLOv7 model.
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Notably, YOLOv7 outperformed the others in the identification

of meningiomas, gliomas, and pituitary tumors. Together with the

absence of a tumor, the research also presented precision–

confidence curves that showed how well the algorithms worked.

Unexpectedly, meningioma recall was the top in YOLOv7 memory

evaluations. These findings indicate that while both models

performed exceptionally well overall, YOLOv7 performed better

over a wide range of criteria for evaluation, especially when it comes

to mAP@0.5–0.95.

To resolve the questions outlined in Section 1, the study used a

dataset of annotated MRI scans with brain tumors such as gliomas,

meningiomas, and pituitary tumors under the said architecture. The

results proved the efficacy of YOLOv7, as it achieved high detection

accuracy and strong class discrimination granularity, thus

reinforcing its suitability for brain tumor classification. As for the
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other algorithms, YOLOv7 outperformed them all in speed and

mAP in comparison to YOLOv8, U-Net, and Faster R-CNN,

illustrating its validity in real-time medical diagnosis. Moreover,

the model was improved by adjusting anchor boxes, augmenting the

dataset, and optimizing the learning rate, thus demonstrating the

model’s adaptability to the varying shapes and sizes of tumors.

These enhancements made the model sensitive and robust for

real-world clinical use. In general, the study confirmed that with

appropriate modifications, YOLOv7 is a reliable and competent

brain tumor classification and detection tool.

As compared to the model presented by Rao et al. (12) in Table 1,

which implemented CNN-RNN with attention but lacked real-time

capability, our model YOLOv7 + CBAM + SPPF+ achieves faster and

more accurate detection (99.5%) with better interpretability results

using Grad-CAM. Also, the attention-based enhancement in our
FIGURE 6

Comparison of performance metrics.
FIGURE 5

Prediction of brain tumor using YOLOv7 model: (a) meningioma, (b) pituitary tumor, (c) glioma, and (d) no tumor.
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model improved localization and feature learning, which helped it to

better capture the small or irregular tumors that earlier models

frequently missed detecting. Thus, our model offers an excellent

balance between speed, accuracy, and visual explanation, therefore

making it better suited for clinical deployments.
7 Comparison of the proposed
architecture

Our earlier research used VGG16 deep learning models with a

73% classification accuracy to classify brain tumor grades from the

Br35H, Figshare, and SARTAJ datasets as shown below in Table 4.

Using an MRI scan of a collection on Figshare, the CNN model was

used to classify tumor types (22). Additionally, they did not

incorporate any data augmentation strategies to obtain more MRI

images. They only managed an 84% categorization accuracy as a

result. F1 score, accuracy (ACC), precision, and recall were some of

the metrics. The outcomes highlight the potency of YOLOv7 for
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improving the performance measures of deep learning models,

which are contrasted in Table 4.

YOLOv7 was used to identify safety equipment, such as

helmets, goggles, coats, gloves, and shoes. The YOLOv7 model

performed better than YOLOv7-X by 1.7%, YOLOv5s by 6.6%, and

YOLOv5m by 12.2% in terms of mAP@0.5 value. This in-depth

analysis confirms the versatility of the YOLOv7 models and

recommends them as the approach for identifying safety

equipment for building laborers (23). Numerous studies have

shown the application of machine learning-based methods for

identifying objects to detect flaws, like road and building cracks.

In this study, the YOLOv5, YOLOv6, and YOLOv7 models were

trained and run using a particular dataset of potholes and cracks on

roadways. Their findings were reviewed and evaluated. Monitoring

of the information showed that YOLOv7 performed the best, with a

mAP@0.5 value of 79.0% (24). YOLOv7 performed better than the

other models with a mAP@0.5 score. Our recommended work had a

mAP@0.5 score of 87.9%, which is higher than the other mAP@0.5

score displayed in Figure 7.
TABLE 4 Comparison of the proposed architecture.

Dataset Architecture Classification type Accuracy (%) Precision Recall F1 score

Br35H, Figshare, and SARTAJ VGG16 Multi-class 73 0.7 0.75 0.72

Figshare (22) CNN Multi-class 84.1 – – –

BraTS 2018 subset (14) YOLOv5 Multi-class 85.95 – – –

BraTS 2017 dataset SegNet Multi-class 79 0.85 0.85 0.85

Brain tumor dataset by
Jun Cheng

CNN Multi-class 84.19 – – –

Roboflow YOLOv7 Multi-class 87.9 0.837 0.813 0.88
n of the YOLOv7 model.
FIGURE 7

Compariso
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8 Conclusion

An extensive assessment of the brain malignancies categorized

and segmented by YOLO-based deep learning, namely, meningioma,

glioma, and pituitary tumor, is presented in this work. When it came

to accurately identifying and segmenting the particular tumor class,

YOLOv7 performed better than the others. These models performed

remarkably well in recognizing meningiomas; YOLOv7 performed

particularly well in identifying gliomas and pituitary tumors.

Moreover, YOLOv7 performed similarly in precision scores across

all three tumor classifications. The greatest recall ratings for

meningioma in YOLOv7 were noted. These results support the

efficacy of YOLO models in accurately identifying brain tumors,

especially meningiomas. They also provide useful data regarding both

the constraints and effective traits for such designs, opening the door

to more artificial intelligence and medicine developments. The

proposed YOLOv7-based model, enhanced with CBAM, SPPF+,

and Grad-CAM, maintains high accuracy and interpretability,

which are both essential for real clinical settings. Like recent works,

this model solves the major challenge of explainability, which is

important for enabling trust and integration into diagnostic

workflows. This approach is easy to validate by medical experts,

and it is very important to do so. Radiologists can ensure that the

model’s predictions align with the clinical interpretations, especially

using Grad-CAM for explainability. Their reviews and comments can

help improve the model, thus enhancing trust in the model for real-

world use.
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