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The diagnosis and treatment of brain tumors can be challenging. They are a main

cause of central nervous system disorder and uncontrolled proliferation. Early

detection is also very important to ensure that the intervention is successful and

delayed diagnosis is a significant factor contributing to lower survival rates for

specific types. This is because the doctors lack the necessary experience and

expertise to carry out this procedure. Classification systems are required for the

detection of brain tumor and Histopathology is a vital part of brain tumor

diagnosis. Despite the numerous automated tools that have been used in this

field, surgeons still need to manually generate annotations for the areas of

interest in the images. The report presents a vision transformer that can

analyze brain tumors utilizing the Convolution Neural Network framework. The

study’s goal is to create an image that can distinguish malignant tumors in the

brain. The experiments are performed on a dataset of 4,855 image featuring

various tumor classes. This model is able to achieve a 99.64% accuracy. It has a

95% confidence interval and a 99.42% accuracy rate. The proposed method is

more accurate than current computer vision techniques which only aim to

achieve an accuracy range between 95% and 98%. The results of our study

indicate that the use of the ViT model could lead to better treatment and

diagnosis of brain tumors. The models performance is evaluated according to

various criteria, such as sensitivity, precision, recall, and specificity. The

suggested technique demonstrated superior results over current methods. The

research results reinforced the utilization of the ViT model for identifying brain

tumors. The information it offers will serve as a basis for further research on

this area.
KEYWORDS
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1 Introduction

Brain cancer develops within the brain. Symptoms can include

memory loss, speech changes, frequent headaches, and difficulty

concentrating. Some brain tumors can persist for extended periods

(1). Malignant brain tumors, characterized by rapid growth,

invasion of surrounding tissues, and indistinct borders, The

spread of Brain tumor to other areas of the spinal cord or brain

can be considered a serious concern. On the other hand, the growth

of benign tumors is slow, and they do not invade other tissues (2).

There are two kinds of brain cancer. These are primary and

secondary. The spread of cancer cells from one organ to another can

lead to secondary brain tumors. They can occur through the

lymphatic or hematogenous pathways. For instance, certain types

of cancer are known to migrate to the cerebral region. Lung cancer

is a primary source of these tumors. Aggressive forms of breast

cancer, such as triple-negative, are known to carry a significant risk

of brain metastases. Melanoma, which is known to spread beyond

the body, often affects the brain. Colorectal cancer, on the other

hand, is less common but can also trigger metastases in the cerebral

region. Understanding the various sources of brain tumors can help

develop effective diagnostic and therapeutic procedures (3).

According to the WHO, a brain tumor can be classified into four

phases. It can be classified as a type of cancer. A grade is assigned to

brain tumors based on their growth rate, as well as the appearance

of abnormal cells under a microscope. Grade I tumors are the least

aggressive, while Grade IV tumors are the most aggressive. While

staging is not commonly used for brain tumors as it is for other

cancers, early detection of the disease and treatment are crucial for

improving save lives (4).

Various types of treatment methods are used for brain tumors.

These include surgery, chemical treatments, and ultra-violet

radiation. Early detection is very important for brain tumors as

they can affect the lives of patients and their families (5). The

standard method for imaging tumors in the brain is MRI. This

method utilizes radio waves and magnetic fields. CT scans use X-

rays, while those for detecting brain tumors are made using PET.

Radioactive substances are placed in blood to visualize the tumor

(6). Biopsy, which involves using a microscope to examine a small

portion of the tumor, is the most accurate method of detecting brain

tumors. In some cases, conventional imaging techniques are not

always capable of detecting brain tumors. These scans can be time-

consuming and costly. It can be very challenging for patients with

chronic conditions to maintain regular scans (7).

MRI manual extraction involves segmenting or identifying

particular regions or structures in the images that were taken

using the scanner. A human expert, like a radiologist, can do this.

They would draw boundaries or manually trace the structures

around them using software. The use of manual extraction for

MRI scans can have various drawbacks. This can be time-

consuming, labor-intensive, and costly. In addition, it can lead to

human error, which can result in inaccurate results (8).

On the other hand, automated systems for extracting MRI data

have numerous advantages, such as reducing time and expense,

ensuring accuracy, enhancing treatments, and improving the

quality of care for patients. These systems do not encounter
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human error, and they can process vast amounts of data in a

quicker than manual approach, rendering manual intervention

unnecessary (9). Automated systems can be utilized to optimize

the treatment outcome for those with brain tumors, allowing them

to receive the most out of their treatment and save their lives (10).

In addition, knowing the warning signs and seeking medical help

immediately can greatly enhance their chances of survival.

Automated systems handle more data than human workers, and

their accuracy is better due to how tumors’ size and location affect

the various imaging techniques (11).

There are various methods that have been tried to categorize

brain tumors utilizing MRI scans. Some of these include utilizing

machine learning methods like the KNN, RF, and SVM, which were

developed by taking advantage of the unique features of MRI scans.

The development of CNN models in 2022 prompted the creation of

computational resources that enabled deep learning programs to be

created. This led to the creation of new approaches for studying

brain tumors. These methods were developed using the existing

models. The Inception, Xception, and Visual Geometry Group 16

(VGG16) models are commonly used in computer vision

applications (12). The researchers were able to use these models

to accurately identify brain tumors, demonstrating the potential of

pre-trained computer models. They were correspondingly able to

use various other methods for generating synthetic data. In a recent

study, the researchers utilized variational auto encoders and

adversarial networks for generating synthetic data. They were also

able to use ResNet50 for their tumor classification. A study

conducted on the Residual Networks (ResNet50), VGG16,

VGG19, and Densely Connected Convolutional Networks

(DenseNet21) models revealed that the former performed better

than the others did. The authors also noted that CNNs tend to have

inductive biases, such as the translation equivariance. CNN models

performance when evaluating long-range data may be affected by

certain biases. They also require data augmentation to improve their

performance (13).

The authors utilized different methods to identify and

categorize brain tumors. Some of these include the Non-

dominated Sorting Genetic Algorithm (NSGA), You Only Look

Once version 2 (YOLOv2), Latent Dirichlet allocation (LDA), SVM,

KNN inception, and LDA. The algorithm was developed by

utilizing the BRATs dataset, which included both LGG and HGG

scans. Due to the algorithm’s individual test, its performance is not

known for other datasets. A method that can accurately segment

and identify brain tumors using MRI scans was presented. The

suggested structure for this method is a bitr-unit that comprises of

an encoding and decoding component. In spite of the potential of

deep learning and AI to identify tumors, they are incapable of being

utilized effectively. The accuracy and volume of the data are the

factors that affect the output of these algorithms. In some cases, they

may not be capable of distinguishing between unusual and

uncommon types of tumors (14). Neural networks can be utilized

to implement the ViT algorithm, which is designed to recognize

images. The algorithm can identify complicated tumors by breaking

down the data into parts. For a test, it produces a probability map

showing the areas of the brain where the cancer cells are located.

Through the use of MRI data and images, trained models can then
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extract other details. The BraTS collection is one of the most

prominent sources of data on brain tumors. It includes MRI

scans and images of common types of the disease (15).

Deep learning has been studied for the classification of brain

tumors. In a study conducted by Ahmad et al., they were able to

achieve an accuracy of 96.25% used a framework that combines an

adversarial network and an encoder-decoder network (16).

Talukder et al. investigated transfer learning with various

architectures like ResNet50V4 and InceptionResNetV2, achieved

accuracies up to 99.68% but noted the need for improved image

quality (17). Polat et al. also employed transfer learning with VGG,

ResNet, and DenseNet models, achieved a top accuracy of 99.02%

used DenseNet121 and highlighting the benefits of transfer learning

for reduced training time and data requirements (18). Samee et al.

developed a hybrid model combining AlexNet and GoogleNet

architectures, demonstrating superior accuracy and sensitivity

compared to existing transfer learning techniques and traditional

machine learning methods (19). Alanazi et al. aimed to analyzed the

transfer learning technique’s efficiency in differentiating brain

tumors from MRI scans and achieved accuracy (96.9%) on a large

dataset and highlighting the model’s potential for real-time

applications (20). Ullah et al. compared nine deep learning

models, finding InceptionNetv2 to be the most accurate for

distinguishing between gliomas, meningiomas, and pituitary

tumors. They highlighted the need for larger datasets to improved

model performance and reduce training time (21). Mouhafid et al.

focused on hyperparameter optimization for brain tumor

classification, achieving 98.70% accuracy with an optimized CNN

model and emphasizing the importance of hyperparameter tuning

for maximizing model performance. They also suggested

incorporating a larger and more diverse dataset, including normal

brain images, for future research (22).

Despite the promising results, these studies highlight some

limitations. Several studies emphasize the need for larger, more

diverse datasets to improve model generalization and prevent

overfitting (23). Additionally, the computational cost of training

complex deep learning models, especially with limited data, is a

concern. Finally, further research on optimizing model

architectures and hyper parameters is crucial for maximizing

performance and adapting models for real-world clinical settings.

The author Bonada et al. (41) presened were potential applications

of deep learning and AI in analyzing brain tumors. MRI data may

be utilized to train such systems, which can then be used to

eliminate errors and segment tumors. Deep learning may be

utilized to enhance the scanner's accuracy and efficacy in

determining and treating brain tumors. Although deep learning

can be used in clinical practice, it faces various ethical and practical

issues. One of these is the training of models on large MRI datasets,

as this will help improve their performance. Further studies are

required to address the issues related to the segmentation of post-

operative images. New tools that have been developed with deep

learning capabilities have the potential to provide valuable

therapeutic insights.

Identifying brain tumors precisely from MRI scans is a critical

step in improving the treatment and phenomenon for patients. Due

to the varying characteristics of brain tumors, image analysis is
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challenging. This is because the acquisition and image

characteristics can vary. In addition to the type and size of the

tumor, other factors such as its location and shape can also be taken

into account to evaluate the prognosis, other factors such as pixel

spacing and contrast can also affect the development of effective

anomaly detection techniques. The benchmark dataset is an

essential part of any effort to evaluate and compare different

techniques for detecting brain tumors. Unfortunately, the

variations in the equipment and protocols used in the imaging

process can make it difficult to thoroughly analyze the images. The

paper presents a novel technique for identifying brain tumors. The

development of this method seeks to overcome the challenges of

image variability and optimize its diagnosis accuracy.

The use of architectural models to compare and contrast the

structures of brain tumors is a step in the right direction, though it

also highlights the need to improve the accuracy of diagnosis.

Instead of focusing on the main types of brain tumors, the CNN

versus ViT analysis should have looked into developing a method

that can automatically categorize them namely, Pituitary,

Menengioma, and Glioma. The reduction in the time it takes to

carry out surgery and diagnose it could be beneficial. The

contributions of the work are:
1. In order to properly categorize brain tumors, utilizing ViT-

based specimens it does not require specialized training.

2. The enhanced capabilities of ViT models for imaging brain

tumors could be achieve through further refinement.

3. A detailed analysis of the ViT models will be organized to

determine the appropriate classification standards for

brain tumors.
2 Materials and methods

2.1 Dataset overview

There were 5712 MRI scans of the human brain made available

on Kaggle. The repository’s MRI data was used to train and validate

the various techniques and models used in this study. The dataset is

known as Msoud (33) was a composite of the three aforementioned

sources. 1) Figshare (34), 2) SARTAJ (35) and 3) Br35H (36).The

scans were categorized into four categories. An MRI-based

procedure aims to identify and categorize tumors based on their

grade, location, and type. The method is initially carried out by

utilizing a single model for every classification task. The malignant

tumor known as the Glioma is frequently found in the brain.

Another type of tumor is the Meningioma, which can affect the

spinal cord area. MRI scans did not find traces of tumors in the

brain. The area surrounding the brain’s base is known as

the pituitary gland region, and tumors usually appear there. The

dataset consists of two folders: testing and training. The first one

contains almost 4855 MRI scans. They were used to generate the

suggested model. The second dataset included 857 scans, which

were utilized to test different assumptions. The data collected from

various medical institutions and hospitals has been carefully curated
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to provide a variety of tumor types and image characteristics.

Different protocols and scanners were used to acquire MRI scans,

which made the dataset even more diverse. The data included in this

collection is marked with binary labels that indicate the presence or

absence of a tumor. Experienced medical experts and radiologists

ensured the labels’ reliability by performing annotations. The data

collected for this project has been subjected to rigorous quality

control measures. All images were checked for various issues, such

as noise and artifacts.

The information collected from the MRI brain tumor dataset

can be applied for a extensive range of applications, including the

creation of models for the classification and detection of brain

tumors. Healthcare professionals and researchers can utilize

Kaggle to access the data. The platform serves as a vital source

of knowledge in the area of medical imaging and machine

learning. It offers a framework that enables the creation and

testing of algorithms that can be utilized in the detection and

classification of tumors in the brain. The diverse array of tumor

types and image characteristics makes the data set useful for

developing models that can generalize to other unlabeled

images. The data set is carefully curated and annotated to

ensure its usefulness and reliability.

To address the limitations of relying solely on public datasets

when training Vision Transformers, several strategies can be

employed. One approach is to augment the training data with

diverse datasets, including data from different clinical settings,

demographics, and imaging modalities. This helps to ensure the

model learns a broader representation of tumor variations and

diminishes the risk of overfitting to specific characteristics of the

public datasets. Transfer learning can be used to enhance the training

performance of a model by training it on a larger set of data. This can

then be used to fine-tune the model’s classification capabilities. In

addition, it can be used to augment the data by implementing various

techniques such as color jittering, random cropping, and rotation.

These techniques can help reduce the overfitting of the model.

2.1.1 Including and excluding scan criteria
The study seeks to find out if this condition affects the

functioning of the brain and what causes developmental delay in

individuals with compromised cognitive function who were referred

for MRI. They were excluded from the study due to their conditions,

such as being infected with diseases such as tonsillitis and

pneumonia, or having genetic disorders. The investigation was

decided on using neuroimaging due to the limited number of

genetic and metabolic tests available and the financial constraints.

All children with a delay in development were examined using MRI

scans. The sequences used for the study included various types of

MRI. Some of these were: the Axial EP2D diffusion, the Axial

T2TSE, the Axial PDTSE, the Axial FLAIR, and the Coronal T1TIR.

Demographic and clinical details of the enrolled patients were also

taken into account.

Meningiomas: Most meningiomas are benign and usually occur

in older individuals. They account for around 13 to 25% of all

intracerebral tumors.
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Gliomas: Most malignant tumors are categorized as gliomas.

They account for over 80% of all intracranial malignancies and are

known to cause significant morbidity and mortality.

Pituitary Tumors: Most pituitary tumors are benign. They can

disturb the body’s hormonal balance and cause severe changes.

About 10 to 15 percent of all intracranial tumors are caused by

these tumors.
2.2 Pre-processing and augmentation
of data

Data preprocessing is an integral part of machine learning, as it

helps develop models by converting input data into an acceptable

format. The research utilizes the torchvision library’ transform.compose

() feature to perform various transformations and enhancement

procedures. Data augmentation is a vital part of machine learning, as

it helps in identifying and classifying images. Data augmentation

involves exposing models to varying variations in the input data to

help them recognize patterns in various orientations and positions. It

can also improve the generalization of the model by minimizing the

likelihood that it will deviate from the training data. Moreover,

diversifying the training set helps the model obtain a wider variety of

learning instances. Noise and variations in the data can be introduced

through data augmentation, which can result in overfitting. Machine

learning models need to have better robustness and generalization. To

achieve it, all input scans should be adjusted to 224*224 pixels. The

images should also be rotated and balanced with a probability of 0.5.

The value of 0.5 is indicated as the probability that each image will be

rotated. On the other hand, with a 50% probability, each image will be

horizontal. Randomness can increase the diversity within the dataset

and enable the model to learn from different viewpoints. The various

parameters of the images, such as their brightness, saturation, and

contrast, are adjusted using color jitter. They are then converted into the

PyTorch image format using the PIL format. After this, normalization

is performed to enhance the model’s training and performance. The

random_split() method is used for splitting the data. Preprocessing

techniques like augmentation and transformation are then used to

boost the model’s efficiency. Volume, quality, and diversity of the

collected image data are important factors that can be considered when

it comes to improving a machine learning model.

The following steps are utilized to process the collected information.
1. Data Collection and Labeling: We were able to obtain

various scans of brain tumors using the Kaggle dataset.

These images show numerous types of tumors, such as

meningiomas, pituitary tumors, and gliomas.

2. Data Splitting: This ensures the dependability of the model,

we split the data with 20% going for testing and 80% for

training in Scikit-learn. This method allows us to test the

effectiveness of the model on different data sets.

3. Image Resizing: To achieve uniform input dimensions, the

images must be adjusted using the target-size parameter in

the image data generator in Keras.
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4. Color Mode: The utilization of the red, green, and blue

(RGB) color scheme in deep learning exercises emphasizes

the fundamentals.

5. Label Encoding: A one-hot label encoding procedure is

utilized to convert labels into a numerical form. This

method can be utilize during training sessions to

minimize the loss of categorical information.

6. Data Augmentation: Through data augmentation, we can

enhance the model’s generalization and robustness. This

process is carried out through the use of various procedures

such as rotation, brightness, zoom, and flip. These

procedures help improve the learning curve of the model

by increasing its diversity.
2.3 Overview of deep learning in brain
tumors detection

The field of deep learning focuses on methods that are inspired

by neuroscience. In medical image analysis, it can be used to classify

and categorize objects. CNNs are frequently utilized in the

development of methods for identifying brain tumors. MRI scans

can help them learn the relationships among the various voxels in

images. A CNNmodel is made up of different components. Some of

these include the Input layer, output layer, pooling layer and

activation layer. The latter serves as the gateway that takes the

image to the processing network. The various features of an image

are extracted using various methods, such as Convolution, pooling

and activation. The classification and object detection process is
tiers in Oncology 05
carried out through the connected layer. The outputs of the model

are then used by CNN to generate its predictions. The Figure 1

shows the general architecture.

AnMRI scan is used to input data into a deep learning model. The

resulting images show the brain in a three-dimensional format, which

helps with identifying tumors. In addition to image resizing, other

preprocessing techniques are also utilized, such as image normalization

and jittering. The training process involves introducing a pretrained

model with pooling and convolution layers. The layers used in this

process filter the data's features and reduce its dimensionality. A

combination of the Dropout, ReLU, and Linear layers can improve

the model's overall performance. Prevent fitting and ensure that the

data is not distorted. The program outputs a representation of the type

of brain tumor that's represented by the class. It takes into account the

MRI scan's input and categorizes it into different types. The ReLU6

activation function is a modification of the ReLU linear unit. The

ReLU6 reduces the activation size to 6. This helps minimize the

precision computations and increases the robustness of

the computation and to prevent overfitting. The three additional

layers, namely the Linear, Dropout, and ReLU, are also added to

improve the performance. The last fully connected layer is then

modified to allow multi-classification.
2.4 Vision transformers in brain
tumor detection

Developers of visual data processing systems, such as those used

by computer vision tasks, can now benefit from ViTs, which are

advanced deep-learning models. By utilizing a new approach to
FIGURE 1

General architecture of Convolution Neural Network.
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processing images, ViTs has revolutionized the field. ViTs are

different from traditional CNNs in that they handle images as sets

of tokens, which enables them to process complex spatial

relationships and global information inside images. In the last few

years, CNNs have excelled in various vision-related tasks, like

segmentation for brain tumors. Because of their small size, CNNs

are not capable of handling long-range dependencies. This is

because these components depend on the output of distant

images. The sequences of medical images are often organized

based on the similarities and differences between human organs.

CNN models’ performance can be affected by how these sequences

are structured. Since these components contain vital information,

techniques related to sequence relations can be employed to solve

long-range dependencies in images. One of the most common

techniques used in developing ViTs is to model the relationships

between various token elements. Through this method, the models

can learn about global and local feature representations. The

method involves modeling the interaction between the different

token elements. This enables models that are based on ViT to learn

about global and local feature sets.

The vision transformer ViTs uses an encoder-only architecture.

It does not have a decoder. Self-attention is used by the researchers

to classify images. To segment an image, segment it into smaller

patches, which are referred to as patches. These transformations will

then turn the patches into tokens, a representation of certain parts

of an image is known as a flattened patch. This transition from a

two-dimensional to a one-dimensional format allows the model to

understand and process the image's various elements. It also helps

preserve the relationships and features of the image. Furthermore,

the flattened patches become lower-dimensional representations

that preserve their crucial features and relationships. Furthermore,

additional position embeddings are implemented to retain the

information within the structure. The transformations are then

sent to the transformer encoder, which allows the model to

recognize them as part of the overall structure. The feedforward

networks and self-attention layers work together to help the patches

learn from one another. The model can also recognize larger

patterns and localized features in the image. Unlike traditional

methods, which rely on a decoder, ViTs does not have a built-in

decoder. Instead, it uses a multi-layer Perceptron known as the

MLP head. This enables the model to tackle more intricate tasks,

such as object recognition and classification. Self-attention is then

utilized to achieve this goal, which makes the ViT an ideal choice for

vision applications.

The ViT architecture relies on the class token and the

embedding patch projection. The two integral transformations are

used in the architecture to provide various features. The patch

projection transforms the individual flattened patches into lower-

dimensional ones that have distinctive features. This method can be

used to extract important details about a particular patch from a

model. The class token projection takes advantage of the trainable

token vector’s reduction in dimensions to produce a feature vector.

The class token serves as a representation of the entire image by

merging information from all the patches.

The objective of the Multihead Self Consideration module is to

convert the input vectors into key, query, and value vectors, which
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precede the output's creation. This procedure can aid in identifying

the constituent relationships and interdependencies of the image's

different elements. Moreover, the module can calculate the sum of

the attributes' attention weights. In order to assure the training

effectiveness and stability of deep neural networks, various

techniques are utilized, such as residual connections and

layer normalization.

The ViT architecture features a FFN module. It is a component

that can provide a feed-forward neural network. The ReLU

activation feature is utilized to convert the output of the module

into different feature vectors. This happens through the

linear layers.

The following vectors represent the various characteristics of

the patch that is featured in the input image. The FFN module can

support various layer normalization processes. These stages

contribute to the training process’ stability and improve the

model’s effectiveness.

The framework is tailored to our requirements by implementing

a class structure that was specific to the task. We used the Tensor

Flow framework to build a neural network prototype, the initial

layer was referred to as the ViT model. The framework for

categorizing brain tumors was then improved by adding in task-

specific components. The layers were used to update the model and

highlight the details in medical images. We also took into account

the hyperparameters of the model to ensure that it performs well

during training and validation. For training, the model was taught

with an Adam optimizer and a learning rate of around 1*10-4.

The ViT model shows its high-level overview in Figure 2. In this

scheme, the images are arranged into smaller patches, and each of them

has n*n pixels. After partitioning the pixels, their values are then

flattened. The resulting output sequence is a flattened vector. Flattened

patches are then placed into a projection layer, and this produces a linear

embedding. Positional alignments are then introduced to the patch to

ensure that the information about the image’s position is always available.

A transformer encoder is then used to process the embedded sequences

and input sequences. The embedded positions are added to the patch’s

sequence in order to ensure that they are always updated with the correct

data. The input sequences are fed into the transformer. A transformer

encoder then processes the embedded and input sequences. AMultilayer

Perceptron (MLP) can be used to train the transformer. Multilayered

perceptron heads can be used to create new learning patches for the final

classification. The positions and embedded patches are then fed into the

transformer. It features multi-headed Multilayer Perceptron(MLP)

blocks and self-attention in Figure 3.

A new learning feature is added to the final classification of a

multi-layered perceptron by utilizing a patch embedding. The

output of the transformer-encoder model is composed of a set of

alternating multi-headed blocks of MLP and self-blocks.

The following are some of the features that are commonly used in

the creation of a layer: LN-Layer Normalization, Lx-Transformer En-

coder, and MLP-Multi-Layer Perceptron. A learnable embedding is

similar to the Bidirectional Encoder Representations from

Transformers (BERT) method in that it is composed of the patch

embedding sequence. The principle of ViT appears in Equations 1–4.

The Eposmatrix is the learning parameter in the positional embedding.

The first patch N follows a linear projection, while the Z0 layer outputs
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a linear projection. Position embedding can be used to set the order of

the patch images. The transformer-encoder layer’s first block begins

with a layer normalization. It goes through a multi-headed self-

awareness and a residual connection before ending with an MLP.

The second block then follows with an MLP and a residual connection

to the output Z1 and the Figure 3 shows the transformer encoder

model’sMLP. It has two connected Gated Linear Unit(GLU)-nonlinear

layers. The output of one of these components is normalized in

Equation 4. This indicates that the input image has a final dimension

D. The model’s classification head is connected to this output.

Z0 = ½Iclass; x1pE; x2pE;…; xNp E� + Epos E ∈ ℜ (P2 : c)�D, Epos

∈ ℜ (N+1)�D (1)

Z
0
l = MSA(LN(zl−1)) + zl−1 l = 1…L (2)

Zl = MLP(LN(z
0
l )) + z

0
l l = 1…L (3)

y = LN (Z0
L) (4)

The heads in the matrix generate the transformer’s output. In

Equation 5, the concept of self-attention is explained as the value, key,

and query matrixes are defined after the zl-1 value has been multiplied

in Equation 6.

H = Attention (Q,K ,V) = softmax
QKTffiffiffiffi

D
p

� �
V (5)

MultiHead (Q,K ,V) = Concat (head1,…,headh)W
0 (6)

head − Attention (QWQ
i ,KW

k
i ,VW

v
i (7)

The process in Equation 7 helps the model to identify the

relationships and dependencies between the various elements of the

input sequence. The model takes into account the layer normalization
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step after the multi-head Attention layer. This procedure ensures that

the network’s distribution is consistent. This ensures that the training

program’s gradients are stable. This can help improve the model’s

generalization and convergence performance.

The model takes into account the extracted features through a

MLP, which features two transformations. In Equation 8, a ReLU

function separates the transformations. The pipeline’s objective is to

extract intricate patterns from the highlighted features. The use of

these transformations allows the model to study the data’s

representations. For instance, the bias vector of the B2 model is

the weight matrix of MLP b1. On the other hand, the W1 of the W2

is the MLP’s weight matrix.

FFNN (x) = Re LU(xW1 + b1)W2 + b2 (8)

The CNN-ViT model employs a customized head that is

composed of various components, such as dropout, dense, and

ReLU activation layers. This structural change enables the CNN-

ViT to perform various tasks specifically based on the collected

information. It is more efficient and effective when it comes to

adapting to different tasks than tuning methods. The structural

modifications allow the CNN-ViT model to take advantage of the

data’s features and improve its performance. The structural

modifications can help prevent the model from overfitting in

small datasets. Also, the inclusion of regularization layers can

help prevent it from remembering the noise generated by the

training data. The ability to learn from ViT’s learning capabilities

can also benefit the CNN-ViT model. This learning method

combines the advantages of task-specific finetuning and pre-

training. It offers a more efficient way of training.

The ViT framework is built on top of the Conv2d layer. This

type of layer is important for enhancing the program’s

computational effectiveness. The ViT framework helps minimize

the number of parameters that are input in an image before they are

processed into the transformer-encoding layers. The framework

then passes this information along to the various processing steps,
FIGURE 2

A vision transformer has been used to classify brain tumors based on data.
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such as patching and embedding. The training batch for the Adam

optimizer contains 16 images, which will help the developer learn

more about the model. The model’s performance is then measured

using the Cross Entropy loss algorithm. Doing so helps the

optimizer update the model’s parameters.

Adam Optimizer qt+1 =
qt − e ∗mtffiffiffiffi

vt
p

+ h
� � (9)

In Equation 9, the learning rate is the amount of weight that the

Adam optimizer updates during each step of training. The terms vt

and mt are used to track the past changes that the optimizer makes

in order to improve its efficiency.

Cross Entropy Loss = −1 ∗o
N

i
yi ∗ log (ŷ i) (10)

In training, this Equation 10 is utilized to determine the

distance between the predicted labels and the actual ones. It takes

into account various factors, such as the number of samples and the
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predicted probabilities. For the training phase, the collected data is

evaluated and trained using a set of 10 epochs. The head of the

classifier is then substituted with a set of custom layers, such as the

dropout, BN, and ReLU activation layers. The model is now a

framework for training CNN-ViT labels.

The process of normalizing the activations in each batch takes place

through the use of the layer known as the BN layer presented in Equation

11. This ensures that the stability and training speed are improved.

BN(x) =
(x − m)ffiffiffiffiffiffi
s 2

p
+ e

(11)

This layer uses ReLU activation to learn complex relationship

structures. Equation 12 can maintain a positive value while turning

a negative one to zero.

RELU(x) −max (0, x) (12)

The regularization process of the dropout layer arbitrarily drops

neurons to shut out overfitting presented in Equation 13. This

prevents the activation of zero during training.

Dropout = x or 0 (13)

Linear transformations can be performed with the help of this

layer (Equation 14), which takes advantage of the effects of the input

vectors’ biases and weights.

Linear(x,W, b) = W ∗ x + b (14)

The ability to learn more complicated patterns will be enhanced

by adding these layers. The size of the final layer has also been

adjusted to correspond with the count of brain tumor groups. The

output from this part can help in identifying the different kinds of

tumors. Which is represented in Equation 15 as follows:

X 0 = Re LU(BatchNorm(W2 ∗Dropout(ReLU(BatchNorm(W1 ∗Z)))))

(15)

The above Equation 15 describes the classification head that has

been modified. It takes into account the final layers that are

responsible for the classification process. The input feature vector

for X is 764,024 dimensions. The weight matrices for the linear

layers are W1, W2, and BatchNorm. The Rectified linear unit

activation function is also called ReLU.

The algorithm’s final output is achieved by passing the system’s

cumulative heads through a linear layer. This method is useful in

calculating the learning curve for each head. Details about the ViT

models’ fine-tuning are also provided in this research. The framework

Tensor Flow is used to construct a neural network framework. The

initial layer is modeled using the ViT training algorithm. We added

task-specific layers to improve the classification of brain tumors.

These are then use to regularize the framework and enable it to

recognize different patterns in medical images. The classification task

is carried out according to a multi-class structure. The loss metric is

derived from the sparse categorical, and the performance metric is

derived from accuracy. The accuracy and confusion matrix are used

during the training and validation stages. The sensitivity of ensembles

and their specificity are then evaluated using per-class sensitivity and

sensitivities. The tuning model employs various hyper parameters.
FIGURE 3

The vision transformer is designed to provide multi-head
self-attention.
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These include the learning rate, the number of epochs in a cluster, the

mini-batch sizes and the Adam optimizer’s maximum size. The

optimization of the hyper parameters is carried out through the

validation set. The performance metrics are then calculated after

the cross-validation procedure. We performed batch size

optimizations and learning rate enhancements to ensure that the

model would converge and generalize.
3 Results

In ViTs, an input image is processed using a patch generator,

which is similar to the word token for Natural language processing

(NLP) transformers. This process then produces embedded images

using the transform encoder. The three components of the

transformer encoder block are all related to this process. A vision

transformer is a type of image recognition system. It can be utilized

for various applications, like object recognition. It is based on the

transformer architecture utilized in NLP, which converts text into

sequences and generates embedded text.
3.1 Dataset exploration

The Kaggle brain tumor MRI dataset consists of 5712 scans of

human brains. There are four classes of brain tumors, and the origin

of one of them is known as a glial cell. Another type is known as a

meningioma, which grows in the membranes surrounding the

spinal cord and brain. A magnetic resonance imaging scan did

not find a tumor. On the contrary, a tumor can grow in the pituitary

gland. The classification of the dataset revealed in Table 1 that it had

two folders: testing and training. The former holds 857 scans that

proved various assumptions, while the latter holds 4,855 scans that

were utilized to develop a suggested model.

The experiments that we performed on Kaggle were carried out

using the platform’s computational resources. We were able to store

and manage our data using the 73.1 GB of disk space that was

allocated to us. The Kaggle environment provided us with 13 GB of

RAM, which was very important for performing various tasks, such

as loading and manipulating data. We also had access to a powerful

GPU, which was able to provide us with an efficient and quick boost

to the training of deep learning models. In addition to RAM, Kaggle

also allocated 19.5 GB of storage for output storage. This was very

important for us as it allowed us to store and analyze the various

data generated by the experiments.
3.2 Data pre-processing and augmentation

When processing data related to brain tumors, the classes that are

encoded are typically categorized into various types or categories. To

make them easier to understand, the labels or names of these classes

can be changed. For instance, if the encoded classes are composed of

numbers, the first thing that you would do is change the name of one of

them to “glioma,” followed by “meningioma,” and finally “pituitary

adenoma” is showed in the Figure 4.
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3.2.1 Create train and test splits
Training and testing a model using a dataset that has 44 classes,

like brain tumor classification, usually involves splitting it into two

groups. The train_test_split utility will split your dataset into two,

with 20% going for testing and 80% for training. Training and

testing can be adjusted. The data collected from your brain tumor

will be split into two sets, one for testing and one for training. The

classes that are represented in the training set are those that are

related to the tumor.
3.2.2 Create validation and test splits
We can create test and validation splits for the brain tumor

image dataset, as well as training splits. These will be divided into

three groups: validation, training, and testing. We first split the data

into two groups: a training set and a temporary set. We then split

the latter into two sets: one for testing and one for validation. In the

second call to the training_test_split, set the size of the validation to

match that of the temporary set.
3.2.3 Create an image data augmentation layer
An image data augmentation layer for brain tumor images

needs to be created by implementing various transformations.

These transformations can be performed on the dataset by

altering its brightness, rotation, contrast adjustments, zoom, and

more. We replace the labels y_train and x_train with the actual

training data. Additionally, adjust the augmentation parameters as

needed based on your dataset characteristics.
TABLE 1 Summarized results of proposed experiments on train and test data.

Classification
types

Image count Trained
data

Tested
data

Type-1 (glioma) 1321 1100 221

Type-2 (meningioma) 1339 1144 195

Type-3 (No tumor) 1595 1241 216

Type-4 (Pituitary) 1457 1370 225

Total 5712 4855 857
fr
FIGURE 4

Label encoded classes for first 10 samples.
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3.3 Modeling using CNN and
vision transformers

A CNN is a type of deep learning algorithm that utilizes a grid-

like structure to process information. It is mainly used to handle

time and space-related data. Although they are similar to other

networks, CNNs use a variety of convolutional layers to increase its

complexity. Similar to neural networks, CNNs utilize a variety of

convolutional layers. As a result, they have an added complexity.

One of the most essential components of a CNN is a convolutional

layer. The diagram below shows a CNN brain tumor architecture,

which is used to predict brain tumors. The objective of this project is

to create a CNN that can handle various tasks, and improve its

accuracy in predicting the data that it collects.

The Vision Transformers and CNNs have their own

architectural differences. CNNs can still achieve remarkable

results even when using training data that is not as large as what

Vision Transformers require. The CNNs’ inclusion of certain

inductive biases may explain the difference between their behavior

and that of the Vision Transformers. On the one hand, these

networks tend to limit the scope of the analysis they provide,

making it more difficult to grasp global relations.

The Vision Transformers are able to capture various global and

diverse relations without the need for bias training, which is very

beneficial for them. However, it can also be very expensive to obtain

the necessary data. The ability of vision transformers to overcome

various image distortions, such as permutations and adversarial

patches, is a remarkable achievement. In spite of that, choosing the

right architecture for a Computer Vision task is not always the best

choice. Hybrid architectures, which combine the features of Vision

Transformers and convolutional layers, are often successful. Table 2

shows the architecture layer used in our proposed model prediction.

The accuracy metric is used by machine learning experts to

assess the capabilities of their models to distinguish benign brain

images from those with tumors. The accuracy metric is used by

engineers to evaluate the predicted output of a project. On the other

hand, the loss metric is focused on the difference between the actual

value and the desired outcome. Measuring the errors that a model

encounters in its input sessions is done with the accuracy metric. It

can be used to scrutinize its performance. Table 3 shows the

proposed model with different parameters.

A model’s validation accuracy and training levels are a good

indication of its proficiency. However, when the training accuracy

exceeds the validation accuracy, this suggests that the model may be

over fitted. When a model is too focused on the details of training

data, it cannot efficiently generalize to new data. Reducing the

model’s complexity or adding more training data can also help. Low

validation and training accuracy values indicate underfitting.

Underfitting can occur when a model does not have the necessary

complexity to extract the underlying patterns from the data. In

these cases, it is beneficial to adopt an ensemble strategy or enhance

the model’s complexity.

The training of the model is carried out in 50 successive epochs

using an adam optimizer. The validation and training accuracy

curves gradually improve as each interval passes. Figure 5 shows the
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progress of these curves. On the 15th epoch, our model achieves

97.50% and 96.75% accuracy, respectively.

The training and validation graphs are made up of ten epochs.

The former displays the training values, while the latter shows the

validation indicators. The training accuracy of different models

increases as time goes by. This is because their methods are being

refined to predict the labels of the data. This phenomenon tends to

enhance the training accuracy of the models as time goes on. CNN

could indicate that the models are being over-fitted with the data.

The training loss associated with proposed models can decrease as

epochs increase. This is because the enhanced training capabilities

enable the models to fit the data. Unfortunately, the validation loss

can also decrease as the number of records goes up. This suggests

that the models are overfitting.

Figure 6 shows the corresponding projection of flattened

patches. The patch engraver layer Patch Encoder can transform a

patch into a vector with a size projection_dim. It can also add a

learnable position that can be embedded in the image. The Vision

Transformer architecture is used in this work to address the issue of

image manipulation. Unlike other methods, it does not alter the

data and does not leave the algorithm untouched. In Figure 6, the

model shows how it uses the same kind of transformer block as in

NLP. The main difference between the two is how they interact with

inputs and outputs, and the way they are created. For instance, the

Transformer’s input is generated by splitting the image into smaller

patches, which then flattens them. This produces a set of vectors
TABLE 2 Architecture layer used in our proposed model prediction.

Layer
Input

Shape Parameter
Output

Input Layer
input ([None,240,240,3)]

output ([None,240,240,3)]

Conv2D
input ([None,240,240,3)]

896
output (None, 119, 119, 32)

MaxPooling2D
input ([None,119,119,32)]

0
output (None, 59, 59, 32)

Conv2D
input ([None,59,59,32)]

9248
output (None, 29, 29, 32)

MaxPooling2
input ([None,29,29,32)]

0
output (None, 14, 14, 32)

Flatten
input ([None,14,14,32)]

0
output (None, 6272)

Dense
input ([None,6272)]

401472
output (None, 64)

Dropout
input ([None,64)]

0
output (None, 64)

Dense
input ([None,64)]

65
output (None, 1)
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that are similar to sentence-like structures. This method combines

the generated vectors with positional embeddings. It is similar to

how sentences are ordered. Creating embeddings that can encode a

patch’s two-dimensional location did not improve the performance.

The ViT architecture does not have a decoding block since the

model’s latent space vector is big enough to be used for

classification. Its outputs are sent to an MLP network, which then

makes a decision based on the input. However, instead of a regular

input, the architecture uses a learnable class that is similar to the

BERT token. The Vision Transformer token is designed to

represent the image in a single vector. It can be used alone to

make decisions without requiring further outputs from the previous
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blocks. Its encoder can also perform other tasks, such as extracting

features from the image. The difference between the ViT and a CNN

is that the former has a lower inductive bias. This means that it can

train more correctly, but it also requires more data to extract global

connections. The ViT framework is composed of various

transformer blocks. Its Multi-Head Attention feature can help

address the patches in sequence. The output of these transformer

blocks is composed of various parameters, such as the projection

size, batch size, and the num-patches tensor. They are processed

using a classifier head.

This paper presents a method that enables a learner of

embedded patches to create an image representation. The output

of the Transformer Block is then adjusted with layers. This

transforms the output into a classifier head. The paper suggests

using the layers.GlobalPooling1D variable to aggregate the output

of the transformer block, particularly when there are several patches

and the projection sizes are large.

The paper’s results were achieved through the training of the

ViT model on the JFT-300M dataset. The model was then refined to

the desired dataset. Without pre-training, the model’s quality can be
TABLE 3 Proposed model with different parameters.

Model
Patch
Size

Backbone
Hidden
Units

Accuracy

R50-ViT-l16 16 * 16 ResNet-50 2048 92.50%

Proposed 16 * 16 CNN 2048 99.64%
FIGURE 5

Training and validation loss and accuracy (%) of (A) Convolution Neural Network, (B) Vision Transformer.
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improved by training it for several epochs. It can also be improved

by using more Transformer layers, changing the input images’ size,

and increasing the projection dimensions. The ViT model’s quality

can be affected by a variety of factors, such as its learning rate,

weight decay, and optimizer. In order to improve its performance, it

is recommended that one use a high-quality data set.
3.4 Performance metrics

The performance of deep learning and machine learning

techniques was evaluated using various metrics. Most studies

concentrating on the segmentation of brain tumors. There have

been many studies that utilized various factors such as precision,

sensitivity, specificity, and accuracy to classify brain tumors.
3.4.1 Confusion matrix
Classification models’ efficacy can be evaluated by utilizing a

confusion matrix, wherein the predictions are presented in a tabular

format. The Figure 7 shows the classification model produces error

estimates and accuracy ratings for each class. It displays the various

combinations of predicted and actual labels in its confusion matrix.

The numerical values represent the instances that fall under the

given category.

3.4.2 Accuracy
The accuracy (ACC) of a diagnosis or prediction of a brain tumor

can be computed using the same standard procedure as in predictive

modeling. In the prediction of brain tumors, the model makes various

predictions that can represent different outcomes. For instance, the

true positives and negatives of brain tumors can vary.
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These terms are utilized in the identification and prognosis of

brain tumors.
1. True Positive(TP), The correct prediction of a brain tumor

was made by a model known as the True Positive.

2. The True Negative(TN), on the other hand, correctly

predicted that there would be no brain tumor.

3. The False Positive(FP), on the other hand, incorrectly

identified a brain tumor when it was not present.

4. The False Negative(FN), on the other hand, mistakenly

states that a brain tumor will not exist if it is present.
With these definitions, the accuracy (ACC) formula for brain

tumor prediction would be as follows in Equation 16:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

The formula takes into account the proportion of the predicted

cases that were correct, both positive and negative. Although

accuracy can provide a good approximation of a model’s

performance, it does not mean that the model is perfect. For

instance, if the dataset is imbalanced, its performance might be

affected by various factors. In addition to accuracy, it is also

important to examine other metrics when performing a

comprehensive evaluation.

3.4.3 Precision
The precision (PR) of a model’s positive predictions is computed

by taking into account the proportion of accurate predictions as in

Equation 17.

Precision =
TP

TP + FP
(17)
FIGURE 6

(A) Input brain tumor blocks, (B) Projection of flattened patches.
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3.4.4 Recall
The Recall (RC) metric takes into interpret the number of

favorable outcomes that the model can achieve through every

favorable case. Equation 18 shows the model’s proficiency in

identifying such cases.

Recall =
TP

TP + FN
(18)
3.4.5 F1-score
The concept of the F1-score refers to the harmony between

precision and recall presented in Equation 19. It helps to understand

a model’s performance when these components are balanced.

F − Score = 2 ∗
Pr ecision ∗Re call
Pr ecision + Re call

(19)

The Figure 8 shows the various metrics that are used to evaluate

the performance of different models in terms of their classification

of tumors. The suggested model performed well in the precision

category. It had a Precision of 0.91, while its recall score was 0.82,

and its f1 score was 0.86. The precision for the Meningioma tumor

was at 0.72, while the recall score was at 0.81, and the F1 score was

at 0.86. The suggested model was also able to achieve a remarkable

97.89% accuracy. It was able to classify the Glioma tumor with a

precision of 0.97, a recall of 0.98, and an F1 score of 0.98. It was also

able to perform well in the classification of Pituitary tumors with a

precision of 0.91. It was able to achieve an exceptional precision of

0.91 in the classification of the Pituitary tumors. It also performed

well in recall with a score of 0.90 and an F1 rating of 0.90. In the
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classification of three different tumors, the proposed model excelled

in its categories, particularly in the precision and recall of No

Tumors. It was able to achieve an F1 score of 0.95.

The Figure 9 shows the various deep learning models that are

likely to be used in a classification task. They are based on various

metrics such as recall, precision, sensitivity, specificity, and accuracy.

The “Proposed” model boasts the highest accuracy (99.64%) and an

exceptional specificity (99.6%), indicating its strength in correctly

identifying negative tumor cases. YOLOv7 also demonstrates near-

perfect scores across all metrics, achieving 99.5% accuracy. Other

high-performingmodels, such as EfficientNet, YOLOv4, and VGG16,

achieve scores in the mid-to-high 90s range, demonstrating their

effectiveness. Ensemble methods (45, 46) and SVM (44) also show

competitive performance, highlighting the potential of combining

models and the continued relevance of traditional machine learning

techniques. While DenseNet (42) and VGG19 (43) achieve

respectable scores, they lag behind the leading models. For a more

comprehensive evaluation and comparison. The data used, as well as

the task and proposed methodology, are crucial. An in-depth

comprehension of the model’s training strategies, architecture, and

novel contributions can be achieved through this study. enabling a

more thorough assessment of its advancements over existing

methods. The accuracy rates of these techniques are shown in

the Figure 10.

The goal of this study is to improve the accuracy and clinical

relevance of brain tumor classification using preprocessing and

fine-tuning of models. It also deploys models on unseen data to

analyze and improve the performance of each class. Figure 10

illustrates a comparative analysis of brain tumor classification
FIGURE 7

A confusion matrix corresponding to proposed method.
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accuracy achieved by various Convolutional Neural Network

architectures. K-nearest neighbor (KNN), Random Forest (RF),

support vector machine (SVM), Linear regression(LR), block-

wise-Visual Geometry Group-19(BW-VGG-19), Patch Residual

neural network, Generative Adversarial Network(GAN) and Fine-

Tuned Vision Transformer (FT-Vit).The results demonstrate a

range of performance across different CNN models, with standard

CNNs achieving 95.49% accuracy (24). Architectures incorporating

domain-specific modifications, such as block-wise-Visual Geometry

Group-19(BW-VGG-19) (25) and PatchResNet (26), yielded

improved accuracies of 98% and 98.10% respectively. The

integration of Generative Adversarial Networks (27) further

enhanced performance, reaching 96% accuracy. Vision
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Transformer based approaches, including Fine-Tuned Vision

Transformer (FT-Vit) (28), R50-ViT-l16 and ViT-32 (29),

demonstrated competitive results, ranging from 90.31% to

98.254%. The study (30) revealed that K-nearest neighbor (KNN)

or support vector machine (SVM) improved the accuracy of the

softmax classifier when it came to detecting meningiomas. The

sensitivity of the model to overfitting and limited training data

highlight its disadvantages. Another study (31) revealed that the

KNN or SVM could achieve a 98.7% accuracy rate without

segmentation, which is better than the transfer learning methods.

However, segmentation still requires a considerable amount of

training time. Significantly, the proposed methodology

outperformed all other models, achieving the highest accuracy of
FIGURE 9

A comparison graph of precision, recall, sensitivity, specificity and F1-score with different approaches.
FIGURE 8

Performance comparison for different tumor categories.
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99.64%. This suggests that the specific architectural innovations and

training strategies employed in the proposed methodology

contribute to its superior performance in accurately classifying

brain tumors. Further investigation into these novel aspects could

provide valuable insights for advancing the field of medical image

analysis. The proposed models demonstrate superior precision

when it comes to distinguishing between different types of

tumors, such as meningioma, glioma, and pituitary. The proposed

models’ superior accuracy can be attributed to the use of a custom

classifier head, which allows for direct representations of the data.

In addition, the suggested models employ attention strategies to

enable them to extract intricate patterns and correlations from

medical imaging data.

Figure 11 provides a comparative overview of brain tumor

classification accuracy achieved by various approaches,

highlighting the superior performance of the proposed model.

The analysis encompasses a range of techniques (32), including a

multi-scale CNN, a CNN combined with Support Vector Machines,

a transfer learning-based CNN, a generic CNN, and the proposed

model. The performance metric accuracy, which is typically used in

classification tasks, has been utilized to evaluate each approach to

classifying. In this evaluation, the suggested model was able to

achieve an impressive performance rate, demonstrating its

capability to improve the classification accuracy of brain tumors.

This is because it has been able to extract various distinctive and

robust features from the images of the tumors. The suggested model

was also able to distinguish different types of brain tumors. Its

advanced structures were thoroughly tuned by using optimization

techniques. In addition, the inclusion of more layers significantly

improved its accuracy. The proposed models were able to improve

their accuracy by incorporating more layers, which help them

analyze medical images of brain tumors. The results of the
Frontiers in Oncology 15
evaluation revealed that the suggested model was able achieve a

99.64% precision rate. The high precision scores achieved by the

two proposed models indicated their capability to properly

categorize tumors.
4 Discussion

The goal is to create a vision transformer and a neural network

that can be utilized to detect brain tumors utilizing MRI scans.

Through the model, it was able to identify the different types of

brain tumors, such as meningioma, pituitary, glioma, and no

tumors. It demonstrated the potential of this type of vision

transformer in this domain. Despite its accuracy, the study noted

that the model could not guarantee a robust performance. To
FIGURE 11

Comparison graph comparison of proposed method with
Convolution Neural Network.
FIGURE 10

Comparison graph with the existing work.
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address this issue, it incorporated various metrics such as recall,

precision, F1 score, and complexity analysis. A training and

validation graph was also generated. The training accuracy of the

model improved steadily over the course of the study. However, its

validation accuracy started to show signs of overfitting. It eventually

stabilized at 0.97. This shows that the model can generalize to

unlabeled data. The study’s findings support the claim that the

CNN-ViT model is capable of accurately detecting brain tumors. It

also emphasizes the need for further evaluation and addressing

issues related to overfitting.

A comprehensive classification evaluation of the CNN-ViT

model has validated its capability to detect brain tumors. The

model was able to detect glioma tumors with a precision of 0.91.

This shows that it can identify this type of tumor with high

accuracy. It was also able to identify about 82% of the actual

glioma tumor cases with an F1 accuracy of 86%. In addition, the

model was able to identify various types of tumors, such as

meningiomas and pituitary tumors, with high accuracy and recall.

It performed well in all three metrics for the non-tumor class. The

results of these assessments reinforce the CNN-ViT classification

system’s reliability and accuracy in identifying brain tumors.

The study emphasizes the importance of taking into account the

various factors that affect the quality of data and the performance of

the model when evaluating its results. Table 4 compares the

proposed classification model with the current techniques. This

highlights its superior performance, and the inclusion of a healthy

brain class also adds to its complexity. This is typically not

considered in previous studies.
4.1 Limitations of the study

Training CNNs and ViTs on how to use high-quality datasets

can be challenging due to the scarcity of data. This is because diverse

sets of information are essential when creating models that

generalize across different attributes. Transfer learning or data

augmentation are usually needed when the data is limited.

Another issue is domain adaptation, as trained models may not

perform well on the other datasets. High-quality input data is also

important for ViTs, as they rely on it for their attention-focused

processing. Model interpretability is a must, as deep learning

frameworks are opaque. Comprehending the classification process
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helps build trust in a model and provides insight into how each

architecture handles images. This is important when evaluating

CNNs or ViTs. When there are biases in a model or data, they can

lead to the incorrect classification of an individual or group. This is

why it is important that CNNs and ViTs take the necessary steps to

reduce these biases. Compared to CNNs, ViTs are more

computationally demanding, which may make them unsuitable

for certain applications. This study faced limitations regarding

dataset availability and computational complexity. Accessing

comprehensive and current medical datasets for brain tumor

classification remains a challenge due to privacy concerns and

data scarcity. While public repositories like Kaggle offer valuable

resources, obtaining diverse and large-scale datasets remains crucial

for developing robust models. Additionally, the computational

demands of training complex models like CNN-ViT necessitate

significant processing power. Utilizing cloud-based platforms like

Google Colab’s free tier can partially mitigate this, but researchers

often face resource constraints and time limitations. Acquiring

higher-tier services or dedicated high-performance computing

resources would significantly expedite the research process,

enabling more extensive experimentation and model optimization.
5 Conclusion

The study revealed that the ViT and CNN models performed

well when it came to identifying brain tumors. The CNN models

performed well on both tests and training data, while the ViT

performed better on all parameters. It has been theorized that the

ViT model overfitted with the data it was trained with, which is why

it performed slightly below CNN’s classifiers. But, both of these can

be utilized to identify brain tumors. The two models can still be

utilized to classify brain tumors. However, the limitations of the

study are that only the CNN- and ViT models were trained using

powerful computational tools. In addition, the researchers did not

examine other methods that can be used to classify brain tumors.

The researchers only trained the CNN- and ViT-based models due

to their hardware limitations. The researchers also did not look into

other methods that can be utilized to categorize brain tumors in

MRI scans. They only explored four types of brain tumors. After

analyzing the CNN and ViT models’ results, the researchers will
TABLE 4 Comparison with previous work.

Model Dataset Classes Best Model Accuracy

Nine pre-trained TL classifiers (37) SARTAJ 3 InceptionResNetV2 98.91%

CNN and SVM (38) Figshare 3 – 95.82%

TL-CNN (39) Figshare, SARTAJ, BR35H 3 Developed TL CNN 95.75%

Generic CNN and six TL models (40)
Figshare, BR35H and
SARTAJ combination

4 InceptionV3 97.12%

Proposed
Figshare, BR35H and
SARTAJ combination

4 CNN 99.64
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now look into how they can be improved and expand their training

to include more types of brain tumors.

We need to conduct further tests and investigations to see if our

suggestion has been effective. In medical imaging, the detection of

brain tumors is a major area of research. We use various learning

frameworks and models in our work, and there is still a lot to be

done in this field. New systems can be developed to improve the

precision of a diagnosis, which can help medical professionals and

patients make informed decisions. Such advances in diagnostic

technology can help improve the outcomes of patients and

enhance the systems’ capabilities. The data collected for the study

will be used to analyze the model’s capabilities in detecting various

brain lesions. Though the present work marks the initial step

toward establishing a system for detecting brain tumors, further

research is required to enhance its capabilities.

In the future, we might use transformer-based structures to

detect brain tumors. This approach marks a departure from CNN’s

conventional methods, and it gives a new perspective. The main

objective is to extract more information-rich features, which would

enhance the model’s capabilities in distinguishing patterns. The

concept of simplifying the network structure adds a dynamic

dimension to the work being carried out in this field. It allows us

to discover new ways to detect brain tumors.
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