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Objective: To develop a non-invasive, radiation-free model for early colorectal

adenoma prediction using clinical electronic medical record (EMR) data,

addressing limitations in current diagnostic approaches for large-

scale screening.

Design: Retrospective analysis utilized 92,681 cases with EMR, spanning from

2012 to 2022, as the training cohort. Testing was performed on an independent

test cohort of 19,265 cases from 2023. Several classical machine learning

algorithms were applied in combination with the BGE-M3 large-language

model (LLM) for enhanced semantic feature extraction. Area under the receiver

operating characteristic curve (AUC) is the major metric for evaluating model

performance. The Shapley additive explanations (SHAP) method was employed

to identify the most influential risk factors.

Results: XGBoost algorithm, integrated with BGE-M3, demonstrated superior

performance (AUC = 0.9847) in the validation cohort. Notably, when applied to

the independent test cohort, XGBoost maintained its strong predictive ability with

an AUC of 0.9839 and an average advance prediction time of 6.88 hours,

underscoring the effectiveness of the BGE-M3 model. The SHAP analysis

further identified 16 high-impact risk factors, highlighting the interplay of

genetic, lifestyle, and environmental influences on colorectal adenoma risk.

Conclusion: This study developed a robust machine learning-based model for

colorectal adenoma risk prediction, leveraging clinical EMR and LLM. The

proposed model demonstrates high predictive accuracy and has the potential

to enhance early detection, making it well-suited for large-scale screening

programs. By facilitating early identification of individuals at risk, this approach

may contribute to reducing the incidence and mortality associated with

colorectal cancer.
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1 Introduction

Colorectal adenoma, the primary precancerous lesion in

colorectal cancer (1), poses a significant health concern. It is

estimated that 70-90% of colorectal cancers originate from these

adenomas, underscoring the critical importance of early risk

prediction and screening (2–4). However, current screening

methods, including fecal examination, endoscopy, and CT

colonography (5, 6), have limitations that hinder their widespread

application. Fecal examination, while preferred for its comfort and

safety, has limited specificity. Endoscopy, the gold standard, is

invasive, technically demanding, and requires bowel preparation,

limiting its application for large-scale screening (7). CT

colonography, a non-invasive and highly sensitive alternative,

necessitates specialized equipment, technical expertise, and

rigorous patient preparation, along with radiation exposure (8).

To address these challenges, we proposed an innovative

approach that leverages the power of machine learning and

electronic medical record (EMR) data for accurate and

widespread colorectal adenoma prediction. Machine learning

techniques have shown promising results in identifying adenomas

from colonoscopy or pathology images (9–11). Additionally,

researchers have identified significant risk factors, such as

smoking, alcohol consumption, and obesity-related indicators,

through various analyses (12–14). However, existing studies lack

individualized risk classification, limiting their clinical application.

EMR data presents a valuable and suitable alternative for large-

scale screening, and researchers have developed risk prediction

models to guide high-risk patients towards colonoscopy, optimizing

resource allocation (15–20). Nevertheless, previous studies have
Frontiers in Oncology 02
been limited by small sample sizes and insufficient EMR data.

Traditional One-Hot coding of EMR data fails to capture

semantic information and is sensitive to missing data. In contrast,

recently popular pre-trained large language models (LLMs) have

emerged as a promising solution, demonstrating superior

performance in extracting and encoding semantic information for

disease diagnosis and prognosis (21–23).

Building upon these advancements, this study leverages

comprehensive EMR data, including medical history, symptoms,

tests, and examinations. By utilizing a semantic vector model based

on the BGE-M3 coding approach, we aim to improve data

comprehension, reduce sparsity, and improve generalization. This

study aims to develop a robust risk prediction model for colorectal

adenoma, providing real-time risk assessments to support informed

clinical decision-making and ultimately improve patient outcomes.
2 Materials and methods

2.1 Dataset

This retrospective study utilized EMR data from January 2012

to December 2023 at a high-performing hospital with an annual

outpatient volume of approximately 4.5 million. The study was

approved by the Medical Science Research Ethics Committee of ****

hospital, and the requirement for patient informed consent was

waived due to the retrospective nature of this study. The data

collection process yielded a total of 2,951 positive and 108,995

negative samples. Figure 1 provides a detailed overview of the

enrollment and data collection process.
FIGURE 1

Patient enrollment for colorectal adenoma.
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2.1.1 Data inclusion and exclusion
Inclusion criteria for the study were as follows: (1) patients aged

18 years or older at their initial visit; (2) pathology reports

confirming the presence of colorectal adenoma; (3) visits to the

gastroenterology department with relevant diagnoses or pathology

reports excluding colorectal adenoma.

Exclusion criteria were defined as follows: (1) patients with a

history of colectomy or partial colectomy; (2) medical histories or

current complaints involving conditions that could influence

inflammation assessment, including but not limited to colorectal

adenoma, colorectal cancer, colon cancer, cecum cancer, rectal

cancer, rectosigmoid junction cancer, inflammatory bowel disease,

diverticulitis, cirrhosis of the liver, abnormal liver function, acute

pancreatitis, pancreatic cancer, neuroendocrine tumor, capillary

dilatation, lipoma, jaundice.

2.1.2 Data splitting
The data from 2012 to 2022 was divided into the training

cohort, consisting of a total of 2,469 positive samples and 90,212

negative samples. More recent data from 2023 was reserved as an

independent test cohort, comprising 482 positive samples and

18,783 negative samples. The training cohort was utilized for

model development and hyperparameter tuning using five-fold

cross-validation, and the independent test cohort served to

evaluate the generalizability of the developed model.

2.1.3 EMR feature inclusion
Clinical EMR data (Table 1) comprises both structured and

unstructured formats. Structured data, directly extracted from the

EMR, included demographic information such as gender, age and

laboratory results. Laboratory items analyzed in this study

encompassed glycated hemoglobin, total cholesterol, fecal occult

blood test, complete blood count, biochemical profile, and

tumor markers.

Unstructured data, such as the chief complaint, history of

present illness (HPI), and family history, required initial
Frontiers in Oncology 03
information extraction followed by content extraction to

transform them into a structured format. In this paper, a

multilevel entity-relationship extraction scheme was implemented

to process free text data in EMR, consisting of two key steps: (1) we

distinguished medical record instruments and chapters by

“instrument category prediction” and “chapter prediction”; (2) we

applied a Bidirectional Long Short-Term Memory-Conditional

Random Field (BiLSTM-CRF) network combined with rule

matching – a method that has been demonstrated as an effective

approach for extracting information from unstructured data (24,

25) - to extract the information from the Chinese clinical report.

These steps guarantee the extraction of clinically relevant

information essential for subsequent predictive modeling. For this

study, we utilized the earliest available laboratory and examination

data prior to the diagnosis of colorectal adenoma. Meanwhile, we

excluded the pathological examination items to prevent potential

data leakage during the model development process.
2.1.4 Entity unification
To ensure feature consistency, entity unification was

implemented on the raw clinical records, with data quality

control assured by semantic validation protocols. To avoid the

various descriptions of entities such as signs, symptoms, and disease

names among physicians, we utilized the British Medical Journal

(BMJ) Best Practice knowledge base (26). This resource unifies

different aliases of each entity to a uniform name. Subsequently,

these diverse descriptions are mapped to their standardized entities,

effectively reducing data fragmentation caused by alias

discrepancies. For example, terms like “dry stools” and “increased

bowel movements” were unified under the category of “abnormal

stools”. Additionally, features with a missing rate of ≥99% were

excluded to mitigate the risks of model overfitting and to improve

the stability and accuracy of the model.

The examinat ion i tems within unstructured data

predominantly comprise imaging studies, whose non-textual

characteristics hinder structured dataset conversion. Therefore,
TABLE 1 Sources and content of feature extraction.

Type Sources Content

Structured Data

Medical Records Homepage Gender, Age, etc.

Laboratory Items All abnormal test data prior to the diagnosis of colorectal adenoma,
including but not limited to Glycated Hemoglobin, Total Cholesterol, Fecal
Occult Blood Test, Complete Blood Count, Biochemical Profile, Tumor
Markers, etc.

Unstructured Data

Chief Complaint/History of Present Illness (HPI) Hematochezia, Abnormal Stool, Colonic Polyps, Abdominal Pain, Acid
Reflux, Diarrhea, etc.

Family History Colorectal Cancer, etc.

Physical Examination Digital Rectal Exam, BMI, Systolic Blood Pressure, etc.

Past Medical History Hypertension, Hyperlipidemia, Diabetes, Metabolic Syndrome, History of
H. pylori Infection, etc.

Examination Items Abdominal Ultrasound, Abdominal CT, etc.
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this study restricted analysis to text-based components of

examination reports, specifically the “examination observation”

and “examination conclusion”. In order to ensure the objectivity

of the results of the study, exclusion criteria were established: (1)

Examination items directly related to the pathological diagnosis of

colorectal adenomas (including but not limited to colonoscopy,

pathological analysis, and tissue biopsy) were excluded; (2)

Examination items retained were further excluded from the

records whose text descriptions explicitly contained diagnostic

information of colorectal adenomas.
2.2 Prediction model development

The development of the colorectal adenoma risk prediction

model is depicted in Figure 2. This process begins with the

collection of comprehensive EMR data, including basic patient

information, chief complaints, current and past medical histories,

examination reports, and laboratory test results. During the feature

extraction stage, we employed the BGE-M3 semantic vector

encoding and traditional one-hot vector encoding for comparison.
Frontiers in Oncology 04
For model training, several widely used machine learning

models for binary classification tasks are employed, including

logistic regression, random forest, support vector machine (SVM),

LightGBM, XGBoost, and feed-forward neural networks. To

optimize model performance, we utilized cross-validation and

grid search on the training and validation cohort to fine-tune

model parameters and achieve optimal predictive accuracy.
2.3 Feature extraction

2.3.1 One-hot vector coding
One-hot encoding is a traditional technique used to represent

categorical features in machine learning algorithms. Each category

is converted into a binary feature for model integration. For

continuous features, outlier handling methods are applied depend

on the distribution of the data. Normal distribution data is

evaluated using the 3s criterion, while non-normal distribution

data uses the interquartile range (IQR) criterion for outlier

identification. The detected outliers are removed, and missing

values are imputed with the mean to maintain data integrity.
FIGURE 2

Process of developing the risk prediction model for colorectal adenoma.
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Feature scaling is then performed by dividing each value by the

maximum absolute value in the feature, standardizing the feature

values within the range of (–1, 1). This scaling benefits to

model stability.

However, one-hot encoding can generate high-dimensional

feature vectors, especially with our large EMR data, and not all

features are pertinent to the prediction task. To address this, feature

selection is crucial to reducing dimensionality, enhancing model

efficiency, and mitigating overfitting. Random Forest, a robust

machine learning algorithm, provides an effective feature selection

method. It measures the importance of each feature by assessing its

contribution to the reduction of Gini impurity in decision tree nodes.

Features with higher importance scores are retained, streamlining

data dimensionality and boosting computational efficiency.

2.3.2 BGE-M3 vector coding
The Smart Source General Semantic Vector Model BGE-M3

(BAAI General Embedding M3), introduced in 2024 (27), offers

significant advantages over traditional One-Hot Encoding,

particularly for analyzing clinical EMR data with diverse semantic

information. BGE-M3 simplifies preprocessing and effectively

captures insightful semantic features , enhancing the

understanding of complex clinical report, which is crucial in

clinical diagnosis. It integrates semantic, syntactic, and knowledge

graph data to provide detailed representation of sentence semantics.

This comprehensive approach improves the accuracy and richness

of sentence vectors, addressing the challenge of using complex

clinical report.

BGE-M3 incorporates advanced attention mechanisms and

context modeling techniques, dynamically adjusting word

importance and capturing contextual information. These features

improve the precision of feature vector for representing sentences,

making BGE-M3 effective for extracting meaningful insights from

clinical report. Additionally, BGE-M3’s optimized structure and

parameter tuning ensure high computational efficiency and

scalability, facilitating rapid and accurate sentence representations

for handling large-scale clinical datasets.
2.4 Model training

Colorectal adenoma risk prediction involves a binary

classification task. This study evaluates the effectiveness of several

machine learning algorithms, including the feedforward neural

network (FNN) (28), Light Gradient Boosting Machine

(LightGBM) (29), Logistic Regression (LR) (30), Random Forest

(RF) (31), Support Vector Machine (SVM) (32), and eXtreme

Gradient Boosting (XGBoost) (33). Further details on the

algorithms and their implementations can be found in the Section

2.4 of the Supplementary Material.

Optimal model parameters were selected through a systematic

process involving grid search and five-fold cross-validation. This

method entailed exploring predefined parameter ranges and

randomly combining parameters across various model algorithms.

Detailed descriptions of the optimal parameters and their respective
Frontiers in Oncology 05
ranges throughout the tuning process are provided in

Supplementary Table S1 of the Supplementary Material.
2.5 Model evaluation

2.5.1 Evaluation metrics
The performance of the risk prediction model was evaluated

using multiple metrics in both the validation cohort and the

independent test cohort, including Sensitivity/Recall, Specificity,

Positive Predictive Value (PPV), Negative Predictive Value (NPV),

F1-Score, AUC, and Receiver Operating Characteristic (ROC)

analysis. Detailed descriptions of the evaluation metrics are

provided in Supplementary Table S2 of the Supplementary Material.

2.5.2 Evaluation on the independent test cohort
We evaluated the model’s ability to predict colorectal adenoma

in advance on the independent test cohort. Starting from patient

admission, the model predicted risk based on changes in EMR data,

including health status or new laboratory test results. Predictions

continued until a high risk of colorectal adenoma was indicated, and

subsequent pathology diagnosis was used to verify the accuracy of

the predictions. Successful predictions were defined as those

matching the actual outcomes. To quantify predictive lead time,

we computed the average interval between the model’s high-risk

prediction and the actual diagnosis for successful predictions.

We employed Kaplan-Meier analysis to demonstrate the change

in model-predicted outcomes and clinical actual diagnoses with

increasing time of admission. The horizontal coordinate is the time

of admission, the vertical coordinate survival rate indicates the ratio

of positive samples remained incorrectly diagnosed, which means

0% indicates that all positive samples were correctly diagnosed. This

method provides a graphical representation of predictive accuracy

and effectiveness over time.
2.6 Model interpretation

We utilized the SHAP (Shapley Additive exPlanations) method

to interpret the relationship between features and model predictions

(34). SHAP employs an additive feature attribution approach to

calculate values for each feature, quantifying both the magnitude

and direction of their impact on model predictions. The absolute

value of each feature’s SHAP score indicates the degree of influence

on the model’s predictions. Positive SHAP values suggest support

for a higher risk prediction of colorectal adenoma, while negative

values indicate the opposite. This method provides insight into the

model’s decision-making process and offers opportunities for

further model optimization.
2.7 Statistical analysis

In this study, we employed TableOne, a powerful R language

package, for comprehensive statistical analysis (35). Specific
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statistical methods were selected based on the distributional

properties of the variables. For normally distributed continuous

variables, quantitative results are presented as mean ± standard

deviation (SD), with significance assessed using the t-test. For non-

normally distributed continuous variables, the data was reported as

median (Q1, Q3), and differences between groups were evaluated

using the Mann-Whitney U test, a non-parametric alternative.

Categorical variables were analyzed using the chi-square test to

determine significant differences between categorical levels.
2.8 Patient and public involvement

This study was a retrospective analysis, thus patients were not

involved. We have provided relevant content following the

TRIPOD reporting guidelines (36).
3 Results

3.1 Data distribution of different
departments

This study examines the distribution of colorectal adenoma

patients across various departments at their initial consultation.

Figure 3 illustrates the distribution of the top 8 departments based

on patient numbers. Notably, the gastroenterology department

exhibits a high prevalence, with approximately 1,200 cases of

colorectal adenoma, indicating a significantly higher incidence

compared to other departments. Interestingly, the general surgery

department also demonstrates a substantial proportion of cases,

suggesting that colorectal adenoma is prevalent among patients

seeking care in non-gastroenterology departments. This

observation underscores the relevance and potential impact of the

risk prediction model proposed in this study. By extending beyond

gastroenterology, our model aims to facilitate screening and

preventive strategies across multiple departments. Early
Frontiers in Oncology 06
identification of colorectal adenoma risks can contribute to

reducing the incidence of colorectal cancer and enhancing

comprehensive patient care and safety.
3.2 Clinical characteristics analysis

Statistical analysis was performed on the clinical characteristics

of patients enrolled between 2012 and 2022, as shown in Table 2.

Since there are so many characteristics in this study, we only present

those that are statistically different and clinically important. Within

the present characteristics, Cholesterol, Triglycerides and CA19–9

did not show statistical differences between groups.
3.3 Model performance evaluation

As shown in Tables 3, 4, the BGE-M3 vectors achieved

significant improvement compared to One-Hot vectors. Within

the models using BGE-M3 vectors, XGBoost obtained the best

performance in terms of AUC. As shown in Figure 4, the FNN

obtain reasonable performance by using BGE-M3. These results

demonstrated that the BGE-M3 vectors can show better

performance on EMR data encoding than traditional One-

Hot vectors.
3.4 Independent test cohort validation

To assess the model’s generalization ability, this study employed

2023 data as an independent test cohort for validating the BGE-M3-

based XGBoost model, which achieved the highest AUC on test set.

The experimental results are summarized in Table 5, these results

verified the robust generalization capability of our developed model.

This study evaluated the model’s ability to predict colorectal

adenomas in advance using 431 hospitalized patients out of 482

positive samples from the independent test cohort. As shown in
FIGURE 3

Distribution of patients with colorectal adenoma across departments.
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Table 6, the model achieved a prediction accuracy of 0.9141 for

positive samples, with an average advance prediction time of 6.88

hours. Meanwhile, as shown in Figure 5, Kaplan-Meier analysis

demonstrated that our proposed model predicted the high risk in

advances (p<0.05) by an average of 6.88 hours compared to the

actual clinical diagnosis time and maintained a reasonable accuracy.
3.5 Assessment of model feature
importance

We utilized the SHAP method to interpret features’

contribution in the XGBoost model based on one-hot vectors.

Figure 6 illustrates the top 16 features ranked by SHAP

importance, indicating their respective influence on model

predictions. The vertical color gradient in Figure 6 represents the
Frontiers in Oncology 07
magnitude of each feature’s SHAP value, with warmer colors

indicating higher values and cooler colors indicating lower values.

The horizontal SHAP values indicate whether each feature

positively or negatively impacts predictions. Positive SHAP values

support colorectal adenoma predictions, while negative values

suggest non-colorectal adenoma predictions. Integrating the

horizontal SHAP values with the vertical gradient provides a

comprehensive understanding of the direction and strength of

each feature’s influence on prediction outcomes.

Figure 6 highlights the critical role of laboratory items in

diagnosing colorectal adenoma, with eight out of the top 16

features belonging to this category. Notably, Lipoprotein A

emerges as the most influential predictive feature. Additionally,

symptomatic features prominently appear among the top 16,

underscoring the importance of unstructured clinical EMR data

in predictive modeling.
TABLE 2 Statistical analysis of clinical characteristics.

Feature name Total sample
size (N=92,681)

Non-colorectal adenoma
group (N=90,212)

Colorectal adenoma
group (N=2,469)

P-value

Demographic characteristics

Age, mean(SD) 49.1 (15.7) 48.8 (15.7) 59.4 (14.7) <0.05

Male, n (%) 42765 (46.1) 41407 (45.9) 1358 (55.0) <0.05

Signs and symptoms

Blood in stool, n (%) 5155 (5.6) 4691 (5.2) 464 (18.8) <0.05

Nausea, n (%) 7692 (8.3) 7578 (8.4) 114 (4.6) <0.05

Abdominal pain, n (%) 12876 (13.9) 12449 (13.8) 427 (17.3) <0.05

Stool abnormalities, n (%) 32319 (34.9) 31304 (34.7) 1015 (41.1) <0.05

family history

Colon cancer, n (%) 583 (0.6) 541 (0.6) 42 (1.7) <0.05

Colon polyps, n (%) 4465 (4.8) 4060 (4.5) 405 (16.4) <0.05

Hypertension, n (%) 9108 (9.8) 8570 (9.5) 538 (21.8) <0.05

Diabetes, n (%) 4006 (4.3) 3789 (4.2) 217 (8.8) <0.05

Inspection Indicators

Hemoglobin (g/L, mean(SD)) 140.8 (15.7) 140.9 (15.7) 136.9 (16.6) <0.05

Fecal occult blood test, n (%) 3817 (4.1) 3518 (3.9) 299 (12.1) <0.05

Cholesterol(mmol/L, mean(SD)) 4.6 (1.0) 4.6 (1.0) 4.6 (1.0) 0.362

Triglycerides(mmol/L, mean(SD)) 1.3 (0.6) 1.3 (0.6) 1.3 (0.6) 0.094

Lipoprotein A (mg/L, Median [Q1,Q3]) 90.0 [43.0,182.0] 86.0 [41.0,176.0] 103.5 [47.0,196.2] <0.05

Serum uric acid (umol/L,mean(SD)) 312.1 (83.3) 312.5 (83.2) 303.2 (86.1) <0.05

Creatinine(umol/L, mean(SD)) 76.1 (14.2) 76.2 (14.1) 73.7 (15.4) <0.05

Glycosylated hemoglobin (%, mean(SD)) 5.8 (0.5) 5.8 (0.5) 5.9 (0.5) <0.05

CEA (ng/ml, mean(SD)) 2.0 (1.1) 2.0 (1.1) 2.2 (1.2) <0.05

CA19-9 (IU/L, mean(SD)) 10.6 (7.1) 10.6 (7.2) 10.9 (6.9) 0.158
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4 Discussion

This study successfully developed a highly accurate and

generalizable risk prediction model for colorectal adenoma

leveraging the strengths of LLM and comprehensive EMR data,

providing a robust scientific foundation for early detection and

intervention strategies. Furthermore, this study analyzed extensive

clinical EMR of patients with colorectal adenoma, revealing distinct

characteristics compared to non-colorectal adenoma patients.

Retrospective statistical analysis (Table 2) of the dataset

identified typical clinical features associated with colorectal

adenoma, including higher average age and male predominance,

consistent with prior research (37–39). Symptoms such as blood in

stool, abdominal pain, and stool abnormalities were prevalent

among colorectal adenoma patients. Interestingly, nausea, less

commonly associated with colorectal adenoma, exhibited

significant inter-group differences, possibly reflecting variations in

data collection across healthcare providers (40). Comorbidity

analysis revealed significant associations with colon cancer, colon

polyps, hypertension, and family history of diabetes mellitus,

aligning with existing literature (41–44). The analysis also

highlighted variations in biomarkers including hemoglobin, fecal

occult blood test, lipoprotein A, serum uric acid, creatinine, glycated

hemoglobin, and carcinoembryonic antigen (CEA) (45–49),

underscoring their relevance in predicting colorectal adenoma risk.
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The comparison (Table 3, 4) between BGE-M3 and one-hot

vector coding demonstrated the superior performance of BGE-M3

dense representation, dimensional reduction, semantic information

capture, context sensitivity, and adaptive learning. This enhanced

the model’s ability to handle complex clinical EMR data, resulting in

improved performance across various machine learning algorithms.

XGBoost emerged as the top performer, demonstrating robust

sensitivity and AUC values of 0.9251, 0.9413, and 0.9847,

respectively, leveraging advantages in boosting framework, feature

engineering, regularization, pruning, and parallel computing (33).

The model’s generalizability was validated on an independent

test cohort (Table 5), utilizing the BGE-M3 semantic vector model

and diverse data sources from several departments (Figure 3) (50).

Our model facilitated earlier detection of colorectal adenoma

(Table 5, Figure 5), providing a potential opportunity to optimize

clinical workflows and improve patient outcomes. SHAP analysis

(Figure 6) identified key predictors such as age, symptoms, family

history, biomarkers, and cardiovascular risk factors (51). Notably,

examination-related features did not appear in the TOP16 list,

which may be attributed to two factors: (1) The study focused on

early-stage prediction of colorectal adenomas in patients with subtle

symptoms that might not manifest distinctly in imaging data; (2) To

ensure objectivity, the research protocol specifically excluded

examination methods directly associated with pathological

confirmation (including but not limited to colonoscopy,
TABLE 4 Performance of different models using BGE-M3 vectors on the test set of training cohort.

Model Sensitivity
(mean ± std)

Specificity
(mean ± std)

PPV
(mean ± std)

NPV
(mean ± std)

F1-score
(mean ± std)

AUC
(mean ± std)

FNN 0.7895 ± 0.0455 0.9972 ± 0.0101 0.8864 ± 0.0217 0.9943 ± 0.0013 0.8351 ± 0.0199 0.9822 ± 0.0104

LightGBM 0.8603 ± 0.0104 0.9794 ± 0.0011 0.5339 ± 0.0018 0.9961 ± 0.0003 0.6589 ± 0.0021 0.9843 ± 0.0043

LR 0.9130 ± 0.0135 0.9101 ± 0.0033 0.2176 ± 0.0024 0.9974 ± 0.0004 0.3514 ± 0.0034 0.9716 ± 0.0025

RF 0.8603 ± 0.0219 0.9296 ± 0.0028 0.2507 ± 0.0042 0.9959 ± 0.0007 0.3883 ± 0.0069 0.9600 ± 0.0090

SVM 0.8927 ± 0.0113 0.9450 ± 0.0024 0.3077 ± 0.0026 0.9969 ± 0.0004 0.4577 ± 0.0040 0.9786 ± 0.0014

XGBoost 0.9251 ± 0.0047 0.9413 ± 0.0018 0.3015 ± 0.0074 0.9978 ± 0.0002 0.4547 ± 0.0079 0.9847 ± 0.0038
TABLE 3 Performance of different models using one-hot vectors on the test set of training cohort.

Model Sensitivity
(mean ± std)

Specificity
(mean ± std)

PPV
(mean ± std)

NPV
(mean ± std)

F1-score
(mean ± std)

AUC
(mean ± std)

FNN 0.8023 ± 0.0270 0.7796 ± 0.0293 0.0935 ± 0.0095 0.9929 ± 0.0008 0.1676 ± 0.0149 0.8641 ± 0.0118

LightGBM 0.7652 ± 0.0160 0.8799 ± 0.0036 0.1530 ± 0.0064 0.9925 ± 0.0005 0.2550 ± 0.0097 0.9052 ± 0.0067

LR 0.7573 ± 0.0161 0.8714 ± 0.0029 0.1430 ± 0.0033 0.9922 ± 0.0005 0.2406 ± 0.0052 0.8943 ± 0.0104

RF 0.7945 ± 0.0477 0.8094 ± 0.0182 0.1057 ± 0.0053 0.9929 ± 0.0013 0.1865 ± 0.0066 0.8783 ± 0.0085

SVM 0.7867 ± 0.0079 0.8659 ± 0.0042 0.1426 ± 0.0044 0.9931 ± 0.0003 0.2414 ± 0.0066 0.9104 ± 0.0090

XGBoost 0.7867 ± 0.0142 0.8623 ± 0.0028 0.1393 ± 0.0042 0.9930 ± 0.0004 0.2367 ± 0.0067 0.9092 ± 0.0064
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histopathological analysis, and tissue biopsy). This lack of

significant contribution from imaging features compared to other

predictors could therefore be explained by the inherent limitations

of early disease detection and the deliberate exclusion of gold-

standard diagnostic procedures.

Our exclusion of patients with a history of colectomy or

conditions potentially affecting inflammation assessment is

methodologically appropriate and preserves the generalizability of

the model within its intended screening population. These

individuals are excluded because their underlying conditions (e.g.,

post-colectomy anatomical a l terat ions , inflammatory

comorbidities) may confound adenoma-specific biomarker

profiles critical for early-stage colorectal cancer screening (52–55).
Frontiers in Oncology 09
This exclusion aligns with standard clinical practice, where such

patients are typically diverted from routine adenoma screening

protocols and instead undergo dedicated surveillance pathways

tailored to their specific risk profiles (56–58). Consequently, the

exclusion criteria do not compromise the model’s applicability to its

target population—asymptomatic individuals eligible for

primary screening.

However, it is important to acknowledge the limitations of this

study, which do not affect the conclusions of this study. Firstly, the

single-center nature of the study may limit the generalizability of

the results to diverse healthcare settings. While multi-center

validation was precluded by privacy regulations governing EMR

sharing, we implemented prospective temporal validation (isolated
TABLE 5 Results on the independent test cohort of the XGBoost model with the BGE-M3 vectors.

Model Sensitivity Specificity PPV NPV F1-score AUC

XGBoost 0.9253 0.9519 0.3306 0.9980 0.4872 0.9839
FIGURE 4

Radar plot and ROC curve of different models’ performance on the test set of the training cohort.
TABLE 6 Average model prediction lead time.

Model Correct predictions Incorrect predictions Predictive accuracy Average advance prediction time (h)

XGBoost 394 37 0.9141 6.88
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2023 test cohort) to approximate external generalizability, ensuring

no data leakage between training (2012–2022) and testing phases.

Secondly, the retrospective design does not allow for direct

assessment of the model’s impact on clinical practice. Future

research should focus on integrating the model into clinical

support systems for prospective validation.

Furthermore, practical challenges persist in translating this

model into clinical practice: (1) Workflow Integration

Framework: To operationalize the 6.88-hour predictive lead time,

a dual-phase implementation strategy is proposed. First,

standardized application programming interfaces (APIs) will

bridge heterogeneous EMR systems, generating context-aware

alerts (e.g., prioritized task flags or pop-up notifications) for high-

risk patients. Second, an interpretable clinician dashboard will
Frontiers in Oncology 10
dynamically display risk stratification, highlighting SHAP-

identified predictors (e.g., lipoprotein A >100 mg/L) and

evidence-based escalation protocols (e.g., “urgent colonoscopy

≤48 hours”) to align with clinical workflows without imposing

cognitive burdens. (2) Strategic Value of Temporal Advantage: The

6.88-hour window holds distinct clinical implications across care

settings. In acute care, it enables time-sensitive interventions (e.g.,

accelerating endoscopic evaluation for occult bleeding), mitigating

risks of obstruction or hemorrhagic complications. For ambulatory

care, it streamlines triage prioritization, reducing diagnostic latency

through early risk stratification. (3) Adoption Barrier Mitigation:

To overcome implementation inertia, three evidence-driven

solutions are prioritized: (i) Prospective multicenter trials

evaluating clinical endpoints (adenoma detection rate, interval-to-

diagnosis); (ii) Adaptive alert thresholds informed by clinician

feedback (e.g., muting redundant alerts for patients under

diagnostic workup); (iii) Privacy-preserving federated learning

architectures to enhance cross-institutional generalizability.

Standardized validation protocols are being finalized to ensure

translational fidelity across diverse healthcare ecosystems.
5 Conclusion

This study presents a novel approach to colorectal adenoma risk

prediction leveraging clinical EMR data and LLM. The proposed

model demonstrates superior performance in identifying high-risk

individuals, providing a valuable tool for early screening. By

leveraging the BGE-M3 semantic vector model, the algorithm

enhances data comprehension and captures nuanced semantic

information. With an average lead time of 6.88 hours and

outstanding classification performance, the model has the

potential to revolutionize clinical workflows and improve

patient care.
FIGURE 5

Kaplan-Meier analysis of the developed model and clinical actual
diagnosis for evaluating the prediction time in advance.
FIGURE 6

Contribution and directional influence of top 16 features on XGBoost Model predictions using SHAP analysis.
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