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Objectives: This study aimed to develop and evaluate multiple machine learning

models utilizing contrast-enhanced T1-weighted imaging (T1-CE) to differentiate

between low-/high-infiltration of total T lymphocytes (CD3) in patients with

rectal cancer.

Methods: We retrospectively selected 157 patients (103 men, 54 women) with

pathologically confirmed rectal cancer diagnosed between March 2015 and

October 2019. The cohort was randomly divided into a training dataset

(n=109) and a test dataset (n=48) for subsequent analysis. Seven radiomic

features were selected to generate three models: logistic regression (LR),

random forest (RF), and support vector machine (SVM). The diagnostic

performance of the three models was compared using the DeLong test.

Additionally, Kaplan–Meier analysis was employed to assess disease-free

survival (DFS) in patients with high and low CD3+ tumor-infiltrating

lymphocyte (TIL) density.

Results: The three radiomics models performed well in predicting the infiltration

of CD3+ TILS, with area under the curve (AUC) values of 0.871, 0.982, and 0.913,

respectively, in the training set for the LR, RF, and SVM models. In the validation

set, the corresponding AUC values were 0.869, 0.794, and 0.837, respectively.

Among the radiomics models, the LR model exhibited superior diagnostic

performance and robustness. The merged model, which integrated radiomics

features from the SVM model and clinical features from the clinical model,

outperformed the individual radiomics models, with AUCs of 0.8932 and 0.8829

in the training and test cohorts, respectively. Additionally, a lower expression level

of CD3+ TILs in the cohort was independently correlated with DFS (P = 0.0041).

Conclusion: The combinedmodel demonstrated a better discriminatory ability in

assessing the abundance of CD3+ TILs in rectal cancer. Furthermore, the

expression of CD3+ TILs was significantly correlated with DFS, highlighting its

potential prognostic value.
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Advances in knowledge: This study is the first attempt to compare the predictive

TILs performance of three machine learning models, LR, RF, and SVM, based on

the combination of radiomics and immunohistochemistry. The MRI-based

combined model, composed of radiomics features from the SVM model and

clinical features from the clinical model, exhibited better discriminatory capability

for the expression of CD3+ TILs in rectal cancer.
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Introduction

Colorectal cancer remains one of the most common causes of

cancer-related mortality worldwide (1, 2). The prognosis of the

disease is largely determined by the stage at which it is diagnosed

(3). Early detection and appropriate treatment are critical in

improving patient outcomes. In recent years, the increasing

adoption of immunotherapy, particularly immune checkpoint

inhibitors (ICIs), has shown promise in clinical practice, with

several landmark trials demonstrating significant therapeutic

efficacy, This has opened the possibility of innovative treatment

strategies that can modulate immune responses to better target

cancer cells (4, 5). Among these, tumor-infiltrating lymphocytes

(TILs) have emerged as a potential predictive biomarker for

treatment response, including neoadjuvant therapy in locally

advanced rectal cancer (6–9).

High levels of TILs, which are located in the tumor

microenvironment, have been associated with improved immune

responses and better treatment outcomes in various cancers (10).

For example, studies have demonstrated that higher levels of TILs

correlate with better responses to neoadjuvant chemotherapy in

breast cancer, particularly in HER2-positive cases (5, 11). However,

despite advances in treatment, up to 30% of patients with rectal

cancer still experience poor prognosis, including distant metastasis

or local recurrence, often occurring within a few years of treatment.

These findings highlight the need for more effective patient

assessment methods to identify individuals who are most likely to

benefit from immunotherapy and to optimize treatment outcomes.

Recent research has increasingly focused on the relationship

between radiomics and tumor TIL levels, especially CD8, with

studies exploring this association in breast cancer (12), rectal

cancer after chemoradiation (13), and pancreatic cancer (14). In

particular, Huang et al. demonstrated that texture features extracted
; T1-CE, T1-weighted

SVM, support vector

mmunohistochemistry;

co-occurrence matrix

GLRLM, gray level run

rix features.
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from dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) are correlated with CD8+ and CD4+ T lymphocytes,

providing insights into the immune microenvironment’s

histopathological features in advanced gastric cancer (15). Despite

the progress in immunotherapy, the potential correlation between

imaging data and the immune microenvironment in cancer remains

an area that is only partially understood (16).

Given the importance of TILs in predicting treatment response and

prognosis, we hypothesized that radiomics could be used to predict the

abundance of CD3+ TILs in rectal cancer. The primary objective of our

research was to develop accurate risk stratification models to

differentiate between a low- and high-abundance of CD3+ TILs in

rectal cancer, which could ultimately aid in better treatment decision-

making and personalized therapeutic strategies.
Materials and methods

Patient selection

Our research has been approved by the ethics committee. The

data of patients diagnosed with rectal cancer, who underwent

surgical resection between March 2015 to October 2019, were

retrospectively collected for the construction of the radiomics

model. We included patients who met the following criteria: (a)

underwent surgical resection and (b) preoperative T1-weighted

imaging (T1-CE) performed within 3 weeks. Exclusion criteria

were (a) incomplete clinical data; (b) incomplete pathology

report; and (c) tumor-related treatment before MRI examination.

The final cohort consisted of 157 patients, who were randomly

divided into a training set of 109 patients and a test set of

48 patients.
MRI examination

The rectal MRI imaging was performed using a 3T unit (Verio,

Siemens, Germany) equipped with a 12-channel body coil. The

examinations included T1-CE, high-resolution axial T2-weighted

imaging, and diffusion-weighted imaging (DWI). Detailed
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information on the standardized imaging protocols is provided in

Supplementary Material.
Pathology

All wax block samples were sectioned into 2 mm thick slices by

professional technicians. The slices were then placed in an oven at

56°C overnight. CD3 antibody (ZM-0417, Zhongshan Jinqiao,

Beijing, China) was reserved at 1:200. Bond ™ Polymer Refine

Detection immunoassay kit (DS9800, Leica Biosystems, United

Kingdom). The entire immunohistochemistry (IHC) process was

carried out using the BOND-MAX Fully Automated IHC and ISH

Staining System. Finally, all sections were dehydrated, coverslipped,

and embedded in neutral resin. Two senior pathologists

independently reviewed all IHC slides and randomly selected five

High Power Field (HPFs) to evaluate the expression of CD3+ TILs,

based on the percentage of positive lymphocytes in the stroma.

Patients were stratified into high or low CD3+ TIL expression

groups using the lower quartile as the threshold. The assessment of

TILs in rectal cancer is shown in Figure 1.
Tumor segmentation and feature
extraction

The regions of interest (ROIs) of 157 lesions were segmented

using ITK-SNAP (www.itksnap.org), an open-source software, on

each CE-T1WI slice. Two radiologists, each with 3 years of

experience in MRI, manually delineated the entire area within the

rectal wall, covering the entire tumor and excluding necrotic tissue

and bleeding (Figure 2). Clinical and histopathological data were

collected by radiologists in a blinded manner, with the exception of

information regarding the diagnosis of rectal cancer.

All radiomics features were extracted using the Pyradiomics

package (http://www.PyRadiomics.readthedocs.io/en/latest/) in
Frontiers in Oncology 03
Python (3.8.0). A total of 1,132 radiomics features, including 234

first-order features, 286 gray level co-occurrence matrix (GLCM)

features, 182 gray level dependence matrix (GLDM) features, 208

gray level run length matrix (GLRLM) features, 208 gray level size

zone matrix (GLSZM) features, and 14 shape features were

extracted from the original images. Before feature extraction, the

MRI images were standardized using the z-score normalization

method to ensure a consistent distribution of image intensities.
Radiomic feature selection and radiomics
signature building

Only features with high interobserver reproducibility (intraclass

correlation coefficient >0.75) were retained for subsequent analysis.

Radiomics feature clusters with a correlation coefficient less than 0.9

(Spearman ’s r<0.9) were kept to eliminate redundancy

between features.

The least absolute shrinkage and selection operator (LASSO)

method with fivefold cross-validation was then employed to identify

the most predictive features from the training set. A radiomics score

for each patient was calculated based on the linear combination of

the selected imaging features.

Three radiomics models [logistic regression (LR), random forest

(RF), and support vector machine (SVM)] and one clinical model

were developed for predicting CD3+ TILs. Consequently, four

integrated models were generated by combining the clinical

model and the radiomics models.
Statistical analyses

Statistical analyses were performed using R (version 3.5.3;

http://www.r-project.org). Datasets with a normal distribution

were summarized using the mean and standard deviation, while

categorical variables were presented using medians and ranges.
FIGURE 1

This image shows the evaluation of the TILs for rectal cancer. The left image shows high TIL infiltration. The right image shows low TIL infiltration.
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Spearman’s correlation was used to assess the degree of correlation

between features. Model discrimination was evaluated using the

area under the curve (AUC). Additionally, sensitivity, specificity,

positive predictive value (PPV), and negative predictive value

(NPV) were calculated. The prediction performance of four

radiomics models was assessed and compared using the DeLong

method (17, 18). The improvement in the integrated models was

evaluated by assessing the integrated differentiation improvement

(19). Kaplan–Meier survival analysis was performed to evaluate

disease -free survival (DFS) probabilities and differences between

the high and low CD3 expression groups were compared using the

log-rank test.
Results

Patient characteristics

The patients were stratified into a high-density group and a low-

density group based on the lower quartile of CD3 expression

(Figure 1). Of the 157 patients, 73 were classified into the low-

expression group and 84 into the high-expression group. No

statistically significance differences were observed between the

training group and the validation groups, except for gender

(P=0.045). The characteristics of the included for analysis patients

are detailed in Table 1.
Feature selection

A total of 1,132 radiomics features were extracted from the

ROIs following tumor segmentation (Figure 2). To ensure high

stability and reproducibility, 292 features with an ICC >0.75 were

retained from all radiomics features. Furthermore, 107 features

exhibiting low correlations with the voxel value of each lesion were
Frontiers in Oncology 04
subjected to LASSO models to select the optimal features.

Ultimately, seven radiomics features were selected to construct

radiomics prediction models. Selected radiomics features and

their corresponding coefficients are described in Figure 3. Among

the clinical features, only the N stage feature was retained. The

combined model was developed using the seven radiomics features

and one clinical feature. The retained features of the screening

process are shown in the Supplementary Material.
Performance of the clinical and radiomics
models

Among the radiomics models, the RF radiomics model achieved

the highest AUC value of 0.982 [95% confidence interval (CI):

0.964, 1] in the training set, and the LR radiomics model achieved

the highest AUC value of 0.869 (95% CI:0.768, 0.97) in the

validation set (Figure 4). Table 2 shows the detailed prediction

performance of various radiomics models. For the clinical model,

the AUC, sensitivity, and specificity in the training set were 0.7679

(95% CI: 0.688, 0.848), 0.8103 and 0.7255, respectively. In the test

set, these values were 0.6486 (95% CI:0.511, 0.786), 0.6154, and

0.6818, respectively. The combined model, which integrated the

SVMmodel and clinical model, achieved the highest discriminatory

ability (AUC, training cohort: 0.8932; test cohort: 0.8829) and

robustness for expression of CD3+ TILs in rectal cancer (Figure 5).
Performance comparison

However, no significant differences (P >0.05) in AUC were

observed among the four radiomics models. For the f LR and clinical

combination model, both the training and validation groups showed a

slight improvement in AUC (0.0287, 0.0035) (Table 2). In the

combinations of SVM and RF with the clinical model, the validation
FIGURE 2

Outline of interest and workflow of the present study.
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group demonstrated an improvement in AUC (0.9824 vs. 0.9337 and

0.9131 vs. 0.8932), whereas the training group did not show similar

improvements (0.8557 vs. 0.7937 and 0.8374 vs. 0.8829).
Predictive value of CD3 for individual DFS

Significant differences in DFS were observed between the high

and low CD3 expression groups (P=0.0041). The Kaplan–Meier

survival analysis of DFS according to CD3 expression is shown

in Figure 6.
Discussion

In this primary study, we developed and validated radiomics

prediction models and integrated models that combined clinical

factors with radiomics features to predict CD3+ TILs in rectal

cancer using preoperative T1-CE. Although several efforts have

been made in various cancers to associate radiomics features with

immunohistochemical features to predict TIL levels, to the best of

our knowledge, this study is the first to integrate both

immunohistochemical and radiomics features for TIL prediction

in rectal cancer. This primary research demonstrates that radiomics

models, especially the LR model, exhibited the highest predictive

performance. However, no significant statistical differences were

observed between the three radiomics model. Notably, the

combined model composed of SVM and the clinical model

showed the highest discriminative capability (AUC, training

cohort: 0.8932; test cohort: 0.8829) and robustness for the

expression of CD3+ TILs in rectal cancer. In line with our results,

Zheng et al. (20) reported that a combined model using SVM and a

clinical model exhibited the highest differentiating value (with AUC

0.904 in the training cohort and 0.854 in the validation cohort)

compared to the clinical and other radiomics models. Additionally,
TABLE 1 Clinical characteristics in the training and test cohorts.

Characteristic Training
Set (n=109)

Test
Set (n=48)

P
Value

Sex

Man 77 26 0.045

Female 32 22

Age 66.6±10.5 64.9±10.5 0.833

CEA(>10ng/ml)

Negative 98 40 0.245

Positive 11 8

CA199(>60 ng/ml)

Negative 101 44 0.829

Positive 8 4

N

Negative 35 23 0.059

Positive 74 25

Differentiation

Low 5 1 0.763

High/Middle 104 47

EVI

Negative 102 38 0.007

Positive 7 10

Tumor size (cm)† 3.8±1.5 3.9±1.4 0.959

T stage

I–II 35 14 0.714

III–IV 74 34
EVI, extramural venous invasion.
FIGURE 3

The selected radiomics features and their corresponding coefficients.
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only the LR model combined with the clinical model improved the

AUC value in both the training and validation groups. This analysis

suggests that the clinical feature was of limited value in improving

the model.

In recent years, immunotherapy and immune checkpoint

blockade (ICB) for the treatment of breast cancer patients have

raised concerns in clinical practice (21). Tumor-infiltrating immune

cells play a crucial role in this response, and TILs make up the

majority of these immune cells (22). It is now known that the

success of immunotherapy requires pre-existing anti-tumor

immunity, which can reflect an individual’s immune tumor

response and has strong prognostic and predictive significance.

The number of TILs may be a significant predictor of the response

to cytotoxic treatments such as chemotherapy and radiotherapy and

is assumed to be associated with the mechanisms regulating cancer

growth, progression, and metastasis (23, 24). Lujiao et al. (25) used

computed tomography (CT) to predict non-small cell lung cancer

CD3+ and CD8+ TIL levels and developed a classifier with AUCs of

0.94 and 0.87 in the validation sets, respectively. Huang et al. (15)

discovered that texture features extracted from DCE-MRI are
Frontiers in Oncology 06
correlated with CD8+ and CD4+ T lymphocytes in advanced

gastric cancer, with diagnostic efficiencies of 0.863 and 0.856,

respectively. The above results are generally consistent with our

findings. Yun et al. (26) reported that an XGBoost-based radiomics

model can effectively predict TILs in pancreatic ductal

adenocarcinoma, with AUCs of 0.93 and 0.79 in the training and

validation sets, respectively. Regarding the prediction performance

of CD3, the three models showed efficacy rates of 0.869, 0.794, and

0.837, respectively, in the validation group.

Another key focus of our investigation was the role of stromal TILs,

with a particular emphasis on their spatial distribution at the invasive

margin. TILs in the stromal region play a critical role in tumor growth,

progression, invasion, and metastasis (27, 28). Importantly, the density

of intratumoral TILs is generally much lower than that of stromal TILs,

making stromal TILs a more reliable biomarker for immunotherapy

prediction (5). Recent studies have also classified cancers as “hot”

tumors (rich infiltration of T lymphocytes) and “cold” tumors (poor

infiltration of T lymphocytes) (29), which can help predict survival and

treatment response (26, 30). Our findings support this discovery, as we

observed that DFS was significantly associated with the expression of
FIGURE 5

Comparison of the ROC curves of the support vector machine (SVM), random forest (RF), and logistic regression (LR) models in the training set (a)
and the validation set (b).
FIGURE 4

Comparison of the ROC curves of the support vector machine (SVM), random forest (RF), and logistic regression (LR) models in the training set (a)
and the validation set (b).
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CD3+ TILs. Specifically, the high CD3 expression group had

significantly better DFS than the low CD3 expression group.

Previous studies have reported that the radiomics data from various

tumor types may predict TIL density and correlate with patients’

responses to immunotherapy (31, 32). Changhee et al. (33) found that

patients predicted to have a lower expression of TILs (median 4.0
Frontiers in Oncology 07
months vs. 2.1 months, P=0.002) had significantly longer progression-

free survival compared to those with higher predicted TIL expression

(≥median). Compared to patients with progressive disease, those who

experienced an ICI response or stable disease had higher predicted TIL

expression, which was the best response (P=0.001 and P=0.036,

respectively). Another study (34) found that a predictive model that

combines pre-treatment MRI radiological features with TIL levels can

improve the accuracy of predicting pCR to NAST in patients with

TNBC (P<. 001, 90.9% PPV, 81.4% NPV, and AUC 0.752). These

studies found that tumor homogeneity was associated with high TIL

infiltration, supporting the potential for radiomics to guide

immunotherapy stratification and identify patients who may benefit

from such treatments (35, 36).

Our study had several limitations. First, it was a retrospective

and single-center study with a relatively small sample size. To

improve the robustness of the model, further studies with a large

sample size from multiple institutions are needed to ensure better

robustness of the model. Second, there may be some controversy

regarding the limits of manual delineation. Third, our conclusion

that the radiomics model can predict the immune cells was based on

circumstantial evidence, so additional validation and exploration

are needed to confirm these findings.
Conclusion

In summary, a combined model that integrated SVM and a

clinical feature exhibited better discriminative capability for the

expression of CD3+ TILs in rectal cancer. This predictive model has

the potential to provide an approach to precision medicine and may

assist in the selection of candidates for immunotherapy.
TABLE 2 Performance models for predicting CD3+ TILs in rectal cancer.

odel AUC SEN SPE PPV NPV

LR train 0.8712 0.7931 0.8039 0.8214 0.7736

test 0.8689 0.8462 0.6818 0.7586 0.7895

RF train 0.9824 0.9483 0.9216 0.9322 0.94

test 0.7937 0.7692 0.7727 0.8 0.7391

SVM train 0.9131 0.7759 0.902 0.9 0.7797

test 0.8374 0.8077 0.7273 0.7778 0.7619

Clinical train 0.7679 0.8103 0.7255 0.7705 0.7708

test 0.6486 0.6154 0.6818 0.6957 0.6

LR+ clinical train 0.8999 0.8103 0.8627 0.8704 0.8

test 0.8724 0.7308 0.8182 0.8261 0.72

RF+ clinical train 0.9337 0.7586 0.9608 0.9565 0.7778

test 0.8575 0.7308 0.8636 0.8636 0.7308

SVM
+ clinical

train 0.8932 0.8448 0.8235 0.8448 0.8235

test 0.8829 0.7692 0.7727 0.8 0.7391
LR, logistic regression; RF, random forest; SVM, support vector machine; AUC, area under the
curve; PPV, positive prediction value; NPV, negative prediction value.
FIGURE 6

Survival analyses based on rectal cancer disease-free survival (DFS) according to CD3 infiltration.
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