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A feasibility study of deep
learning prediction model for
VMAT patient-specific QA
Junjie Miao †, Yuan Xu †, Kuo Men* and Jianrong Dai*

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Purpose: This study introduces a deep learning (DL) model that leverages doses

calculated from both a treatment planning system (TPS) and independent dose

verification software using Monte Carlo (MC) simulations, aiming to predict the

gamma passing rate (GPR) in VMAT patient-specific QA more accurately.

Materials and method: We utilized data from 710 clinical VMAT plans measured

with an ArcCHECK phantom. These plans were recalculated on an ArcCHECK

phantom image using Pinnacle TPS and MC algorithms, and the planar dose

distributions corresponding to the detector element surfaces were utilized as

input for the DL model. A convolutional neural network (CNN) comprising four

layers was employed for model training. Themodel’s performance was evaluated

through multiple predictive error metrics and receiver operator characteristic

(ROC) curves for various gamma criteria.

Results: The mean absolute errors (MAE) between measured GPR and predicted

GPR are 1.1%, 1.9%, 1.7%, and 2.6% for the 3%/3mm, 3%/2mm, 2%/3mm, and 2%/

2mm gamma criteria, respectively. The correlation coefficients between

predicted GPR and measured GPR are 0.69, 0.72, 0.68, and 0.71 for each

gamma criterion. The AUC (Area Under the Curve) values based on ROC curve

for the four gamma criteria are 0.90, 0.92, 0.93, and 0.89, indicating high

classification performance.

Conclusion: This DL-based approach showcases significant potential in

enhancing the efficiency and accuracy of VMAT patient-specific QA. This

approach promises to be a useful tool for reducing the workload of patient-

specific quality assurance.
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1 Introduction

In the realm of modern radiation therapy, intensity-modulated

radiation therapy (IMRT) and volumetric modulated arc therapy

(VMAT) have become the most widely used techniques due to their

superior dose conformity to the target volume (1). Even though

these techniques are sophisticated, they are fundamentally complex

and require patient-specific quality assurance (PSQA) to guarantee

dose delivery accuracy (2). Traditionally, measurement-based

quality assurance has been used to do the verification utilizing

ionization chambers, films, or multi-dimensional detector arrays.

Gamma analysis, which examines the discrepancy between the

measured and computed dose distributions, is commonly used in

the verification process. For a given set of doses and distance-to-

agreement (DTA) criteria, the gamma index is calculated using

percentage dose difference and DTA at each detector. Traditional

measurement-based methods, while effective, are labor-intensive

and time-consuming, particularly when the initial results don’t

meet acceptance criteria (3, 4). Traditional methods also impede

the implementation of online adaptive radiotherapy, necessitating a

rapid and real-time process for treatment planning and quality

assurance (5, 6).

Recently, machine learning (ML) has been introduced for

prediction of GPR. The complexity of IMRT and VMAT plans,

characterized by factors such as the modulation complexity score

(MCS), leaf motion constraints, and gantry speed etc., has been

scrutinized for its impact on treatment accuracy and GPR (7–11).

With ML, researchers have successfully harnessed these and

treatment plan parameters to develop predictive models (12–21).

These models are capable of directly forecasting the pass rate of

radiation therapy plans, marking a significant advancement in

PSQA. However, these models still face challenges. One issue is

that these models often require manual selection of parameters,

and inappropriate parameter choices can significantly affect

prediction results.

Deep learning has been leveraged to enhance the accuracy and

efficiency of predicting the GPR in treatment plans without defining

various features like ML, otherwise extracting features from images

automatically (22–25). Interian et al. and Tomori et al. both utilized

convolutional neural networks to predict the GPR based on the 2D

dose information (26, 27). Huang et al. introduced a virtual PSQA

method for IMRT, employing UNet++ trained to forecast three key

outputs (gamma pass rates, dose differences, and classification

outcomes) to ascertain the success or failure of the QA process

(28). Additionally, researchers have utilized fluence maps and 3D

dose distributions to predict the verification pass rates or gamma

distributions of radiation therapy plans (29–31). This kind of

approaches involve analyzing the intricate patterns in dose

distribution across three dimensions, providing a comprehensive

view that enhances the accuracy of predicting treatment plan

quality and effectiveness.

Independent calculation-based dose verification is another

potential method recommended by the AAPM report TG219

(32). As a Supplementary Method, calculation-based dose

verification is characterized by its low manpower consumption
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and high level of automation. However, it should be noted that

this calculation method cannot replace the measurement-based

patient-specific QA now. They serve as a supplementary check,

particularly as certain machine delivery errors may not be

detectable solely through software calculations (33, 34).

Moreover, the application of Monte Carlo methods, known for

their high accuracy in dose calculation, has been integrated into

predictive models (35–40). Monte Carlo methods provide highly

accurate dose calculations by simulating the interaction of radiation

with matter at the particle level. The method takes into account

complex variables such as tissue heterogeneity, irregular geometries,

and detailed dose deposition patterns. Additionally, Monte Carlo

simulations can model the probabilistic nature of radiation

transport, allowing for more precise dose distributions compared

to traditional deterministic methods. These factors make the Monte

Carlo methods suitable for PSQA. Some third-party radiotherapy

treatment plan verification software, such as SunCHECK,

Mobius3D, ArcherQA, and RadCalc, complement plan

verification efforts and play an important role in ensuring the

precision and safety of radiation therapy. These software

applications commonly employ the highly accurate Monte Carlo-

based dose calculation methods for dose computation. The

combination of advanced dose calculation algorithms with AI

methodologies offers a promising avenue for enhancing the

precision and efficiency of plan verification processes.

In this context, the purpose of this study is to investigate the

feasibility and performance of DL integrated with doses derived

from TPS and independent verification software using Monte Carlo

dose calculations in the PSQA. This approach is expected to offer a

novel tool for ensuring the accuracy and safety of treatments.
2 Materials and methods

2.1 Study design

The overall study design for predicting GPR is shown in

Figure 1. Initially, patient plans were optimized within the TPS.

Subsequently, the RT plan was transferred to the accelerator for

dose measurement. Doses were recalculated for the clinical plans on

a QA phantom using both the TPS and plan verification software

ArcherQA (Wisdom Technology Company Limited, Hefei, China)

with the MC algorithm. Gamma analysis was performed by

comparing the TPS-calculated dose on the QA phantom against

the measured dose, obtaining GPR with different criteria. A Python

script was utilized to extract cylindrical dose data corresponding to

the detector array from the TPS and ArcherQA exports. The

cylindrical dose, along with the GPR were utilized for training

convolutional neural network models and predictive analysis.
2.2 Clinical equipment and data acquisition

We retrospectively selected 710 clinical VMAT plans treated

with a 6-MV photon beam delivered by an Elekta Versa HD
frontiersin.org
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accelerator (Elekta AB, Stockholm, Sweden) in flattering filter-free

mode. The treatment sites encompassed the head and neck (209),

thorax (198), abdomen (205), and pelvis (98). The distribution of

disease sites across the training, validation, and testing datasets is

detailed in Supplementary Appendix A. For these plans, the VMAT

optimization was carried out using Pinnacle TPS (version 16.2,

Philips Healthcare, Eindhoven, Netherlands). Within this system,

the dose calculation was performed using an adaptive convolve

dose engine.

The ArcCHECK dosimetry system (Sun Nuclear Corporation,

Melbourne, USA) was used to perform verification measurements.

ArcCHECK is a helical 3D detector array comprising 1386 diodes

arranged within the cylindrical wall of a phantom. Each patient plan

was recalculated on ArcCHECK with a dose grid resolution of 0.2

cm in each dimension. The GPR was calculated with SNC patient

software (version 6.7.2, Sun Nuclear Corporation, Melbourne, USA)

for evaluating dose discrepancies between the TPS-calculated and

phantom-measured values. For the gamma analysis (3D mode), we
Frontiers in Oncology 03
applied criteria of 3%/3 mm, 3%/2 mm, 2%/3 mm, and 2%/2 mm,

alongside a 10% dose threshold, using absolute dose mode and

global normalization (41, 42).

All the DICOM files of verification plans, including the RT plan,

RT structure, RT dose, and CT image, were imported into

ArcherQA to recalculate the dose distribution using the Monte

Carlo algorithm. ArcherQA has already been clinically

implemented for all our machines for independent dose

verification. The details for beam modeling was introduced before

(43). The modeling was also commissioned and validated with

phantom measurement results. The uncertainty was 1% for

transportation used in Monte Carlo simulations. The grid for

Monte Carlo calculation were identical to the settings in the

validation plan within the TPS.

The calculated 3D dose was exported from the TPS and

ArcherQA, respectively, to our in-house cylindrical dose

generator. This Python-based tool extracts the dose distribution

on the cylindrical surface where the detector array resides. The
FIGURE 1

The flowchart for the study design.
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extracted dose distribution, with a resolution of 220×673, has been

normalized to the maximum dose value. Finally, the dose

distribution data is saved in the form of an h5 file, which is then

used for the training and testing of the model.
2.3 Model architecture and
training parameters

In this study, a convolutional neural network (CNN) was used

to predict the GPR. Figure 2 illustrates the model’s architecture,

which comprises four convolutional layers, four max-pooling

layers, four activation layers, a flatten layer, and three fully

connected layer. All activation layers utilized the rectified linear

unit (ReLU) function. ReLU helps improve the efficiency of learning

by eliminating output values below zero. Additionally, dropout

layer with a 0.25 drop rate before the first fully connected layer was

employed to enhance network robustness, mitigating overfitting by

randomly removing neurons (44). The model’s input consists of

dual-channel unwrapped dose on the cylindrical surface, with doses

originating from both the TPS and ArcherQA. The model’s output

is gamma pass rates for four different criteria.

Our PSQA dataset consisted of 710 case records. For the

dataset splitting, we allocated 426 cases for training, 142 for

validation, and the remaining 142 for testing. During model

training, we used data augmentation strategies, such as

translations and flipping, to artificially increase the size and

diversity of the dataset. The neural network architecture is based

on PyTorch and was trained on an NVIDIA GeForce RTX 4080

GPU. During training, the L1 Loss (Mean Absolute Error) was

used as our loss function. The optimization process utilized the

Adam optimizer with a base learning rate (lr) set to 0.0001 and

adaptive moment estimation parameters (betas) configured as

(0.9, 0.999). To enhance training dynamics, a learning rate

scheduler was employed, gradually reducing the learning rate by

a factor of 0.98 every 5 epochs. The deep learning models were

trained for a maximum of 300 epochs. Early stopping was

employed to prevent overfitting by halting training when the

validation loss started to increase.
Frontiers in Oncology 04
2.4 Evaluation

In pursuit of a dependable and consistent model, a 5-fold cross-

validation approach was used to train the model. Through cross-

validation, optimal model parameters were determined and then

used to generate predicted GPR for the 142 test cases. Subsequently,

a GPR comparison was performed between the predicted GPR and

the measured GPR, taking into account metrics of mean error (ME),

mean absolute error (MAE), and root-mean-square error (RMSE)

as described by Equations 1–3.

ME =
1
No

N

i=1
(m(i) − p(i)) (1)

MAE =
1
No

N

i=1
m(i) − p(i)j j (2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1

(m(i) − p(i))2

N

s
(3)

where N represents the total count of test cases, p(i) denotes the

GPR value predicted for the i-th case, and m(i) signifies the

corresponding measured GPR value.

The performance across various criteria was also evaluated

using the ROC curve. This curve represents the relationship

between the true positive rate (TPR) and the false positive rate

(FPR), as described by Equations 4, 5. To quantify the classifier’s

performance, the AUC (Area Under the Curve) was calculated.

Typically, AUC values range from 0.5 to 1, with 0.5 indicating

random classification, and a value close to one signifying an

excellent classifier.

TPR =
N(TP)

N(TP + FN)
(4)

FPR =
N(FP)

N(FP + TN)
(5)

where, N represents the number of a specific value, and

definitions for TP (true positive), TN (true negative), FP (false
FIGURE 2

Framework and model architecture for PSQA prediction based on CNN.
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positive), FN (false negative) are provided in Table 1. The “pass”

threshold was defined as achieving a GPR greater than or equal to

95% at 3%/3 mm, greater than or equal to 90% at 3%/2 mm, 2%/3

mm, and 2%/2 mm (41, 42). Otherwise, it was classified as “fail”.
3 Results

The entire training process for the model takes around 110

minutes, and the detailed training and validation loss curves over

epochs can be found in Supplementary Appendix B. Figure 3

illustrates the correlation between measured and predicted GPR

values for the 3%/3mm, 3%/2mm, 2%/3mm, and 2%/2mm gamma

criteria. The black diagonal line in the figure represents a perfect

prediction where the measured values equal the predicted values.

Table 2 presents mean values and standard deviations (SD) for both

measured and predicted GPR values of the test cases.

Figure 4 shows the distribution of prediction errors for GPR

values across four distinct criteria: 3%/3mm, 3%/2mm, 2%/3mm,

and 2%/2mm. Specific statistical error metrics such as ME, MAE,

and RMSE can be found in Tables 3 and 4. The Pearson’s

correlation coefficient (CC) between predicted GPR and measured

GPR was calculated to be 0.69, 0.72, 0.68, and 0.71 for the 3%/3mm,

3%/2mm, 2%/3mm, and 2%/2mm criteria, respectively. The results

demonstrate a robust correlation between the predicted and

measured gamma pass rates.

The ROC curves for different GPR value classification criteria are

illustrated in Figure 5, with the AUC values being 0.90, 0.92, 0.93, and

0.95 for the 3%/3mm, 3%/2mm, 2%/3mm, and 2%/2mm criteria,

respectively. The ROC curve and the corresponding AUC values

serve as key indicators of the model’s classification performance. An

AUC value closer to 1 indicates excellent predictive accuracy,

suggesting that the model is effectively distinguishing between true

positive and true negative cases across the different criteria. These

AUC values indicate that each criterion provides excellent predictive

accuracy and high classification performance.
4 Discussion

In this study, we present an exploration of PSQA using DL for

predicting GPR in radiation therapy. Traditional PSQA, primarily

relies on measurement-based methods, which, although accurate,

can be time-consuming and resource-intensive. The model
Frontiers in Oncology 05
developed in this study can rapidly provide planners with GPR

results, allowing for timely actions like replanning when predicted

GPR falls below acceptance criteria. High-accuracy predictions

enhance the credibility of the virtual QA method and support

decision-making. Our prediction model can be integrated into an

automated software platform. When new plan data is received, the

platform automatically extracts the dual-channel dose, calls the

model for prediction, and generates a report. Compared to

independent Monte Carlo calculations, this process only requires

an additional few minutes of time, which fully meets the clinical

application time requirements.

The International Commission on Radiation Units and

Measurements (ICRU) Report 83 (45) and the American

Association of Physicists in Medicine (AAPM) Task Group 219

Report (32) endorse the use of independent dose calculation

methods as an additional verification step for treatment plans

generated by TPS. Utilizing random sampling to simulate particle

transport and interactions, the MC method not only ensures a more

accurate representation of radiation transport and scattering in

various media but also excels in dose calculations for small field

sizes where traditional convolution methods may falter in precision.

Consequently, these attributes have made MC algorithms

commonly employed as independent dose calculation methods.

Motivated by this, we explored the integration of advanced MC

dose calculation algorithms and AI methodologies to achieve more

accurate predictions of GPR. In this study, a commercial MC-based

dose engine (ArcherQA) was used for independent dose

calculations. In the model construction, we utilized a dual-

channel dose as input, incorporating dose distributions from both

the TPS and ArcherQA, to enhance the model’s performance. The

model with dual-channel dose input exhibits smaller MAE and

RMSE, as detailed in Table 4 for specific comparative results. One

possible reason is that the doses calculated by Monte Carlo

algorithms are closer to the measured values, especially in the

calculation of small field doses (39). However, due to the inherent

lack of interpretability common in deep learning algorithms, a

direct and reliable cause still requires further exploration.

GPR prediction has been explored by various researchers in

prior studies. Notably, the AI-driven regression method exhibited

favorable predictive performance. Hirashima et al. utilized plan

complexity and dosiomics features as input data to predict the GPR

value of a helical diode array, achieving correlation coefficients

ranging from 0.45 to 0.61 and MAE ranging from 2.7% to 3.2% for a

3%/2mm gamma criteria (17). Matsuura et al. utilized deep learning

to predict the GPR of a 3D detector array-based quality assurance

for volumetric modulated arc therapy in prostate cancer (30). They

achieved a correlation coefficient of 0.7 and a MAE of 2.5% for a

gamma criterion of 3%/2mm. In the course of this study, we

acquired a correlation coefficient of 0.72 and a MAE of 1.9%

using the predictive model under a 3%/2mm gamma criterion.

While direct comparisons of these results are challenging due to

variations in prediction methods, such as treatment site and

measurement device, our study demonstrated the DL model

utilizing dual-channel dose input for GPR prediction outperforms

or equals other ML or DL-based algorithms.
TABLE 1 Definitions of categories for ROC analysis.

Category Predicted GPR Measured GPR

TP Fail Fail

TN Pass Pass

FP Fail Pass

FN Pass Fail
TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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In the process of radiotherapy, many factors can lead to dose

deviations. Our DL model is adept at detecting systemic dose

calculation errors and discrepancies in fluence/geometric

modeling of the treatment machine. It can also identify dose

deviations resulting from suboptimal field sizes, such as those that

are too small, too large, or significantly off-center. However, it does

not track errors in data transfer to the treatment unit nor detect

actual errors in treatment delivery if the machine fails to interlock

itself, as these would require real-time monitoring or separate

verification systems.
TABLE 2 Measured and predicted GPR values (%) of test cases for
various criteria.

Criterion Measured GPR Predicted GPR

Mean SD Mean SD

3%/3mm 96.9 1.9 97.1 1.4

3%/2mm 93.3 3.2 94.0 2.2

2%/3mm 94.6 2.8 94.3 1.7

2%/2mm 88.6 4.6 89.0 2.8
F
rontiers in Oncolog
y
SD, standard deviation.
FIGURE 3

Plot of measured and predicted GPR at 3%/3 mm criterion, 3%/2 mm criterion, 2%/3 mm criterion, and 2%/2 mm criterion.
06
FIGURE 4

The prediction error distribution for GPR values across four different
criteria: 3%/3mm, 3%/2mm, 2%/3mm, and 2%/2mm. The black bars
represent the interquartile range (25% - 75%), the lines extending
from the bars indicate the 1.5× interquartile range, and the white
circles show the median prediction error for each category. The
shape of each violin plot illustrates the probability density of the
data at different error levels, with wider sections representing a
higher probability of data points falling at a particular
error percentage.
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In spite of its efficacy, this approach faces certain challenges.

Firstly, the model’s performance is inherently tied to the quality and

diversity of the training data. Although our dataset encompasses

multiple sites, it is limited to 710 clinical VMAT plans from a single

machine, requiring further investigation into the model’s

generalizability across different machines, treatment modalities,

and patient populations. Before clinical implementation, the

model requires training on a significantly larger dataset to ensure

its robustness and reliability. During the initial phase of clinical use,

the model’s predictions will be used in parallel with existing clinical

methods to cross-validate results and ensure consistency. Another

consideration is the model’s dependency on the accuracy of input

data from TPS, ArcherQA and ArcCHECK. Any discrepancies or

errors in these systems could negatively impact the model’s

predictions. Therefore, continuous verification of these systems is

essential if the model is to be applied in clinical settings.

Our approach offers several key advantages compared to similar

techniques. Firstly, compared to machine learning-based methods,

our method does not rely on the manual extraction of feature

parameters, which reduces human bias and the risk of errors in

feature selection. In comparison to third-party verification methods

based solely on Monte Carlo simulations, our approach offers higher

reliability. By incorporating dual-channel dose into the predictive

model, it provides a more comprehensive assessment of the treatment

plan’s quality. Furthermore, when compared to other deep learning-

based models, our approach has demonstrated higher accuracy in

predicting GPR, making it a more reliable tool for PSQA.

Our model introduces an innovative method to support and

streamline the PSQA process. In the near future, if our model is

applied clinically, it may first be used to assist in checking or
Frontiers in Oncology 07
screening low pass-rate verification plans. It would serve as a

supplement rather than a replacement for traditional PSQA. The

potential application of our deep learning model is to identify

treatment plans with low gamma passing rates. This selective

focus would enable clinical physicists to concentrate their efforts

on plans that are most likely to require adjustments. Additionally,

integrating this method with emerging technologies like magnetic

resonance imaging-guided radiation therapy could provide novel

insights into online adaptive radiation therapy strategies.
5 Conclusion

We proposed a deep learning-based prediction model for

VMAT patient-specific QA, using extracted doses from both TPS

and MC calculations as input to the model. The dual-channel dose

distribution, associated with cylindrically arranged detector

elements, captures plan characteristics and holds predictive

potential for the GPR in VMAT plans. This method is expected
TABLE 4 Comparison of GPR (%) error statistics in the test dataset among different model inputs under various gamma criteria.

Criterion

TPS&MC TPS Only MC Only

ME MAE RMSE ME MAE RMSE ME MAE RMSE

3%/3mm -0.2 1.1 1.4 -0.4 1.4 1.8 0.6 1.5 1.9

3%/2mm -0.8 1.9 2.4 -1.1 2.2 2.7 1.0 2.5 3.1

2%/3mm 0.3 1.7 2.1 -0.6 1.9 2.5 -0.9 2.0 2.7

2%/2mm -0.4 2.6 3.3 0.7 3.0 3.8 -1.1 3.2 4.1
TPS & MC, TPS Only, and MC Only represent the different dose configurations used as inputs for the predictive model.
TABLE 3 ME, MAE, RMSE, and CC computed from measured and
predicted GPR (%).

Criterion ME MAE RMSE CC

3%/3mm -0.2 1.1 1.4 0.69

3%/2mm -0.8 1.9 2.4 0.72

2%/3mm 0.3 1.7 2.1 0.68

2%/2mm -0.4 2.6 3.3 0.71
ME, mean error; MAE, mean absolute error; RMSE, root mean squared error; CC, Pearson’s
correlation coefficient.
FIGURE 5

ROC curves for four different criteria of predicted GPR. Each curve
represents the trade-off between the true positive rate (sensitivity)
and false positive rate (1-specificity) for the 3%/3mm (blue line, AUC
= 0.90), 3%/2mm (orange line, AUC = 0.92), 2%/3mm (green line,
AUC = 0.93), and 2%/2mm (red line, AUC = 0.89) criteria.
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to be a valuable tool capable of reducing the workload associated

with PSQA.
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