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The role and research progress
of serine metabolism in
tumor cells
Hanning Lyu, Shuchang Bao, Lingyun Cai, Mengke Wang,
Yuxin Liu, Yang Sun* and Xiaoyang Hu*

School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
Serine is crucial for tumor initiation, progression, and adaptive immunity. Metabolic

pathways for serine synthesis, acquisition, and utilization in tumors and tumor-

associated cells are influenced by various physiological factors and the tumor

microenvironment, leading to metabolic reprogramming and amplification.

Excessive serine metabolism promotes abnormal macromolecule biosynthesis,

mitochondrial dysfunction, and epigenetic modifications, driving malignant

transformation, proliferation, metastasis, immune suppression, and drug

resistance in tumor cells. Restricting dietary serine intake or reducing the

expression of serine synthetic enzymes can effectively slow tumor growth and

extend patient survival. Consequently, targeting serinemetabolism has emerged as

a novel and promising research focus in cancer research. This paper reviews serine

metabolic pathways and their roles in tumor development. It summarizes the

influencing factors of serine metabolism. The article explores the significance of

serine synthesis and metabolizing enzymes, along with related biomarkers, in

tumor diagnosis and treatment, providing new insights for developing targeted

therapies that modulate serine metabolism in cancer.
KEYWORDS

serine metabolism, cancer, one-carbon metabolism, serine catabolism, the
immunosuppressive microenvironment
1 Introduction

Serine, a non-essential amino acid, is vital for nucleotide and lipid metabolism, serving

as a key source of one-carbon (1C) units necessary for biological growth. Within cells,

serine has multifunctional roles, participating in DNA and RNA synthesis, regulating cell

membrane structure and function, and supporting cell growth (1, 2). The importance of

serine in cancer cell proliferation differs from that in normal cells. Compared to normal

cells, most cancer cells rely on glycolysis for energy procurement (3). Due to its lower

production efficiency, cancer cells increase their uptake and utilization of glucose and

amino acids such as glutamine (4). In rapidly proliferating cancer cells, however, glucose

and glutamine consumption is often insufficient to support biomacromolecule

accumulation. In this process, serine provides most of the carbon and nitrogen units
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required by cancer cells, which is crucial for their survival (5).

Studies have shown that both endogenous serine produced from

glucose and functionally acquired exogenous serine are associated

with the growth of cancer cells in vitro and in vivo and functionally

promote cancer progression (6–10).
2 Serine metabolism

Serine is the primary source for synthesizing one-carbon (1C)

units, linking amino acid metabolism to nucleotide metabolism.

Thus, serine occupies a central role in cellular metabolic processes.
2.1 Serine as a central node in biosynthesis

Serine serves as a pivotal metabolite in various biosynthetic

pathways, providing essential materials for cellular biosynthesis

processes (11). Through charging tRNAs, serine participates in

protein synthesis and acts as a precursor for amino acids like

cysteine and glycine. It also provides head groups for the

synthesis of sphingolipids and phospholipids. Notably, in the

folate-mediated 1C pathway, the cleavage of serine into glycine

and 1C units supports the synthesis of porphyrins, thymidylate,

purines, glutathione, and S-adenosylmethionine (SAM) (12).
2.2 Pathways for serine acquisition

Serine, essential for cell growth, is acquired through internal

synthesis and external uptake.

2.2.1 Internal synthesis
One-carbon metabolism includes a bicyclic pathway formed by

the coupling of the folate cycle, methionine cycle, and trans-

sulfuration pathway (13, 14). The folate and methionine cycles

are crucially interlinked pathways in 1C metabolism, providing

methyl groups for DNA, amino acid, creatine, polyamine, and

phospholipid synthesis (15). One-carbon metabolism generates

various products by cycling 1C units from different amino acids

and integrating multiple cellular nutritional states (13). The

primary sources of 1C units are the catabolic pathways of serine,

glycine, and histidine. Serine and glycine are interconvertible, with

serine serving as the principal donor of 1C units when converted to

glycine (16). Serine is derived from the metabolism of nutrients,

including proteins and phospholipids. Glycine, synthesized

endogenously from serine, acquires a hydroxymethyl group

through serine hydroxymethyltransferase (SHMT). Although

alternative sources for serine synthesis exist, the Serine Synthesis

Pathway (SSP) remains the primary supplier of serine in the body,

as other sources are insufficient to meet tumor cell demands (2).

The SSP is recognized as a critical growth and stress resistance

pathway in cancer cells (17–21).

As illustrated in Figure 1, in the folate cycle, folate is reduced

twice by dihydrofolate reductase (DHFR), ultimately converting
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into tetrahydrofolate (THF). Serine is synthesized from the

glycolytic intermediate 3-phosphoglyceric acid (3PG) through

three steps. First, 3PG is oxidized to 3-phosphohydroxypyruvic

acid (3PHP) by phosphoglycerate dehydrogenase (PHGDH),

reducing NAD+ to NADH. First, 3PG is oxidized to 3-

phosphohydroxypyruvic acid (3PHP) by phosphoglycerate

dehydrogenase (PHGDH), reducing NAD+ to NADH. Secondly,

through a transamination reaction, 3PHP receives an amino group

from glutamate, producing 3-phosphoserine (3P-Ser) and a-
ketoglutarate (a-KG), a step catalyzed by phosphoserine

transaminase 1 (PSAT1). Finally, 3P-Ser is dephosphorylated by

phosphoserine phosphatase (PSPH) to produce serine (12).

Under the catalysis of SHMTs, serine is converted to glycine, and

during this process, THF accepts the one-carbon unit from serine,

forming 5,10-methylenetetrahydrofolate (5,10-CH2-THF).

5,10-CH2-THF can be converted to 10-formyltetrahydrofolate

(F-THF) by methylenetetrahydrofolate dehydrogenase (MTHFD)

1/2/1L, or reduced to 5-methyltetrahydrofolate (mTHF) by

methylenetetrahydrofolate reductase (MTHFR). mTHF can be

demethylated and converted back to THF, completing the folate

cycle and initiating the methionine cycle.

In the methionine cycle, mTHF transfers the one-carbon unit to

homocysteine to form methionine, which is then converted by

methionine synthase (MTR). Methionine is converted into S-

adenosylmethionine (SAM) by methionine adenosyltransferase

(MAT). SAM, a substrate for methylation reactions, forms S-

adenosylhomocysteine (SAH) upon demethylation, which is

converted back to homocysteine by S-adenosylhomocysteine

hydrolase (SAHH), completing the methionine cycle (14). In the

trans-sulfuration pathway, homocysteine is converted to

cystathionine by cystathionine beta-synthase (CBS) and further to

cysteine by cystathionine gamma-lyase (CTH), ultimately leading to

glutathione (GSH) synthesis.

2.2.2 External uptake
While some cancer cells meet their growth requirements

through de novo serine synthesis, others depend on exogenous

serine (8, 9, 22). In normal cells, serine is synthesized via the de novo

pathway, involving reactions catalyzed by phosphoglycerate

dehydrogenase (PHGDH). However, certain cancer cells may

have mutations or abnormal expressions in key enzymes of these

metabolic pathways, which restrict their ability to synthesize serine

de novo. Consequently, these cancer cells often rely on exogenous

serine to support their growth and metabolic needs, as observed in

Ewing sarcoma and liposarcoma cells (23). The supply of exogenous

serine can be achieved through the intake of a serine-rich diet or the

availability of serine in the extracellular environment, where serine

transport proteins play a critical role. The serine transporters

encompass members of the SLC1A, SLC6A, SLC7, SLC36, and

SLC38 families, with their specific classifications and functional

characteristics detailed in the Table 1. The Solute Carrier Family 1A

(SLC1A) includes two major transport systems: Alanine-Serine-

Cysteine Transporters 1-2 (ASCT1-2) and human glutamate

transporters (Excitatory Amino Acid Transporters 1-5, EAAT1-

5). ASCTs are widely expressed and are one of the four primary
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neutral amino acid transport systems in the human body (24, 25).

In particular, ASCT2(SLC1A5) functions as a neutral amino acid

exchanger, transporting serine and other amino acids (26). Under

serine-limited conditions, ASCT2 is essential for purine nucleotide

biosynthesis. Combined depletion of ASCT2 with a serine-free diet

induces tumor regression (27). Similarly, in activated T cells, most

intracellular serine is obtained from the extracellular environment

(28). The main transporter for serine uptake in T cells has not yet

been identified, but SLC1A5 is hypothesized to be involved (29).

Beyond ASCT2, emerging evidence has revealed ASCT1 (SLC1A4)

as a functional serine transporter in astrocytes (30). In parallel,

Maddocks and colleagues have identified SLC6A14 and SLC12A4 as

contributors to serine transport in cancer cells (31).

This dependence on exogenous serine has significant clinical

implications, providing a potential therapeutic target within the

serine metabolic pathway. Interfering with cancer cells’ dependency

on exogenous serine, such as by inhibiting serine transport proteins

or disrupting serine uptake, may hinder cancer cell growth and

proliferation. It is important to acknowledge that serine metabolism

may differ among various types of cancer, and the specific

dependencies and mechanisms of serine metabolism are still

under investigation. A deeper understanding of cancer cell

dependency on serine is crucial for developing effective treatment

strategies for tumors.
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2.2.3 Metabolic interplay and plasticity between
de novo synthesis and exogenous uptake

Intracellular synthesis and extracellular uptake constitute two

primary pathways for serine acquisition in cancer cells, operating

independently yet synergistically to sustain tumor metabolism. The

de novo synthesis pathway (e.g., serine synthesis pathway, SSP)

confers metabolic autonomy by enabling endogenous serine

production, particularly under nutrient-replete conditions where

SSP suffices to meet proliferative demands (21, 32). For instance,

breast cancer cells with PHGDH amplification exhibit marked

dependency on SSP (33). Conversely, cancers harboring

mutations or dysregulated expression of SSP enzymes (e.g.,

PHGDH) display compromised biosynthetic capacity, leading to

heightened reliance on exogenous serine uptake. This dependency is

prominently observed in Ewing sarcoma and liposarcoma (23).

Metabolic plasticity serves as a hallmark of cancer cell

adaptation to microenvironmental heterogeneity. Studies

demonstrate that cancer cells dynamically rewire serine

acquisition strategies based on extracellular serine availability:

downregulating SSP when exogenous serine is abundant, while

upregulating SSP under serine-depleted conditions (10, 34–36).

This bidirectional regulation not only enhances survival under

nutritional fluctuations but also underpins adaptive resistance to

therapeutic stress.
FIGURE 1

Title: One-carbon cycle.
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2.3 Serine catabolism

Serine catabolism serves as a central node linking cellular energy

supply and biosynthetic processes. In mammals, serine degradation is

predominantly catalyzed by serine hydroxymethyltransferase

(SHMT), which transfers the b-carbon of serine to tetrahydrofolate

(THF), generating glycine and 5,10-methylenetetrahydrofolate (5,10-

CH2-THF). This latter metabolite functions as a one-carbon unit

donor, directly participating in the synthesis of purines, thymidylate,

and glutathione (11).

Serine catabolism plays pivotal roles in various physiological

and pathological contexts. During respiratory impairment, it

contributes to NADH regeneration (37), while in hepatic tissues,

it generates NADPH to support lipogenesis (38). Under hypoxic

conditions, serine catabolism regulates mitochondrial redox

homeostasis. Notably, the mitochondrial isoform SHMT2 is

highly expressed in proliferating cancer cells, where it enhances

one-carbon metabolism to fuel nucleic acid biosynthesis and tumor

progression (39). Accumulating evidence positions SHMT2 and

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2)— the first
Frontiers in Oncology 04
and second enzymes in mitochondrial serine catabolism — as

independent prognostic markers and potential therapeutic targets

across multiple cancer types (40–45).

These multifaceted functions underscore the broad

physiological significance of serine catabolism in energy

provision, redox equilibrium, and lipid biosynthesis, with its

dysregulation being critically implicated in various metabolic

disorders and malignancies.
3 Serine metabolism and tumors

Cellular metabolic reprogramming is a common feature of

human tumors. In conditions of nutrient limitation and stress,

tumor cells readjust metabolic pathways to produce sufficient

metabolites for their rapid proliferation (46, 47). As one of the

most fundamental components of cell structure, amino acids largely

support protein synthesis needed for cell proliferation (48). During

tumor development, changes in the rate of amino acid uptake,

metabolic pathways, metabolites, or key enzymes are referred to as
TABLE 1 Classification and nomenclature of serine transporters.

Serine Transporters Associated with Tumors

Transporter Systematic
Name

Alias/
Common Name

Functional Description

ASCT2 SLC1A5 –
Primarily transports serine, glutamine, etc. Highly expressed in tumor cells, supporting tumor
growth and metabolism.

SLC6A14 SLC6A14 –
Broad-spectrum amino acid transporter mediating serine and neutral amino acids. Highly
expressed in various cancers.

LAT1 SLC7A5 –
Transports large neutral amino acids (including serine) via heterodimeric form. Overexpressed in
tumor cells.

PAT1 SLC36A1 –
Transports small neutral amino acids (e.g., serine, glycine). May participate in metabolic regulation
in tumor cells.

SNAT1 SLC38A1 –
Mediates neutral amino acids (e.g., serine, glutamine). Potentially supports amino acid uptake in
tumor cells.

SNAT2 SLC38A2 –
Transports neutral amino acids (e.g., serine, alanine). May contribute to metabolic adaptation in
tumor cells.

Serine Transporters Unrelated to Tumors

Transporter Systematic
Name

Alias/
Common Name

Functional Description

ASCT1 SLC1A4 –
Transports neutral amino acids (e.g., serine, alanine). Predominantly expressed in the nervous
system and kidneys.

GlyT1 SLC6A9 –
Primarily mediates glycine transport but may also participate in serine transport. Plays critical roles
in the nervous system.

LAT2 SLC7A8 – Transports large neutral amino acids (including serine). Widely expressed in normal tissues.

EAAT1 SLC1A3 GLAST
Mainly transports glutamate but may also mediate serine transport. Expressed in the
nervous system.

EAAT2 SLC1A2 GLT-1
Primarily mediates glutamate transport with potential serine transport activity. Highly expressed in
the central nervous system.

EAAT3 SLC1A1 EAAC1
Primarily transports glutamate but may contribute to serine transport. Localized in neurons
and kidneys.
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amino acid metabolic reprogramming (49). Serine metabolism also

alters during tumor progression, mainly through changes in

metabolites and key enzymes (50).
3.1 Genes related to serine metabolism

Key enzymes for serine synthesis, such as phosphoglycerate

dehydrogenase (PHGDH) and phosphoserine aminotransferase

(PSAT), are often abnormally expressed in tumor cells.

Oncogenes and tumor suppressor genes also regulate the genes

encoding enzymes involved in serine synthesis. The following

section primarily introduces the related PHGDH and p53 genes.

3.1.1 PHGDH
PHGDH plays a crucial role in the de novo synthesis pathway of

serine, acting as both the first enzyme and the rate-limiting enzyme

in the reaction process. It is one of the few known metabolic

enzymes that are dysregulated in cancer (51–53). Recent studies

indicate that activating the serine synthesis pathway (SSP) and

upregulating PHGDH expression can promote the growth of

various cancer subtypes. Cancer cells use PHGDH and NAD+ to

oxidize 10% of the 3-phosphoglycerate (3-PG) produced by

glycolysis into the serine precursor 3-phosphohydroxypyruvate

(3-PPyr) (54, 55). In addition to catalyzing the first step in serine

synthesis, PHGDH accelerates the NADH-dependent reduction of

alpha-ketoglutarate (a-KG) to the oncometabolite D-2-

hydroxyglutarate (D-2HG), playing an important role in

tumorigenesis (56). Amplification of the PHGDH gene on

chromosome 1p12 occurs in 6% and 40% of breast cancers and

melanomas, respectively (57, 58). In estrogen receptor-negative

breast tumors, PHGDH protein levels can be elevated by as much

as 70% (7). Increased PHGDH expression levels are also observed in

other types of cancers. These studies highlight the important role of

PHGDH in tumor biology, offering new directions for further

research and cancer treatment.

3.1.2 p53
The tumor suppressor gene TP53 (aka, p53) encodes the protein

p53, a crucial regulator of cellular metabolism. p53 is pivotal in the

stress response to challenges such as DNA damage, hypoxia, and

oncogene activation (59). The complexity and diversity of these

cellular processes suggest that, beyond its traditional role as a tumor

suppressor, p53 also maintains homeostasis in both normal and

cancer cells (60). p53’s capacity to respond to nutritional

deficiencies arises from its role as a mediator of cellular stress

responses. It is closely related to the ability of cancer cells to cope

with serine starvation and oxidative stress. Indeed, p53 is crucial in

enabling cancer cells to overcome serine starvation and sustain their

antioxidant capacity. Cells lacking p53 exhibit reduced survival and

severely impaired proliferative capacity due to a failure to effectively

cope with serine starvation and oxidative stress. During serine

starvation, the p53-p21 signaling pathway is activated, leading to

cell cycle arrest. This arrest reallocates depleted serine for

glutathione synthesis, thereby promoting cell survival (9).
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3.1.3 PSAT1
PSAT1 (phosphoserine aminotransferase 1), a member of the

class V pyridoxal 5’-phosphate-dependent aminotransferase family,

is a pivotal enzyme in the three-step serine synthesis pathway (SSP).

It catalyzes the transamination of 3-phosphohydroxypyruvate (3-

PHP) to phosphoserine using glutamate-derived nitrogen,

concomitantly generating a-ketoglutarate (a-KG) (61). PSAT1

overexpression is documented across multiple malignancies —

including non-small cell lung cancer (NSCLC), breast cancer,

gastric cancer, colon cancer, and ovarian cancer — where it

drives tumorigenesis and malignant progression (62–67). Elevated

PSAT1 levels correlate with aggressive phenotypes such as

proliferation, migration, invasion, and therapy resistance (62, 68–

74). Recent evidence demonstrates that PSAT1 inhibition

attenuates the tumorigenic potential and pulmonary metastasis of

clear cell renal cell carcinoma (ccRCC) (75), while its prognostic

utility is increasingly recognized (76). Mechanistically, PSAT1

mediates the reversible conversion of 3-PHP to L-phosphoserine,

with glutamate serving as a substrate. Structural analyses reveal

tight interactions between L-phosphoserine’s phosphate group and

conserved arginine (Arg42, Arg328) and histidine (His41, His327)

residues, suggesting that analogs targeting these residues could yield

potent inhibitors (77). These findings underscore the therapeutic

imperative to develop PSAT1 antagonists.

3.1.4 PSPH
PSPH (phosphoserine phosphatase), the terminal enzyme in L-

serine biosynthesis, executes the irreversible dephosphorylation of

phosphoserine to serine downstream of PHGDH and PSAT1 in the

SSP (34). In melanoma, PSPH upregulation promotes tumor

growth in vitro and in vivo, whereas its knockdown suppresses

proliferation (78). Similarly, elevated PSPH expression in breast

(79), liver (80), colorectal (81), NSCLC (82), and cutaneous

squamous cell carcinomas (83) correlates with enhanced

invasiveness and metastasis. Genomic analyses identify frequent

PSPH amplifications and rare mutations in 13% of glioblastomas

(84). These oncogenic roles position PSPH as a critical node

requiring systematic investigation.

3.1.5 Transcriptional regulator ATF4
Activating transcription factor 4 (ATF4), a basic leucine zipper

(bZIP) family member, orchestrates metabolic reprogramming by

integrating stress signals (e.g., nutrient deprivation, oxidative/ER

stress) (85, 86). ATF4 directly activates SSP enzymes (PHGDH,

PSAT1, PSPH) to bolster de novo serine synthesis (87). Its pro-

tumorigenic effects manifest via serine pathway activation in

colorectal and breast cancers, where ATF4 knockdown suppresses

PHGDH expression and chemoresistance (88, 89). Paradoxically,

chronic ER stress-induced ATF4 hyperactivation may upregulate

pro-apoptotic factors like CHOP, suggesting context-dependent

tumor-suppressive potential (90). This functional duality — shaped

by tumor type, microenvironmental stress, and genetic background—

positions ATF4 as an emerging therapeutic target. Preclinical studies

confirm that ATF4 inhibition synergizes with conventional therapies

(91), though clinical translation awaits further validation.
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3.2 Serine metabolism and the
immunosuppressive microenvironment

The immunosuppressive tumor microenvironment (TME)

enables immune evasion, with serine metabolism emerging as a key

modulator via metabolite allocation, immune cell regulation, and

redox control. Serine fuels CD8+ T cell expansion through one-

carbon metabolism — a process decoupled from glucose utilization

(28). However, tumor cells hijack serine via SSP activation (PHGDH,

PSAT1 (68, 92)) or transporters (SLC1A4 (93)), depleting TME

serine. This scarcity impairs CD8+ T cell purine synthesis, blunting

clonal expansion and IFN-g production (28). Concurrently, SSP-

derived a-KG stabilizes Treg immunosuppression by enhancing

KDM5A-mediated Foxp3 demethylation (94). Thus, tumors exploit

serine metabolism to simultaneously cripple cytotoxic immunity and

bolster Treg activity.

Tumors co-opt serine metabolism (via SSP activation and

uptake) to deplete TME serine, directly impairing CD8+ T cells

while epigenetically amplifying Treg suppression through a-KG.
Targeting this axis— via PHGDH inhibitors or dietary modulation

— combined with immune checkpoint blockade may reverse

metabolic immunosuppression, offering novel combinatorial

therapeutic avenues.
3.3 Tumor treatment strategies targeting
serine metabolism

3.3.1 Low-serine diet
Serine starvation can induce cellular stress responses and

metabolic reprogramming, thereby inhibiting cancer progression

(8–10). Studies show that restricting dietary serine and glycine

reduces tumor growth in xenograft and allograft models (9, 95). In

genetically engineered mouse models of colorectal cancer (driven by

inactivation of the tumor suppressor gene Apc) or lymphoma

(driven by activation of the oncogene Myc), restricting dietary

serine and glycine intake further improved survival by

antagonizing the antioxidant response. Disruption of

mitochondrial oxidative phosphorylation (using biguanides)

results in complex responses that can either enhance or hinder

the antitumor effects of serine and glycine starvation. Mouse models

of pancreatic and colorectal cancers driven by the Kras oncogene

exhibit a weaker response to serine and glycine depletion, reflecting

Kras activation, which upregulates enzymes in the serine synthesis

pathway and promotes de novo serine synthesis (10). Initial analyses

of cancer cell lines found a close correlation between glycine

consumption from the biosynthetic pathway and cell proliferation

rates (22). However, subsequent studies revealed that serine, not

glycine, is the amino acid consumed most rapidly for proliferation,

with some cells resorting to glycine only when serine is depleted (8).

Recent studies also show that inhibiting PHGDH enhances the

therapeutic effects of a serine-deficient diet (96). Recent in vivo

studies have demonstrated that combined dietary intervention and

pharmacological inhibition exhibit significant therapeutic efficacy

against tumors resistant to single-modality treatments, with
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evidence of reduced one-carbon metabolic flux (17).

Concurrently, our findings reveal that serine deprivation in

cancer cells induces mitochondrial dysfunction, leading to

cytoplasmic accumulation of mitochondrial DNA (mtDNA) and

activation of the cGAS-STING signaling pathway, thereby

stimulating tumor-targeted immune responses. This effect is

synergistically enhanced when combined with PD-1-targeted

therapy (97).

Notably, the role of serine in cancer therapy exhibits duality:

studies indicate that serine critically regulates estrogen receptor a
(ESR1) gene expression by maintaining histone acetylation levels,

and ESR1 expression directly determines the sensitivity of hormone

receptor-positive breast cancers to endocrine therapies such as

tamoxifen (98). Paradoxically, downstream metabolites of serine

catabolism, including formate, exert beneficial effects on antitumor

T cells. Formate supplementation synergizes with PD-1 blockade

(99). Importantly, serine-restricted diets alone may inadvertently

stimulate resistance mechanisms such as PD-L1 upregulation,

underscoring the necessity to combine dietary interventions with

PD-L1-targeted strategies (100).

3.3.2 PHGDH inhibitors
Research into PHGDH’s role in regulating cell growth has

deepened, establishing it as a promising direction for targeted

drug discovery (92). In 2018, Ishida et al. demonstrated that

interfering with the SOG (serine synthesis pathway) using

PHGDH inhibitors can induce synergistic cell death in vitro and

in vivo (101). Studies show that CBR-5884, a PHGDH inhibitor, has

dual effects: it inhibits cell proliferation and increases sensitivity to

hypoxia-induced cell death (102). Recent studies indicate that

PHGDH expression is reduced by 40-50% in 1p/19q-codeleted

gliomas compared to non-codeleted gliomas, suggesting these

gliomas have selective vulnerability to serine and glutathione

depletion (103).

Numerous PHGDH inhibitors have been reported and can be

classified into two categories based on their binding sites: allosteric

inhibitors and orthosteric inhibitors. Allosteric inhibitors include

the CBR-5884 series, bis-sulfonamide derivatives, piperazine-1-

thiocarboxamide scaffolds, a-thio-oxamidamide scaffolds, and

pyrazole-5-thiocarboxamide scaffolds, among others. Orthosteric

inhibitors include indoleamide derivatives, phenyl-pyrazole-5-

carboxamide derivatives , and certain fragments . The

characteristics of these inhibitors are summarized in Table 2.

3.3.3 Other inhibitors
Serine hydroxymethyltransferase (SHMT), a pivotal enzyme in

one-carbon metabolism, catalyzes the conversion of serine and

tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate

(5,10-CH2-THF), providing one-carbon units for nucleotide synthesis.

SHMT is overexpressed in various cancers and strongly associated with

tumor proliferation and chemoresistance (22). Recent advances in

targeting SHMT have positioned it as a hotspot for metabolic therapy.

Pemetrexed, an antifolate chemotherapeutic agent used in non-small

cell lung cancer and breast cancer, competitively inhibits cytosolic

SHMT1 activity by forming hydrogen bonds at the active site,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1509662
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lyu et al. 10.3389/fonc.2025.1509662
mimicking THF binding. However, pemetrexed exhibits

polypharmacology by targeting multiple one-carbon metabolic

enzymes (104). SHIN1, a dual small-molecule inhibitor of SHMT1/2,

achieves suppression via competitive THF binding and hydrogen bond

interactions between its –NH group and SHMT1/2 (105). Notably, the

antidepressant sertraline has recently been identified as a competitive

dual SHMT1/2 inhibitor through direct binding to both isoforms (106).

MTHFD2, whose expression is upregulated in tumors such as

breast and colorectal cancers, correlates with poor survival (44,

107). DS18561882, a potent and orally bioavailable MTHFD2

inhibitor with demonstrated in vivo antitumor efficacy, has

emerged as a promising candidate for breast cancer treatment.

However, its biological roles in other malignancies remain to be

elucidated (108).
3.4 Traditional Chinese medicine affects
serine metabolism

The biosynthesis of serine and glycine is crucial in

tumorigenesis (54). Research indicates that a deficiency in serine

and glycine reduces glutathione synthesis and increases reactive

oxygen species (ROS) levels in cells (32). Moreover, downregulating

the rate-limiting enzymes of serine/glycine metabolism, such as

phosphoserine phosphatase (PSPH) and phosphoserine

aminotransferase 1 (PSAT1), may disrupt the pro-tumor effects

mediated by serine/glycine metabolism (7, 75). Targeting amino

acid metabolism shows promise for discovering selective inhibitors
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and new strategies for cancer treatment (109). Recent studies

suggest that certain traditional Chinese medicine (TCM) herbs

and compounds may exhibit antitumor effects by targeting amino

acid metabolic pathways, highlighting TCM’s potential in cancer

therapy. Licorice is a typical TCM herb commonly used to treat

inflammation and allergies. Recent research suggests that licorice

root extract exhibits anticancer effects in nasopharyngeal carcinoma

cells. Metabolomic analysis revealed that these anticancer effects

may relate to the downregulation of fatty acid biosynthesis

metabolites and reductions in glutamic acid, serine, and threonine

metabolism (110). Tanshinones, bioactive constituents derived

from Salvia miltiorrhiza, have recently been demonstrated to

upregu la te PHGDH mRNA express ion leve l s (111) .

Unfortunately, research on how TCM compounds or decoctions

regulate serine metabolism and their effects on cancer cell invasion

and migration remains scarce. The mechanisms remain unclear and

warrant further in-depth studies.
4 Summary and outlook

Serine metabolism is crucial in tumor development, and tumor-

related biomarkers of this metabolism show promise for clinical

applications. In the serine synthesis pathway, key enzymes like

PHGDH and PSPH are upregulated in specific tumor types (51, 52,

112). Abnormal expression of PHGDH and PSPH may enhance

serine synthesis in tumor cells, positioning them as potential

diagnostic biomarkers. Serine metabolic enzymes have also gained
TABLE 2 Types and action characteristics of PHGDH inhibitors.

Inhibitor Variety Feature

Allosteric inhibitors
Allosteric inhibitors

CBR-5884 CBR-5884 inhibited PHGDH substrates (3-PG and NAD-TUTA) in a non-competitive
and time-dependent manner, but it was not stable in mouse plasma, and its chemical
structure still needed to be optimized.

Disulfram derivatives Dithioethers inhibit PHGDH by oxidizing the Cys116 residue, inducing the active
tetramer to an inactive dimer or a less active monomeric intermediate.

Piperazine-1-carbothioamide scaffold NCT-503 showed selective activity against PHGDH-dependent cell lines and xenograft
tumors by affecting the oligomerization state of PHGDH.

ɑ-Ketothioamide scaffold In a - ketone thiourea for all three parts (a, B, C) after a thorough research, there are only
two compounds, 28 generation of carbonyl compounds with sulfur and 29 with sulfonyl
hydrazide compounds showed moderate enzyme activity. Cells (CETSA) show that the
thermal drift analysis, 28 and 29 can stable PHGDH protein, further confirmed they
interact with cells PHGDH in the pyrolysis products.

PKUMDL-WQ series PKUMDL – and PKUMDLWQ WQ - 2101-2201 in vivo selectively inhibit PHGDH
amplification MDA - MB - 468 transplanted tumor, without affecting the MDA - MB231
transplantation tumor growth.

Natural products as PHGDH inhibitors Nitrogen zhuo methadone E (54) was first isolated from natural products (aspergillus
flavus) get PHGDH inhibitor, another kind of natural products, nuts lactone A (Lox A,
55) separated from the feed. The natural bitter almond lactone has obvious PHGDH
inhibitory activity.

Orthosteric inhibitors Phenylpyrazole-5-carboxamide derivatives Pka of acid on the inhibitory activity plays an important role, because sulfonyl inhibitory
activity was greatly enhanced by the introduction of the acetate.

Fragment hits for PHGDH Since these promising fragments, can use drug design based on fragment to explore more
effective competitive PHGDH nadrode inhibitors
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attention in tumor research. SHMT2, one of the key enzymes in

serine metabolism, is upregulated in certain tumors (113–117).

Serine aminotransferase 1 (SAT1) is closely linked to serine

metabolism, with abnormal expression associated with tumor

development (118, 119). The abnormal expression of these

enzymes may affect the metabolic pathways of tumor cells,

further influencing tumor proliferation and survival. Thus, they

may serve as potential markers for tumor diagnosis and treatment.

Research on serine and its metabolites has significant application

potential. Alterations in glycine and cysteine concentrations may be

linked to tumor development and metabolic disorders (120, 121). In

various cancers, serine metabolism, one-carbon (1C) metabolism,

and mTOR signaling pathways show abnormal hyperactivation (32,

122, 123). Serine and one-carbon metabolism may serve as key links

between mTOR signaling and DNA methylation, promoting tumor

growth (124). It is noteworthy that although PHGDH is often

amplified in various types of cancer, therapeutic interventions

targeting PHGDH are far more complex than initially imagined.

This complexity stems from the fact that PHGDH has both tumor-

promoting and potential anti-metastatic effects (125, 126).

Additionally, exogenous serine can sometimes compensate for the

deficiencies caused by the loss of serine biosynthesis (127–129).

These findings imply that simply inhibiting PHGDH may not

suffice for effective tumor treatment due to its complex dual role

in tumor development. Thus, developing effective therapeutic

strategies targeting PHGDH necessitates a deeper understanding

of its specific functions and regulatory mechanisms in tumors,

along with its effects on normal cells. Furthermore, supplementing

exogenous serine may pose challenges to therapeutic interventions.

Although serine supply can be externally supplemented, achieving a

balance in the serine metabolic pathway remains complex for tumor

cells. Therefore, relying solely on exogenous serine as a treatment

strategy may be infeasible, necessitating comprehensive

consideration of the overall regulation of the serine metabolic

pathway. Combining these biomarkers with other clinical

indicators could enhance the efficacy of tumor diagnosis and

analysis. Investigating the link between serine metabolism and

tumor development, identifying additional biomarkers, and

enhancing research on serine metabolism and related pathways

will deepen our understanding of tumor mechanisms and
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potentially yield new targets and strategies for diagnosis

and treatment.
Author contributions

HL:Writing – original draft. SB: Writing – review & editing. LC:

Writing – review & editing. MW: Writing – review & editing. YL:

Writing – review & editing. YS: Writing – review & editing,

Supervision. XH: Writing – review & editing, Supervision,

Funding acquisition.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by the National Nature Science Foundation of China (Grant No.

81202638, 81704054).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Wu Q, Chen X, Li J, Sun S. Serine and metabolism regulation: A novel mechanism
in antitumor immunity and senescence. Aging Dis. (2020) 11:1640–53. doi: 10.14336/
AD.2020.0314
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