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Introduction: Diagnosing the types of malignant lymphoma could help

determine the most suitable treatment, anticipate the probability of recurrence

and guide long-term monitoring and follow-up care.

Methods: We evaluated the differences in benign, lymphoma and metastasis

superficial lymph nodes using ultrasonography and tissue metabolomics.

Results: Our findings indicated that three ultrasonographic features, blood supply

pattern, cortical echo, and cortex elasticity, hold potential in differentiating

malignant lymph nodes from benign ones, and the shape and corticomedullary

boundary emerged as significant indicators for distinguishing between metastatic

and lymphoma groups. Metabolomics revealed the difference in metabolic profiles

among lymph nodes. We observed significant increases in many amino acids,

organic acids, lipids, and nucleosides in both lymphoma and metastasis groups,

compared to the benign group. Specifically, the lymphoma group exhibited higher

levels of nucleotides (inosine monophosphate and adenosine diphosphate) as well

as glutamic acid, and the metastasis group was characterized by higher levels of

carbohydrates, acylcarnitines, glycerophospholipids, and uric acid. Linear

discriminant analysis coupled with these metabolites could be used for

differentiating lymph nodes, achieving recognition rates ranging from 87.4% to

89.3%, outperforming ultrasonography (63.1% to 75.4%).

Discussion: Our findings could contribute to a better understanding of malignant

lymph node development and provide novel targets for therapeutic interventions.
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1 Introduction

Lymphadenopathy can result from a myriad of causes,

encompassing infections, autoimmune diseases, neoplasms,

hematological disorders, and more (1). Malignant lymph nodes

include metastases and lymphoma (2). Diagnosing the specific type

of malignant lymphoma could help determine the most appropriate

treatment, anticipate the probability of recurrence and guide long-

term monitoring and follow-up care (3). Various imaging

techniques have been employed for the diagnosis of malignant

lymph nodes, including computed tomography (CT), magnetic

resonance imaging (MRI), positron emission tomography-

computed tomography (PET-CT), and ultrasonography (US).

Among these imaging techniques, ultrasonography stands out due

to cost-effectiveness, operational ease, and ability to provide high-

resolution information (4). Ultrasonography utilizes morphological

criteria to discern benign from malignant lymph nodes (5–7).

Malignancies often manifest as lymph nodes that exhibit enlarged

size, heterogeneous internal structure, an absence of echogenic

hilum, compromised capsule integrity, and a peripheral vascular

pattern (6). However, certain malignant lymph nodes with typical

morphology could be easily misdiagnosed in ultrasonographic

examinations (8). Moreover, in cases of lymph node enlargement,

it can be challenging to distinguish reactive hyperplasia from

metastatic occurrences (9). Therefore, there is an urgent need to

deeply understand the difference in the ultrasound characteristics of

malignant lymph nodes with various pathological categories.

Metabolomics encompasses the high-throughput identification

and quantification of small molecule metabolites, which are the end

products of metabolism, in biological samples (10). Metabolomics

has been utilized in human medicine and clinical research. In

contrast to traditional imaging techniques, metabolomics is

emerging as a powerful tool for comprehending disease

mechanisms, discovering biomarkers, and advancing personalized

medicine (11, 12). For instance, Schmidt et al. (13) demonstrated

that acylcarnitine C18:1, citrulline, trans-4-hydroxyproline and

three glycerophospholipids in blood may have associations with

prostate cancer (13). Wang et al. (14) found that patients with

Parkinson’s disease exhibited elevated levels of 3-methoxytyramine,

N-acetyl-L-tyrosine, orotic acid, uric acid, vanillic acid, and

xanthine in their urine (14). Shao et al. (29) found the higher

levels of metabolic intermediates and the enrichment of genes

involved in the tricarboxylic acid (TCA) cycle in prostate cancer

tissues (15). However, reports remain limited concerning

alterations in metabolic profiling of superficial lymph nodes

across different pathologies.

In this study, benign, lymphoma, andmetastatic lymph nodes were

analyzed using ultrasonography and LC-QTOF/MS-based tissue

metabolomics. Statistical analysis was applied to identify variations in

ultrasound features and metabolites among the lymph node groups.

The main objective of this study was I) to investigate the difference in

metabolic and ultrasound characteristics among superficial lymph

nodes with different pathological types and II) to compare the

diagnostic efficiency of the two methods for discriminating

superficial lymph nodes. Our findings could contribute to a better
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understanding of malignant lymph node development and offer

potential biomarkers for diagnosing malignant lymph nodes.
2 Materials and methods

2.1 Patients and sampling

A total of 78 patients with superficial lymph node enlargement

were enrolled at the first affiliated hospital of Nanjing medical

university from February 2021 to June 2022. All patients underwent

ultrasonography of lymph nodes. If the cause of lymphadenopathy

could not be diagnosed, the patient would undergo an ultrasound-

guided needle biopsy. The criteria for inclusion were patients

assessed by the sonographer and clinician requiring ultrasound-

guided needle biopsy. The exclusion criteria included: I)

contraindications for a core needle biopsy, such as uncontrolled

acute infection and apparent tendency to develop activity; II)

incomplete pathological results (Routine pathological diagnosis

was incomplete and immunohistochemical results were lacking);

and III) borderline diseases, such as Castleman disease.

Lymph node tissue was biopsied with a 16G needle under

ultrasound guidance and four specimens of tissue were obtained.

Three specimens were used for pathological examination, and one

was stored in a -80°C for metabolomic analysis. According to

inclusion and exclusion criteria, 69 patients were up to the

standard, and these samples were subjected to metabolomic

analysis. According to immunohistochemical pathology, the

lymph nodes were divided into benign (N=20), lymphoma

(N=29), and metastasis (N=20) groups.

The ethics committee of the first affiliated hospital of Nanjing

medical university has approved this study. The ethics committee of

the First Affiliated Hospital of Nanjing Medical University has

approved this study. Prior to participation, all patients signed an

informed consent form, and investigators securely protected and

analyzed all data.
2.2 Ultrasound features

Ultrasound examination and ultrasound-guided core needle

biopsy were respectively performed by two doctors with ten years

of experience in ultrasound diagnosis and interventional.

Conventional ultrasound images were obtained by Philips Epiq 5

(L12-5, 5–12 MHz) and Super Sonic Imagine Aixplorer-1 (SL15-4,

4–15 MHz), and ultrasound-guided core needle biopsy using GE

Logiq E9 (9L, 3–10 MHz). Ultrasound characteristics for each

lymph nodes were collected: long diameter, short diameter, shape,

vascular pattern, hilum, cortical thickness, cortical echo, cortex

elasticity, corticomedullary boundary, ratio of short to long,

calcification, elasticity, Adler grade of blood flow were recorded.

The assignment of variables was shown in Table 1. The elastography

was assessed using ChoiJJ’s 4-point method: 1 point for all lymph

nodes being green or bluish, 2 points for scattered blue areas

comprising less than 45% proportion, 3 points for blue areas
frontiersin.org

https://doi.org/10.3389/fonc.2025.1510018
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1510018
larger than 45%, and 4 points for the blue area occupying the entire

lymph node with or without a green border. Furthermore, 1~2, 3

and 4 points is soft, medium and hard, respectively.
2.3 Metabolomic analysis

Each lymph node sample was extracted with 2-mL 80%

methanol solution, rotated for 10 min and centrifuged at 8000×g

for 20 min. The supernatant was filtered through a 0.22-µm

membrane filter and analyzed using LC-QTOF/MS (TripleTOF

5600+, AB SCIEX). The MS instrument was equipped with an

electrospray ionization source and each sample was detected by the

mass spectrometry under positive and negative ionization modes.

The full-scan mode (50-1000 m/z) based on information-dependent

acquisition mode was applied. Mobile phase A in the positive and

negative ionization modes were 0.1% formic acid/water and 5mM

ammonium acetate, respectively and the mobile phase B in both two

modes was acetonitrile. The gradient elution process of mobile

phase B was at 1% (v/v) for 0-3 min, 1%-99% (v/v) for 3-21 min,

99% (v/v) for 21- 28 min, and 1% (v/v) for 28-34 min. The ion spray

voltage and collision energy were 5500 V and 35 V, respectively, in

the positive ionization mode and were −4500 V and -35 V,

respectively, in the negative ionization mode. The nebulizer,

curtain gas, and heater flow pressures were set to 50, 25, and 50

psi, respectively. Besides, a quality control (QC) sample was

prepared by mixing each lymph node sample in equal volume (10

mL) was detected every 6 samples under the above condition.

The open source software MS-DIAL was used to analyze mass

spectrometry data. The MS peaks were qualitatively analyzed by

comparing the similarity of the first- and second-order mass
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spectrometry, and retention time in publicly available databases

(including MassBank, GNPS, MetaboBASE, and LipidBlast) and

some of them were further confirmed with standard chemicals

(Supplementary Table S1). Principal component analysis (PCA)

was used to analyze the differences of metabolic profiling among

three groups. The PLS-DA model with VIP greater than 1 and t-test

with P-value less than 0.05 were used to screen the metabolites with

significant changes. The identified metabolites with significant

change was applied for metabolic pathway analysis using by a

web-based tool MetaboAnalysts based on the database Kyoto

Encyclopedia of Genes and Genomes. Pearson’s correlation

analysis analyzed the correlation of identified metabolites with

ultrasound features and patient’s age and gender, with a

significance level set at P < 0.05.
2.4 Discriminant model

Linear discriminant analysis was applied in conjunction with

ultrasonography or tissue metabolomics to differentiate benign,

lymphoma, and metastasis lymph nodes. For metabolomics, a

random forest analysis was conducted to measure variable

importance of metabolites for distinguishing the superficial lymph

nodes. Within each group, 90% and 10% of samples were randomly

allocated to training and prediction sets, respectively, utilizing the

Monte Carlo cross-validation method. For mitigating the error

from one single calculation, Monte Carlo simulation was run 100

times and the average diagnostic rate of each groups was calculated.
3 Results

3.1 Diagnostic efficacy of
ultrasonographic features

For each superficial lymph nodes, the information of ultrasound

sonographic characteristics and patients’ age and gender were

collected. The result of t-test analysis revealed that there were

significant differences in these indices between three groups.

Three indices, age, vascular pattern and cortical echo, were

significantly varied between lymphoma and benign groups (P <

0.05) (Figure 1). Nine indices, age, width, shape, vascular pattern,

hilum, cortical echo, cortex elasticity, corticomedullary boundary

and short long diameter were significantly changed between

metastasis and benign groups (P < 0.05) (Figure 1). There were

significant differences in six indices between lymphoma and

metastasis groups, including age, cortex elasticity, shape, cortical

echo, hilum and corticomedullary boundary (P < 0.05).
3.2 Metabolic profiling analysis

We conducted metabolic profiling of lymph node samples using

LC-QTOF/MS analysis. The total ion chromatograms of a lymph node

sample are shown in Supplementary Figures S1, S2. MS-DIAL software

was utilized to analyze the data, resulting in the detection of 6754 peaks
TABLE 1 Information on the variable assignment.

Factors Assignment

Gender 0 for male; and 1 for female

Shape 0 for regular; and 1 for irregular

Hilum 0 for preserved; 1 for partially preserved; and 2 for
completely obliterated

Cortical thickness 0 for normal; and 1 for thickened

Cortical echo 0 for homogeneous isoecho; 1 for reticular; and 2
inhomogeneous hyperecho

Corticomedullary
boundary

0 for clear; and 1 for unclear

Ratio of short
to long

0 for <0.5; and 1 for ≥ 0.5

Calcification 0 for none; 1 for microcalcification; and 3
for macrocalcification

Lymph node fusion 0 for none; and 1 for confluent

Vascular pattern 0 for hilar vascularity; 1 for mixed vascularity; and 2
peripheral vascularity

Adler grade
of blood

0 for Grade 0; 1 for Grade I; 2 for Grade II; and 3 for
Grade III

Elastography 0 for soft; 1 for medium; and 2 for hard
frontiersin.org

https://doi.org/10.3389/fonc.2025.1510018
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1510018
from the positive mode and 3474 peaks from the negative mode.

Principal component analysis (PCA) was performed, showing that the

first two principal components explained 46.07% of the total variance

(Figure 2A). The PCA plot based on these components clearly

displayed differences in the metabolic profiles among the three

groups of lymph nodes (Figure 2A). Using PLS-DA with a VIP value

> 1 and t-test with a P-value < 0.05, we identified a total of
Frontiers in Oncology 04
174 metabolites with significant changes. These metabolites primarily

belonged to categories such as amino acids, organic acids, nucleosides,

lipids, sugars, and amines (Figure 2B; Supplementary Table S1).

Notably, lipids were found to be the most abundant metabolites,

including fatty acids, lysophospholipids (lysophosphatidylcholine

(LPC) lysophosphatidylethanolamine (LPE), lysophosphatidylinositol

(LPI), and lysophosphatidylglycerols (LPG)), glycerophospholipids
FIGURE 2

(A) PCA analysis of metabolic profiling of benign, lymphoma, and metastasis lymph nodes. (B) Proportion of identified metabolites that showed
significant changes, determined by Student’s t-test (P < 0.05) and PLS-DA (VIP > 1).
FIGURE 1

Patient and ultrasonography indices with significant difference among benign, lymphoma, and metastasis groups, analyzed using Student’s t-test.
The features include age (A), width (B), shape (C), corticomedullary boundary (D), cortex elasticity (E), hilus (F), cortical echo (G), vascular pattern (H),
and short long diameter (I). NS indicates no significance (P > 0.05); * indicates P < 0.05; ** indicates P < 0.01; *** indicates P < 0.001.
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(phosphatidylcholine (PC), phosphatidylethanolamine (PE),

phosphatidylinositol (PI) and phosphatidylglycerol (PG)) and

acylcarnitine (CAR). The heatmap plot of these metabolites with

significant change was shown in Figure 3.
3.3 Differential metabolite analysis

In the lymphoma versus benign group, 66 metabolites were

significantly upregulated, mainly amino acids, nucleosides and amines

(Figure 4A). Phosphocholine, guanosine monophosphate, cytidine

diphosphocholine, adenosine monophosphate and inosine

monophosphate increased the most, with fold changes greater than

3.0.A total of 17metaboliteswere significantly decreased, andCAR20:0,

LPC O-18:0, methylmalonic acid, LPC O-16:0, PE (16:0/18:2), LPC O-

18:1, and CAR 18:0 had the largest decrease at 0.246~0.448 times.

When comparing metastasis and lymphoma groups, 96

metabolites were significantly decreased, mainly including lipids and

sugars (Figure 4B). Palmitoylcarnitine, CAR 16:0, CAR 20:0, CAR

15:0, CAR 16:1, CAR 18:1, CAR 14:0, CAR 20:1, CAR 18:0, PI (16:0/
Frontiers in Oncology 05
16:1) increased the most, by more than 5.0 times. Nine metabolites

were significantly downregulated, mainly including inosine

monophosphate, actinine, glutamic acid, phosphoethanolamine and

pipecolic acid (ranging from 0.208- and 0.734-fold).

In metastasis versus benign groups, 102 metabolites were

significantly upregulated, mainly including amino acids,

nucleosides, sugars and lipids (Figure 4C). PI (16:0/16:1) had the

largest increase at 17.35-fold, followed by CAR 14:0, PI (16:1/18:1),

PG (16:0/16:1), CAR 16:1, CAR 14:1, LPC 14:0, phosphocholine,

CAR 18:1, CAR 20:1, CAR 18:0, CAR 20:2 and tryptophan; only 4

metabolites were significantly downregulated.
3.4 Metabolic pathways analysis

Based on MetaboAnalyst and metabolites with significant changes,

the enriched metabolic pathways in lymphoma versus benign,

metastasis versus lymphoma, and metastasis versus benign groups

are showed in Figures 5A–C, respectively. The metabolic pathways,

including alanine, aspartate and glutamate metabolism, arginine and
FIGURE 3

Heatmap analysis of identified metabolites with significant change, including amino acids, organic acids, nucleosides, sugars, lipids (fatty acids,
lysophosphatidylcholine (LPC) lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI), lysophosphatidylglycerols (LPG),
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylglycerol (PG) and acylcarnitine (CAR)), amines
and others.
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proline metabolism, histidine metabolism, glycerophospholipid

metabolism, were commonly enriched in all comparisons. Besides,

D-glutamine and D-glutamate metabolism, valine, leucine and

isoleucine degradation, citrate cycle, phosphatidylinositol signaling

system, glutathione metabolism, and glyoxylate and dicarboxylate

metabolism were additionally enriched in benign versus lymphoma

groups. Phenylalanine, tyrosine and tryptophan biosynthesis, ascorbate

and aldarate metabolism and pyrimidine metabolism were additionally

enriched in benign versus metastasis groups. Starch and sucrose
Frontiers in Oncology 06
metabolism and galactose metabolism were additionally enriched in

lymphoma versus metastasis groups.
3.5 Linear discriminant analysis

Linear discriminant analysis coupled with ultrasonography

indices or metabolites with significant difference was used to

differentiate superficial lymph nodes. Two discriminant functions
FIGURE 4

Barplot analysis of the identified metabolites with significant change in different comparison (Student’s t-test with P < 0.05, PLS-DA with VIP > 1):
(A) for lymphoma versus benign, (B) for metastasis versus lymphoma and (C) for metastasis versus benign.
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were developed, where the first one was used to differentiate benign

groups from all samples, while the second one focused on

distinguishing between lymphoma and metastasis groups. For

ultrasonography, 77.1% of benign nodes, 66.7% of lymphoma

nodes and 64.5% of metastasis nodes in the training set were

correctly classified (Table 2). Lymphoma and metastasis nodes

were commonly misclassified as one another, with 23.7% of

lymphoma nodes incorrectly classified as metastasis and 31.5% of

metastasis nodes misclassified as lymphoma. Overall, 68.6% of all

nodes were accurately classified using linear discriminant analysis

and ultrasonography.

There existed many metabolites with significant difference

among three groups. However, too many variables could

negatively impact the performance of diagnostic models.
Frontiers in Oncology 07
Additionally, building model based on a great number of

metabolites may hinder practical applications. Therefore, it is

essential to select a subset of important metabolites for modeling.

Random forest is a commonly used method for variable selection

in metabolomics. The top 20 important metabolites for

distinguishing superficial lymph nodes based on Mean Decrease

Accuracy in Random forest (Figure 6). These include 5 amino acids

(glutamic acid, glutamine, asparagine, lysine and pyroglutamic

acid), 8 lipids [CAR 14:1, CAR 15:0, CAR 20:0, PC (16:0/16:1),

PE (12:0/18:3), PI (16:0/16:1), PI (16:0/18:2) and PI (18:2/18:2)],

3 organic acids (methylmalonic acid, p-hydroxybenzoic acid and

pipecolic acid), and 3 alkaloids (O-phosphoethanolamine, carnitine

and phosphocholine). Linear discriminant analysis coupled with

these 20 metabolites showed that 90.1% of benign nodes, 88.5% of
FIGURE 5

Metabolic pathways analysis in different comparisons: (A) for lymphoma versus benign groups, (B) for metastasis versus lymphoma groups, and (C)
for metastasis versus benign groups. Number represents the number of metabolites matched from the data and P-value represents P value
calculated from pathway analysis.
TABLE 2 Diagnostic rates of LDA with ultrasonography and metabolomics.

Data Class
Ultrasonography Metabolomics

Benign Lymphoma Metastasis Benign Lymphoma Metastasis

Training set

Benign 77.1 10.3 12.6 90.1 4.6 5.3

Lymphoma 6.9 66.7 26.4 3.2 88.5 8.3

Metastasis 4.5 31 64.5 2.7 5.9 91.4

Testing set

Benign 75.1 12.3 12.6 88.5 3.7 7.8

Lymphoma 8.4 67.9 23.7 5.6 87.4 7.0

Metastasis 5.4 31.5 63.1 4.1 6.6 89.3
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lymphoma nodes and 91.4% of metastasis nodes in the training set

were correctly classified. In the testing set, the diagnostic efficiency

of metabolomics was acceptable, where 88.5% of benign nodes,

87.4% of lymphoma nodes and 89.3% of metastasis nodes in the

training set were correctly classified. The diagnostic accuracy of

superficial lymph nodes in the training set were comparable to that

in testing set, suggesting that the models developed were robust and

did not exhibit overfitting. Overall, 88.3% of all nodes were correctly

classified using metabolomics, which was much higher than that of

ultrasonography (68.6%).
3.6 Correlation analysis between
ultrasound features and metabolites

Pearson’s coefficient was used to determine the correlations of

identified metabolites with ultrasound features and patient indices

(age and gender). To simplify interpretation, the P-value was

limited to a low of 0.05. Our results showed that many

metabolites were significantly correlated with patient indices and

ultrasound features. 366 significant correlations were detected, of

which 343 were positive and 23 were negative (Figure 7). There

existed 25, 26, 27, 27, 36, 21, 47, 37, and 13, correlated with age,

short diameter, shape, cortex elasticity, blood flow mode, hilus,

cortical echo, corticomedullary boundary and calcification,

respectively. Specifically, many CARs, such as CAR 16:0, CAR

16:1 and CAR 18:0, were positively correlated with short

diameter, shape, cortex elasticity, blood flow mode, hilum, cortical

echo and corticomedullary boundary. Many PIs, such as PI (16:0/

18:2), PI (16:0/20:3), PI (16:0/22:6), PI (16:1/18:1) and PI (18:0/

18:3), were positively correlated with blood flow mode and cortical
Frontiers in Oncology 08
echo. Eight PGs, such as PG (18:2/20:4), PG (18:2/20:3) and PG

(20:4/22:4), were significantly positively with calcification. For

carbohydrates, sucrose, gentiobiose and melezitose were positively

correlated with shape and cortical echo, and glucose was positively

correlated with corticomedullary boundary. Some amino acids,

such as N-acetylneuraminic acid, tryptophan and valine, were

positively correlated with cortical echo. Asparagine, trigonelline,

proline, phosphocholine, sarcosine, UDP-N-acetylglucosamine

were positively correlated with age (r > 0.3, P < 0.05).
4 Discussion

Conventional ultrasound is considered to be the first choice for

evaluating lymph node diseases due to its high resolution (5).

Although different lymph node lesions have characteristic signs

on ultrasound images, there are some overlapping images of

different pathological types of lymph nodes. For example, both

inflammatory and lymphatic cancers may be enlarged, spherical,

and often irregularly outlined (6). Therefore, the pathological

diagnosis of lymph nodes is still a challenging subject in

ultrasound diagnosis (15). Our results showed that age, vascular

pattern and cortical echo could be applied to distinguish malignant

and benign lymph nodes and shape, cortex elasticity and

corticomedullary boundary was important variance to distinguish

metastasis and lymphoma groups. Our finding was in line with the

result of Cui et al. (5). An echopoor in the lymph node cortex may

indicate lymphoma, whereas a hyper echo in cortical may indicate

metastasis lymph nodes. Peripheral or mixed vascularity mode

suggested malignant lymph nodes, however, lymphoma lymph

nodes could remain mixed vascularity or high flow hilar vascularity.
FIGURE 6

Top 20 important metabolites identified by the Mean Decrease Accuracy of random forest analysis for distinguishing different superficial
lymph nodes.
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Metabolomics reveals differences in the metabolic profiles of the

three groups of lymph node tissue (Figure 2A), which may indicate

that cancer cells could change their metabolism for rapid

proliferation and expansion. Amino acids are not only the building

blocks of proteins, but also play a regulatory role in key metabolic

cascades, gene expression and intercellular communication in

human’s cells (16). Our results showed that compared to the

benign group, the metastasis and lymphoma groups are

characterized by higher levels of many amino acids, such as

glutamine, asparagine, histidine, lysine, methionine, devaline,

threonine, and valine. It has been reported that many amino acids

can be absorbed into tumor tissues from non-cancer cells adjacent

through cell surface transporters (17, 18). These increase amino acids

could support cell growth andmetabolism ofmalignant lymph nodes,

not only aiding in protein biosynthesis, but also helping to maintain

redox balance as an energy source in addition to glucose (16). For

example, in malignant lymph nodes, glutamine could drive the citrate

cycle to maintain mitochondrial ATP production and act as a carbon

and nitrogen donor for purine biosynthesis (19). Methionine can

affect the epigenetic state of cancer cells and promote the

development of tumors (20). There is growing evidence that amino

acid restriction can inhibit cancer cell growth and may improve the

efficacy of chemotherapeutic agents (21). Glutamic acid and

pyroglutamic acid increased significantly in the metastasis group,

about twice as much as in the benign and lymphoma groups.

Glutamic acid could be used as bioenergy substrate for cell growth

(22, 23) and pyroglutamic acid, involved in the metabolism of

glutathione, could produce glutamic acid via 5-oxproline enzyme

(24). This finding suggested that the lymphoma group is

more dependent on glutamate metabolism than the metastasis

group. Other three amino acids, N-acetyl-L-aspartic acid, N-

acetylneuraminic acid and tryptophan, were additionally

accumulated in metastasis groups, compared to the other two

groups, most of which have a prominent role in cancer growth and

participates in the immunosuppressive effects (25, 26). The three
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of metastasis superficial lymph nodes. Histamine, a biogenic amine

synthesized from histidine, was significantly accumulated in

metastasis groups, about 3 times as much as in the benign and

lymphoma groups (27). This suggested that histamine might be

involved in metastasis carcinogenesis. Our finding was in line with

precious results that some human cancers such as ovarian, cervical,

and endometrial cancers have high histamine levels compared to

adjacent normal tissues (19). It has been reported that most

malignant cell lines express their own histamine-synthesizing

enzyme to enhance the level of endogenous histamine, which could

be released into the space between cells (27). The above data indicated

that histamine may be a crucial mediator in the development and

progression of metastasis superficial lymph nodes and should be a

good target for the cancer therapy.

Organic acids play key roles in many intracellular metabolic

pathways, such as amino acid synthesis and metabolism, glycolytic

metabolism, and cholesterol biosynthesis (28). Four organic acids,

including malic acid, citric acid, pipecolic acid and P-aminobenzoic

acid, were increased in both lymphoma and metastasis groups,

compared to benign groups. Among them, malic acid and citric acid

are intermediate metabolites in the citrate cycle, which can produce

cell energy and precursors of biosynthetic pathways (29). Pipecolic

acid is a minor metabolite of lysine catabolism (30). These findings

suggest that both lymphoma and metastasis superficial lymph nodes

lead to abnormal metabolism of lysine and citrate cycle, which may

be a common biomarker for malignant lymph node therapy.

Besides, uric acid, 5-aminovaleric acid and benzoic acid were

additionally accumulated in metastasis groups, all of which have

been reported as biomarker in cancer cells (31–34). In particular,

uric acid is a degradation product of purines that was common

chemical compound found in foods and drinks (35). When tumor

cells occurred DNA-damaged, tumor cells also lead uric acid

accumulation, due to its antioxidant function. However, as the

uric acid levels increased, the risk of cancer might be raised (36, 37).
FIGURE 7

Correlation analysis of metabolites with ultrasound features and patient indices (age and gender), where the metabolites with more than 2 significant
correlations were shown. The red and blue blocks represent significant positive and negative correlations (P < 0.05), respectively, and the white color
indicates metabolites with no significant correlation (P > 0.05).
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Methylmalonic acid, a metabolic intermediate in the biosynthesis of

succinic acid from propionic acid (38), were additionally decreased

in lymphoma groups compared to the other groups, and could act

as a potential biomarker for diagnosis lymphoma.

Carbohydrates are the main source of energy in most human

diets (39). Our results showed that glucose levels in both the

metastasis and lymphoma groups were significantly higher than

those in the benign group, suggesting abnormal glucose metabolism

in the malignant lymph nodes (40). The finding is consistent with

previous reports that cancer cells need more glucose than normal

cells (41). In general, cancer cells usually survive in low-oxygen

environments because they overgrow and become dense (42).

However, cancer cells are less efficient at breaking down sugars in

a hypoxic state than in aerobic conditions, making them require

more glucose to produce energy for survival and proliferation (43).

Besides, other four carbohydrates, sucrose, gentiobiose, raffinose,

and melezitose, were additionally accumulated in metastasis groups,

compared to the other two groups, which could act as a potential

biomarker for diagnosis of metastasis lymph nodes. Our finding was

partly supported by precious studies that sucrose can be used to

distinguish papillary thyroid cancer and multinodular goiter (44).

Correlation analysis revealed that four carbohydrates may have

effect on the shape of lymph nodes. Recent studies have proven that

higher carbohydrate intake not only speeds up the absorption of

carbohydrates by cancer cells, but also stimulates rapid cancer cell

reproduction (39). These data suggest that the occurrence of

metastasis cancer may be related to excessive carbohydrate intake.

Lipids are not only important components of cell membranes, but

also participate in many biological functions such as energy storage

and signaling (44, 45). Our results showed that 95 lipids showed

significant changes among different kinds of lymph nodes, mainly

including fatty acids, lysophospholipids, glycerophospholipids and

acylcarnitines. Many lipids increased in metastasis and lymphoma

groups compared to benign groups, which may be due to the

increased uptake or synthesis of lipids in the cancer cell to meet the

demand of the high nutrient and energy needs during cancer growth

progression (46, 47). This suggested that both lymphoma and

metastasis superficial lymph nodes had abnormal lipid metabolism.

Besides, our result revealed that the metastasis group was

characterized by higher levels of CAR, PI and PG. CAR facilitates

the transportation of fatty acids into the mitochondria and higher

levels of CAR may indicate an elevated level of lipid oversupply in the

metastasis group (48). High levels of PG may indicate mitochondrial

dysfunction and enhanced invasion ability of metastasis cells (49).

Additionally, some metabolite related to glycerophospholipid

metabolism was found, among which phosphocholine, CDP-

choline, acetyl-L-Carnitine and carnitine were increased in both

lymphoma and metastasis groups, compared to benign groups.

Taken together, our results reveal differences of lipid synthesis and

metabolism in different kinds of malignant lymph nodes and these

lipids and their associated metabolites with significant change could

be used as potential diagnostic and therapeutic targets. Correlation

analysis also revealed that the levels of 8 PIs were significantly

correlated with the calcification of lymph nodes. This finding was in

line with precious studies that PI3K/AKT pathways phosphorylating

PI is closely related to vascular calcification, osteogenesis and
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osteoclast formation (50). Besides, many CAR and PI were

positively correlated with shape, blood flow mode, cortical echo and

corticomedullary boundary and these relationships require

further proof.

Nucleotide metabolism plays an important role in cancer

progression (51). Our results showed that many nucleosides were

increased in both lymphoma and metastasis groups compared to

benign groups, including two purines (hypoxanthine and guanine)

and four nucleotides (adenosine 3’-monophosphate, UDP-D-glucose,

UDP-N-acetylglucosamine and flavin adenine dinucleotide). Most of

them could be beneficial for rapid cancer cell proliferation (52–54).

For example, both hypoxanthine and guanine can replenish the purine

pool of proliferative cancer cells (55). UDP-N-acetylglucosamine is

produced through the hexosamine biosynthesis pathway, which

promotes rapid tumor growth (56). The increase of this metabolite

may indicate activation of the hexosamine-biosynthetic pathway in

malignant tissues (57). Besides, other three nucleotides, guanosine

monophosphate, adenosine diphosphate and inosine monophosphate,

were additionally accumulated in metastasis groups, compared to the

other groups and inosine monophosphate has the greatest increase at

more 3-folds. Inosine monophosphate plays a central role in purine

metabolism in cells and acts as a precursor to the synthesis of

adenosine monophosphate and guanosine monophosphate,

suggesting that inosine monophosphate could act as potential

biomarkers for diagnosis and therapy of lymphoma lymph nodes

(58). Additionally, two metabolites (guanosine and uracil) were

additionally increased at 2-folds in metastasis groups, compared to

the other two groups. Guanosine shows the effect of inducing

differentiation in cancer cells and uracil is one of the four nucleotide

bases in RNA (59). The above data suggested that metastasis lymph

nodes have effect of the pathway of guanosine and uracil metabolism.

Linear discriminant analysis showed that the correct diagnosis

rate of metabolomics based on random forest for variable selection

was much better than that of ultrasonography (63.1%~75.4%).

Compared to ultrasound indices, metabolites were more accurate in

determining the type of malignant lymph nodes. The finding suggests

that metabolomics coupled with linear discriminant analysis could

serve as an effective approach for lymph node diagnosis.

Furthermore, metabolomics coupled with deep learning models for

feature extraction and classification warrants further investigation.

However, it is important to note that metabolomics requires tissue

sampling, which indicates that the metabolomic approach cannot be

used for real-time assessment of lymph nodes. In contrast,

ultrasonography is a non-invasive technique, which could

effectively monitor the status of lymph nodes in real time. The

quantitative analysis of characteristic metabolites in lymph nodes

could be developed based on non-destructive methods, such as

spectroscopy and ultrasonography. Furthermore, incorporating key

metabolites into the ultrasonography model may enhance the

diagnostic accuracy in disease detection.
5 Conclusion

In the present study, we evaluated the differences in benign,

lymphoma and metastasis superficial lymph nodes using
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ultrasonography and metabolomics. Via metabolomics, we

observed significant increases in many amino acids, organic acids,

lipids, and nucleosides in both the lymphoma and metastasis

groups, compared to the benign group. Specifically, the

lymphoma group exhibited higher levels of nucleotides (inosine

monophosphate, guanosine monophosphate, and adenosine

diphosphate) as well as glutamic acid and the metastasis group

was characterized by higher levels of carbohydrates, acylcarnitines,

glycerophospholipids, uric acid, and 5-aminovaleric acid. The

correct diagnosis rate of these metabolites for differentiating

superficial lymph nodes ranged from 87.4% to 89.3%, which is

more effective than ultrasound indicators. This study is limited by

its small sample size and the absence of an external validation set.

Future research will focus on increasing the sample size and

validating the clinical significance of the identified potential

biomarkers. Additionally, we will investigate the metabolic

changes occurring in lymph nodes throughout disease progression.
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