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Prediction of EGFR mutations in
non-small cell lung cancer: a
nomogram based on 18F-FDG
PET and thin-section CT
radiomics with machine learning
Jianbo Li1†, Qin Shi2†, Yi Yang2, Jikui Xie2, Qiang Xie2,
Ming Ni2* and Xuemei Wang1,2*

1Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University,
Hohhot, China, 2Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First
Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Background: This study aimed to develop and validate radiomics-based

nomograms for the identification of EGFR mutations in non-small cell lung

cancer (NSCLC).

Methods: A retrospective analysis was performed on 313 NSCLC patients, who

were randomly divided into training (n = 250) and validation (n = 63) groups.

Radiomic features were extracted from 18F-fluorodeoxyglucose positron

emission tomography (18F-FDG PET) and thin-section computed tomography

(CT) scans. After selecting optimal radiomic features, four machine learning

algorithms, including logistic regression (LR), random forest (RF), support

vector machine (SVM), and extreme gradient boosting (XGBoost), were used to

develop and validate radiomics models. A combined model, incorporating the

Rad score from the best performing radiomics model with clinical and

radiological features, was then formulated. Finally, the integrated nomogram

was generated. Its predictive performance and clinical utility were evaluated

using receiver operating characteristic curves, calibration curves, and decision

curve analysis.

Results: Among the radiomics models, the RF model showed the best

performance with AUCs of 0.785 (95% CI, 0.726-0.844) and 0.776 (95% CI,

0.662-0.889) in the training and validation groups, respectively. The AUCs of the

clinical and radiological models in both groups were 0.711 (95% CI, 0.645-0.776)

and 0.758 (95% CI, 0.627-0.890), and 0.632 (95% CI, 0.564-0.699) and 0.677

(95% CI, 0.531-0.822), respectively. The combined model achieved the highest

AUCs of 0.872 (95% CI, 0.829-0.915) and 0.831 (95% CI, 0.723-0.940) in the

training and validation groups, respectively. The DeLong test confirmed the

superiority of the combined model over the other three models. Both the

calibration curve and the DCA indicated that the radiomics nomogram was

consistent and clinically useful.
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Conclusions: Radiomics combined with machine learning and based on 18F-FDG

PET/CT images can effectively determine EGFR mutation status in NSCLC patients.

Radiomics-based nomograms provide a non-invasive and visually intuitive prediction

tool for screening NSCLC patients with EGFR mutations in a clinical setting.
KEYWORDS

nomogram, non-small cell lung cancer, PET/CT, machine learning, epidermal growth
factor receptor
1 Introduction

In 2024, lung cancer will remain the leading cause of cancer-

related deaths worldwide (1). Non-small cell lung cancer (NSCLC)

accounts for approximately 80-85% of all lung cancers (2).

Unfortunately, most NSCLC patients are diagnosed at an

advanced stage, resulting in a poor prognosis (3). With the

advent of precision medicine and personalized treatment

strategies, the paradigm of targeting the epidermal growth factor

receptor (EGFR) with tyrosine kinase inhibitors (TKIs) has become

the standard of care for advanced NSCLC. This approach has

significantly improved progression-free survival and overall

survival in patients with EGFR mutations (4, 5). However,

resistance to TKIs inevitably develops over time (6). The National

Comprehensive Cancer Network (NCCN) guidelines recommend

molecular detection of EGFR mutations in patients with advanced

or metastatic NSCLC (7). Therefore, rapid and accurate

identification of EGFR mutations is of paramount importance for

tailoring individualized treatment plans.

Currently, gene mutation detection relies primarily on

histological samples from primary or metastatic lesions. Invasive

procedures often yield limited tissue or cell samples that may not

accurately represent the overall tumor profile or capture intra- and

inter-tumor heterogeneity. In addition, approximately 5% to 20% of

patients with advanced NSCLC cannot undergo molecular genetic

testing using histological samples (8). Liquid biopsy has emerged as

a novel method to assess EGFR mutation status. Although it offers

convenience, speed and affordability, its sensitivity and stability

remain suboptimal (9). Therefore, there is an urgent need to

develop non-invasive, simple, rapid and reliable techniques for

detecting gene mutations.

Phenotypic analysis by imaging is a promising non-invasive

method for predicting EGFR mutations. Previous studies have

shown that CT signs, including ground glass composition, air-

bronchial sign, vacuole sign and pleural indentation sign, correlate

with EGFR mutations (10–12). However, these CT signs rely on

subjective visual assessment and lack quantification. 18F-FDG PET/

CT, recognized as a molecular imaging technique for tumors, has

become an integral part of the clinical management of NSCLC (7).

While EGFR mutation may influence FDG uptake via the NADPH

oxidase 4 (NOX4)/reactive oxygen species (ROS)/glucose
02
transporter protein 1 (GLUT1) axis (13), the predictive value of
18F-FDG PET/CT metabolic parameters - such as the maximum

standard uptake value (SUVmax), mean standard uptake value

(SUVmean), total lesion glycolysis (TLG) and metabolic tumor

volume (MTV) - remains controversial in the context of EGFR

mutation status (14).

Radiomics offers a departure from traditional image analysis by

transforming medical images into high-dimensional, mineable data

through the high-throughput extraction of quantitative features.

This approach has shown significant potential in tumor diagnosis,

treatment evaluation and prognosis prediction (15). While

numerous machine learning models based on radiomics features

have been reported to identify EGFR mutation status in NSCLC

patients (16–18), most radiomics studies have typically used a single

modelling method, which may affect predictive outcomes. To

improve the accuracy of radiomics in predicting EGFR mutations,

our study used different machine learning algorithms to build

multiple models. Furthermore, we constructed a combined model

that integrates PET/CT radiomics with clinical and radiological

features to optimize prediction efficiency. A radiomics-based

nomogram was then developed to predict EGFR mutation status.
2 Materials and methods

2.1 Patients

This study was conducted in accordance with the Declaration of

Helsinki, as revised in 2013, and was approved by the Ethics

Committee of The First Affiliated Hospital of University of

Science and Technology of China (approval number 2023-RE-

018). The data are anonymous, and the requirement for informed

consent was therefore waived. 313 patients were retrospectively

analyzed from January 2015 to June 2021. Inclusion criteria

included: NSCLC diagnosis confirmed by surgical or puncture

biopsy with subsequent EGFR gene detection; 18F-FDG PET/CT

scan within one month prior to treatment; and no history of other

malignancies. Exclusion criteria included: prior antitumor

treatment prior to the PET/CT scan; poor image quality due to

significant respiratory or motion artefacts, or unclear tumor

boundaries making it difficult to delineate the lesion volume of
frontiersin.org
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interest (VOI); a lesion VOI of less than 1.0 cm3, which could

introduce a partial volume effect; lesions identified as ground glass

nodules (GGNs) or with an SUVmax < 2.5; multiple lung cancer

lesions (≥ 2); and incomplete clinical or imaging data. Of the 313

patients analyzed, 123 were identified as having a wild-type EGFR

genotype, while 190 had EGFR mutations. These patients were

randomly assigned in an 8:2 ratio to a training group (n = 250) and

a validation group (n = 63). Both clinical and radiological features

were meticulously documented.
2.2 EGFR mutation detection

Tumor tissue samples were obtained either by either surgical

resection or biopsy. EGFR mutation status was analyzed using the

human EGFR gene mutation detection kit provided by Wuhan

Friends Medical Technology Co, Ltd, China. Mutations in EGFR

exons 18, 19, 20 and 21 were identified using the real-time PCR/

amplification retardation mutation system (RT-PCR/ARMS). PCR

analysis was performed on the PRISM 7500 system from Applied

Biosystems, Inc. Experienced pathologists with over a decade of

experience interpreted and confirmed both histological findings and

EGFR mutation results.
2.3 Image acquisition

Prior to the scan, patients were required to fast for more than 6

hours and maintain a blood glucose level of less than 11.10 mmol/L.

They were then administered 18F-FDG at a dose of 3.7-7.4 MBq/kg.

After a rest period of approximately 60 ± 10 minutes, patients

underwent a PET/CT scan using a Biograph 16HR PET/CT scanner

(SIEMENS, Germany). A low-dose CT scan was performed first,

followed by a PET scan. The PET acquisition used a three-

dimensional mode over 6-8 beds, with each bed taking

approximately 2 minutes. PET images, attenuated with CT data,

were reconstructed using the ordered subset expectation

maximization method (3 iterations, 24 subsets, and a 4 mm full

width at half maximum). To obtain more detailed morphological

information, a breath-hold thin-section CT scan was performed

immediately after the PET/CT scan. The acquisition parameters for

this scan were set to a voltage of 120 kV, a current of 200 mA, a

pitch of 1.15, a collimator width of 0.75 mm, a reconstruction slice

thickness of 0.625 mm, and a matrix of 512 × 512.
2.4 Tumor segmentation

In accordance with the Image Biomarker Standardization

Initiative (IBSI) (19), the volume of interest (VOI) was delineated

by two nuclear medicine physicians with more than 10 years of

experience using the TrueD toolkit on the Syngo via workstation

(version VB10B, SIEMENS). The VOI included areas of necrosis,

hemorrhage and calcification while excluding normal lung tissue,

atelectasis or surrounding tumor inflammation. For PET images,
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physicians initially set the SUVmax threshold at 40% and then used

the adaptive brush tool for semi-automated 3D segmentation to

ensure that the VOI visually encompassed the entire primary tumor

(20). Metabolic volume parameters such as SUVmax, SUVmean,

peak standard uptake value (SUVpeak) and MTV were calculated

automatically on the same post-processing workstation. TLG was

derived using the formula TLG = SUVmean × MTV. For thin-

section CT images, 3D semi-automated segmentation software was

used, based on the region growth segmentation method (taking into

account homogeneity and grey level differences), followed by

manual layer-by-layer adjustments. Maximum tumor diameter

(MTD) and gross tumor volume (GTV) were determined

automatically. Thin-section CT radiological features included

lesion size (MTD and GTV), lobulation, spiculation, pleural

indentation, vacuole sign, cavity sign, vascular convergence, air

bronchogram and calcification. To evaluate the reliability and

reproducibility of radiomics features by calculating intra- and

interobserver intraclass-correlation coefficient (ICC). Both

physicians were blinded to patient pathology results and EGFR

mutation status. Physician 1 and Physician 2 randomly selected 72

patients from the enrolled group to draw VOI from PET and thin-

section CT images, with Physician 1 drawing again after 2 weeks.

VOI segmentation of the remaining cases was performed by

Physician 1.
2.5 Feature extraction and selection

Radiomics features were extracted using the PyRadiomics

package in Python (version 3.0.1) (21). To minimize errors in the

image data acquisition process, all images were normalized and

resampled to a uniform resolution of 1 × 1 × 1 mm3 by

interpolation prior to feature extraction. From the original images,

the radiomics features included 14 shape-based, 18 first-order

statistics, 24 grey level co-occurrence matrix (GLCM), 16 grey level

run length matrix (GLRLM), 16 grey level size zone matrix (GLSZM),

14 grey level dependence matrix (GLDM), and 5 neighborhood grey

tone difference matrix (NGTDM) features. The morphological

features were only extracted from the original image. In addition to

the original image features, we also extracted features after wavelet

and local binary pattern (LBP) filtering to capture more efficient

attributes. Wavelet filtering resulted in eight decomposed images

representing all combinations of high-pass (H) or low-pass (L) filters

applied in three dimensions, namely: wavelet-HHH, wavelet-HHL,

wavelet-HLH, wavelet-HLL, wavelet-LHH, wavelet-LHL, wavelet-

LLH and wavelet-LLL. A total of 944 PET and 944 CT radiomics

features were extracted. Initial refinement using Pearson’s correlation

test eliminated 1,447 features with a correlation coefficient |r| ≥ 0.90,

leaving 441 features. Subsequent analysis of variance (ANOVA)

identified the top 60 features with the most significant variance. To

ensure feature reliability and reproducibility during segmentation,

only 43 features with an ICC greater than 0.9 were retained. Finally,

to mitigate overfitting, the least absolute shrinkage and selection

operator (Lasso) algorithm combined with 10-fold cross-validation

was used for optimal selection of the radiomics feature subset.
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Baseline clinical variables including age, sex, smoking status, tumor

location (central/peripheral), lung lobe, clinical staging, TNM staging,

tumor indicators (CEA, SCC and CYFRA21-1), histological subtypes

and 13 other variables were collected, yielding a total of 33 clinical

features. Radiological features included thin-slice CT features and

PET features. Radiological features included the above thin-slice CT

features and PET features, resulting in a total of 23 variables. Pearson

correlation analysis, Mann-Whitney U test, ANOVA analysis, and

10-fold cross-validated Lasso regression model were used to screen

clinical variables and radiological features.
2.6 Construction and validation of the
model

Machine learning model constructing and performance

evaluation were performed using Python. Four machine learning

algorithms - logistic regression (LR), random forest (RF), support
Frontiers in Oncology 04
vector machine (SVM) and extreme gradient boosting (XGBoost) -

were used to construct the radiomics models. A 5-fold cross-

validation was implemented to ensure model robustness. The

predictive ability of each algorithm was primarily assessed using

the area under the curve (AUC) from receiver operating

characteristic (ROC) curve analysis. The model with the highest

AUC was considered the optimal radiomics model, from which the

radiomics score (Rad score) was derived. Similarly, clinical variables

and radiological features were screened and models were

constructed using logistic regression. To combine radiomics,

radiological and clinical features, we developed a combined model

and assessed its performance. The identified clinical and

radiological features, together with the Rad score, were then used

to construct the nomograms. The goodness of fit of the nomograms

was assessed using the calibration curve and the Hosmer-Lemeshow

test (22). The clinical utility of the different models was assessed

using decision curve analysis (DCA). The workflow of our study is

shown in Figure 1.
FIGURE 1

The workflows of this study.
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2.7 Statistical analysis

Statistical analyses were performed using SPSS software

(version 26.0) and R software (version 4.2.2). Continuous

variables were presented as either mean ± standard deviation or

median (interquartile range), while categorical variables were

expressed as percentages. For continuous variables, comparisons

were made using independent samples t-tests or the Wilcoxon

rank-sum test. Categorical variables were compared using the c2
test or Fisher’s exact test. The DeLong test was used to assess

statistical differences in the AUCs of the models. The nomogram,

calibration curve, Hosmer-Lemeshow test and DCA were calculated

using R (version 4.2.2, http://www.r-project.org). A two-tailed P

value of less than 0.050 was considered statistically significant.
Frontiers in Oncology 05
3 Results

3.1 Patient characteristics

The distribution of characteristics across the dataset is shown in

Table 1. Gender and histological type showed significant differences

between the EGFR wild-type and EGFR mutation groups in both

the training (P < 0.001, P < 0.001, respectively) and validation

groups (P = 0.019, P = 0.016, and P = 0.015, respectively). Patients

with never smoking, elevated CEA levels and specific CT

radiological features (spiculation, pleural indentation and air

bronchogram) were more likely to have EGFR mutations in the

training group (P < 0.001, P = 0.023, P = 0.036, P = 0.003 and P =

0.041, respectively). However, these differences were not statistically
TABLE 1 Patient characteristics.

Characteristics

Training group Validation group
P

valuecEGFR
mutant (n=147)

EGFR wild-
type (n=103)

P
valuea

EGFR
mutant (n=43)

EGFR wild-
type (n=20)

P
valueb

Age, years, Mean ± SD 60.30 ± 10.11 62.49 ± 11.28 0.111 58.30 ± 10.88 66.15 ± 7.16 0.005 0.787

Gender, n (%) <0.001 0.019 0.946

Male 73 (49.66%) 75 (72.82%) 21 (48.84%) 16 (80.00%)

Female 74 (50.34%) 28 (27.18%) 22 (51.16%) 4 (20.00%)

Smoking, n (%) <0.001 0.08 0.639

Never smoker 122 (82.99%) 60 (58.25%) 33 (76.74%) 11 (55.00%)

Current or
former smoker

25 (17.01%) 43 (41.75%) 10 (23.26%) 9 (45.00%)

Tumor location,
n (%)

0.517 0.717 0.251

Central 16 (10.88%) 14 (13.59%) 7 (16.28%) 4 (20.00%)

Peripheral 131 (89.12%) 89 (86.41%) 36 (83.72%) 16 (80.00%)

Lobe, n (%) 0.012 0.074 0.474

RU 46 (31.29%) 42 (40.78%) 14 (32.56%) 9 (45.00%)

RM 10 (6.80%) 4 (3.88%) 6 (13.95%) 1 (5.00%)

RL 23 (15.65%) 29 (28.16%) 10 (23.26%) 2 (10.00%)

LU 44 (29.93%) 19 (18.45%) 12 (27.91%) 4 (20.00%)

LL 24 (16.33%) 9 (8.74%) 1 (2.33%) 4 (20.00%)

Clinical stage,
n (%)

0.016 0.066 0.155

I 23 (15.65%) 14 (13.59%) 2 (4.65%) 3 (15.00%)

II 14 (9.52%) 15 (14.56%) 3 (6.98%) 1 (5.00%)

III 20 (13.61%) 28 (27.18%) 9 (20.93%) 9 (45.00%)

IV 90 (61.22%) 46 (44.66%) 29 (67.44%) 7 (35.00%)

T stage, n (%) 0.033 0.549 0.65

T1 31 (21.09%) 38 (36.89%) 15 (34.88%) 6 (30.00%)

(Continued)
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TABLE 1 Continued

Characteristics

Training group Validation group
P

valuecEGFR
mutant (n=147)

EGFR wild-
type (n=103)

P
valuea

EGFR
mutant (n=43)

EGFR wild-
type (n=20)

P
valueb

T stage, n (%) 0.033 0.549 0.65

T2 67 (45.58%) 33 (32.04%) 13 (30.23%) 7 (35.00%)

T3 18 (12.24%) 14 (13.59%) 4 (9.30%) 4 (20.00%)

T4 31 (21.09%) 18 (17.48%) 11 (25.58%) 3 (15.00%)

N stage, n (%) 0.69 0.096 0.051

N0 55 (37.41%) 36 (34.95%) 7 (16.28%) 7 (35.00%)

N1-3 92 (62.59%) 67 (65.05%) 36 (83.72%) 13 (65.00%)

M stage, n (%) 0.01 0.015 0.696

M0 57 (38.78%) 57 (55.34%) 14 (32.56%) 13 (65.00%)

M1 90 (61.22%) 46 (44.66%) 29 (67.44%) 7 (35.00%)

CEA levels, n (%) 0.023 0.972 0.944

Normal 49 (33.33%) 49 (47.57%) 17 (39.53%) 8 (40.00%)

Abnormal 98 (66.67%) 54 (52.43%) 26 (60.47%) 12 (60.00%)

SCC levels, n (%) 0.345 0.055 0.664

Normal 116 (78.91%) 76 (73.79%) 37 (86.05%) 13 (65.00%)

Abnormal 31 (21.09%) 27 (26.21%) 6 (13.95%) 7 (35.00%)

CYFRA21-1 levels,
n (%)

0.683 0.25 0.641

Normal 59 (40.14%) 44 (42.72%) 17 (39.53%) 11 (55.00%)

Abnormal 88 (59.86%) 59 (57.28%) 26 (60.47%) 9 (45.00%)

Histologic_type,
n (%)

<0.001 0.016 0.405

Adenocarcinoma 143 (97.28%) 80 (77.67%) 42 (97.67%) 16 (80.00%)

Adenosquamous
carcinoma

4 (2.72%) 3 (2.91%) 0 (0.00%) 0 (0.00%)

Squamous
cell carcinoma

0 (0.00%) 20 (19.42%) 1 (2.33%) 4 (20.00%)

Lobulation, n (%) 0.611 0.313 0.459

Yes 138 (93.88%) 95 (92.23%) 40 (93.02%) 17 (85.00%)

No 9 (6.12%) 8 (7.77%) 3 (6.98%) 3 (15.00%)

Spiculation, n (%) 0.036 0.087 0.084

Yes 65 (44.22%) 32 (31.07%) 25 (58.14%) 7 (35.00%)

No 82 (55.78%) 71 (68.93%) 18 (41.86%) 13 (65.00%)

Pleural
indentation, n (%)

0.003 0.061 0.399

Yes 87 (59.18%) 41 (39.81%) 28 (65.12%) 8 (40.00%)

No 60 (40.82%) 62 (60.19%) 15 (34.88%) 12 (60.00%)

(Continued)
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significant in the validation group (all P > 0.05). Compared to the

wild-type group, lesion size (MTD and GTV) and all metabolic

parameters were lower in the EGFR mutation group. However, with

the exception of SUVmean (training group P = 0.020, validation

group P = 0.005), no other significant differences were observed

between the two cohorts (all P > 0.05).
3.2 Feature selection and model
performance evaluation

Finally, six optimal features were identified using the LASSO

algorithm and tenfold cross-validation, consisting of four CT and
Frontiers in Oncology 07
two PET radiomics features. These features included: CT-original

shape sphe r i c i t y , CT-wave l e t -HLL_g l s zm_S i z eZone

NonUniformity, CT-wavelet-LHL_glszm_GrayLevelNon

Uniformity, CT-wavelet-LLH_glszm_GrayLevelVariance, PET-

wavelet-HHH_glszm_GrayLevelNonUniformity, and PET-

wavelet-LHL_firstorder_Minimum (as shown in Figure 2). The

intraobserver and interobserver ICC of these six radiomics

features were 0.9055-0.9979 and 0.9645-0.9979, respectively. In

this study, four classifiers were used to construct radiomics-based

models: LR, RF, SVM and XGBoost. The detailed performance

metrics for each model are shown in Table 2. The DeLong test

revealed that the RF model’s AUC surpassed those of the LR and

SVM models with statistical significance (P < 0.001) and was
TABLE 1 Continued

Characteristics

Training group Validation group
P

valuecEGFR
mutant (n=147)

EGFR wild-
type (n=103)

P
valuea

EGFR
mutant (n=43)

EGFR wild-
type (n=20)

P
valueb

Vacuole sign, n (%) 0.336 0.157 0.558

Yes 13 (8.84%) 13 (12.62%) 2 (4.65%) 3 (15.00%)

No 134 (91.16%) 90 (87.38%) 41 (95.35%) 17 (85.00%)

Cavity sign, n (%) 0.492 0.081

Yes 10 (6.80%) 9 (8.74%) 0.57 1 (2.33%) 0 (0.00%)

No 137 (93.20%) 94 (91.26%) 42 (97.67%) 20 (100.00%)

Vessel
convergence, n (%)

0.389 0.961 0.773

Yes 37 (25.17%) 31 (30.10%) 11 (25.58%) 5 (25.00%)

No 110 (74.83%) 72 (69.90%) 32 (74.42%) 15 (75.00%)

Air bronchogram,
n (%)

0.041 0.287 0.84

Yes 30 (20.41%) 11 (10.68%) 9 (20.93%) 2 (10.00%)

No 117 (79.59%) 92 (89.32%) 34 (79.07%) 18 (90.00%)

Calcification, n (%) 0.903 0.556 0.558

Yes 15 (10.20%) 11 (10.68%) 4 (9.30%) 1 (5.00%)

No 132 (89.80%) 92 (89.32%) 39 (90.70%) 19 (95.00%)

MTD (cm), M (Q1,Q3) 3.48 (2.70, 4.29) 3.59 (2.54, 4.85) 0.763 3.18 (2.51, 4.19) 3.23 (2.67, 5.27) 0.483 0.328

GTV (cm3), M (Q1,Q3) 11.78 (5.70, 21.83) 12.49 (4.43, 29.41) 0.687 7.68 (5.27, 16.33) 12.60 (4.87, 44.18) 0.38 0.433

SUVmax, M (Q1,Q3) 11.55 (8.43, 13.89) 12.23 (8.78, 16.00) 0.06 9.02 (7.06, 14.16) 12.54 (8.79, 17.50) 0.053 0.552

SUVpeak, M (Q1,Q3) 8.33 (5.59, 10.46) 8.76 (6.06, 11.60) 0.15 7.05 (5.10, 10.03) 9.45 (5.94, 13.65) 0.146 0.507

SUVmean, M (Q1,Q3) 6.16 (4.83, 7.23) 6.78 (5.09, 8.00) 0.02 5.17 (4.15, 7.05) 7.55 (5.57, 9.05) 0.005 0.656

MTV (cm3), M (Q1,Q3) 7.43 (3.60, 13.67) 9.08 (2.81, 20.05) 0.28 4.54 (3.18, 10.23) 9.25 (3.28, 28.02) 0.348 0.344

TLG (g), M (Q1,Q3) 44.98 (17.92, 96.68) 55.06 (16.26, 182.81) 0.115 23.39 (14.04, 61.09) 60.06 (25.71, 248.45) 0.095 0.323
fron
Data are expressed as n (%) or median [interquartile range] or mean ± standard deviation. EGFR, epidermal growth factor receptor; RU, right upper; RM, right middle; RL, right lower; LU, left
upper; LL, left lower; CEA, carcinoembryonic antigen; SCC, squamous cell carcinoma antigen; CYFRA21-1, cytokeratin 19 fragment antigen21-1; MTD, maximum tumor diameter; GTV, gross
tumor volume; SUVmax, maximum standard uptake value; SUVpeak, peak standard uptake value; SUVmean, mean standard uptake value; MTV, metabolic tumor volume; TLG, total
lesion glycolysis.
aEGFR mutant vs. EGER wild-type in training group.
bEGFR mutant vs. EGER wild-type in validation group.
cTraining group vs. validation group.
tiersin.org

https://doi.org/10.3389/fonc.2025.1510386
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1510386
FIGURE 2

The LASSO algorithm and tenfold cross-validation for the selection of radiomic features. (A) MSE trend associated with the change in l: l is selected
by 10-fold cross-validation. When l=0.0486, the MSE is minimum and the Lasso regression model shows the best performance. (B) Coefficient
trend of each feature along with l: 6 radiomic features with non-zero coefficients were selected in the final model. (C) The coefficient values of
these radiomic features in the LASSO model. LASSO, least absolute shrinkage and selection operator; MSE, mean square error; l, lambda.
TABLE 2 The diagnostic performance of each model in identifying EGFR mutations.

Model
AUC

(95%CI)
Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

Accuracy
(95%CI)

Training group

LR
0.659

(0.591-0.728)
0.551 (0.471-0.631) 0.699 (0.610-0.788)

0.723
(0.640-0.806)

0.522
(0.438-0.605)

0.612 (0.552-0.672)

RF
0.785

(0.726-0.844)
0.755 (0.686-0.825) 0.709 (0.621-0.796)

0.787
(0.720-0.855)

0.670
(0.581-0.758)

0.736 (0.681-0.791)

SVM
0.686

(0.619-0.753)
0.796 (0.731-0.861) 0.495 (0.399-0.592)

0.692
(0.623-0.762)

0.630
(0.524-0.735)

0.672 (0.614-0.730)

XGBoost
0.794

(0.737-0.851)
0.701 (0.627-0.775) 0.777 (0.696-0.857)

0.817
(0.750-0.885)

0.645
(0.561-0.729)

0.732 (0.677-0.787)

Clinical Model
0.711

(0.645-0.776)
0.762 (0.693-0.831) 0.534 (0.438-0.630)

0.700
(0.629-0.771)

0.611
(0.510-0.712)

0.668 (0.610-0.726)

Radiological
Model

0.632
(0.564-0.699)

0.748 (0.678-0.818) 0.456 (0.360-0.553)
0.663

(0.591-0.735)
0.560

(0.453-0.666)
0.628 (0.568-0.688)

Combined Model
0.872

(0.829-0.915)
0.796 (0.731-0.861) 0.786 (0.707-0.866)

0.842
(0.781-0.902)

0.730
(0.647-0.812)

0.792 (0.742-0.842)

(Continued)
F
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comparable to the XGBoost model in the training group. In the

validation group, RF exhibited the highest AUC, albeit without a

significant difference between the groups. Consequently, the RF

model demonstrated consistent and superior predictive

performance, deeming it the most fitting radiomics model for this

study. Separately, 4 clinical variables (smoking history, sex,

adenocarcinoma and squamous cell carcinoma) and 3 radiological

features (air bronchus sign, pleural indentation sign, and

spiculation sign) were obtained through multi-step screening to

establish corresponding models. The clinical model for

distinguishing EGFR mutations, achieved an AUC of 0.711 (95%

CI, 0.645-0.776) in the training group and 0.758 (95% CI, 0.627-

0.890) in the validation group. The performance of radiological

model was moderate, with AUC values of 0.632 (95% CI, 0.564-

0.699) and 0.677 (95% CI, 0.531-0.822) in the training and

validation groups, respectively.
3.3 Establishment and evaluation of the
nomogram prediction model

To improve predictive accuracy, we combined radiomic, clinical

and radiological features to create a combined model. This model

achieved an AUC of 0.872 (95% CI, 0.829-0.915) and 0.831 (95% CI,

0.723-0.940) in the training and validation groups, respectively, as

shown in Table 3 and Figure 3. In the training group, the AUC of

the combined model outperformed that of the RF radiomics model

(P = 0.010), the clinical model (P < 0.001) and the radiological

model (P < 0.001). In the validation group, it outperformed the

other three models, with a significant difference noted only against

the radiological model (P = 0.017). Overall, the combined model
Frontiers in Oncology 09
showed superior predictive ability. As a result, we created an

individualized nomogram in the validation group, which provides

an intuitive visualization of the prediction results and their

influencing factors (Figure 4A). Among the predictors, Rad-score

was the most influential in predicting EGFR mutation. The

Hosmer-Lemeshow test confirmed the accuracy of the combined

model in both the training (c2 = 7.3975, P = 0.495) and validation

groups (c2 = 9.8997, P = 0.272). Calibration curves further

highlighted the agreement between observed and predicted results

(Figure 4B). Decision curve analysis (DCA), shown in Figure 5,

revealed that the area under the curve of the combined model

outperformed other models, highlighting its superior clinical utility.
4 Discussion

Given the clear benefit of TKIs for NSCLC patients with an

EGFR mutation, accurate detection of EGFR gene mutation status

becomes critical for informed clinical treatment decisions. In this

retrospective study, we developed individualized nomograms

integrating 18F-FDG PET/CT radiomics, radiological and clinical

features to provide a non-invasive approach to predict EGFR

mutation status in NSCLC patients.

Previous research has shown that females, adenocarcinoma

patients and non-smokers are more likely to have EGFR

mutations (22, 23), a finding consistent with our results. By

integrating these variables, our clinical model achieved AUCs of

0.711 and 0.758 in the training and validation groups, respectively.

While numerous studies have investigated the relationship between
18F-FDG uptake and EGFR mutation status in NSCLC, their results

have been inconsistent. Our analysis of PET metabolic parameters
TABLE 2 Continued

Model
AUC

(95%CI)
Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

Accuracy
(95%CI)

Validation group

LR
0.710

(0.579-0.842)
0.535 (0.386-0.684) 0.800 (0.625-0.975)

0.852
(0.718-0.986)

0.444
(0.282-0.607)

0.619 (0.499-0.739)

RF
0.776

(0.662-0.889)
0.698 (0.560-0.835) 0.650 (0.441-0.859)

0.811
(0.685-0.937)

0.500
(0.308-0.692)

0.683 (0.568-0.797)

SVM
0.734

(0.611-0.856)
0.767 (0.641-0.894) 0.500 (0.281-0.719)

0.767
(0.641-0.894)

0.500
(0.281-0.719)

0.683 (0.568-0.797)

XGBoost
0.724

(0.601-0.848)
0.558 (0.410-0.707) 0.850 (0.694-1.000)

0.889
(0.770-1.000)

0.472
(0.309-0.635)

0.651 (0.533-0.769)

Clinical Model
0.758

(0.627-0.890)
0.721 (0.587-0.855) 0.750 (0.560-0.940)

0.861
(0.748-0.974)

0.556
(0.368-0.743)

0.730 (0.621-0.840)

Radiological
Model

0.677
(0.531-0.822)

0.721 (0.587-0.855) 0.600 (0.385-0.815)
0.795

(0.668-0.922)
0.500

(0.300-0.700)
0.683 (0.568-0.797)

Combined Model
0.831

(0.723-0.940)
0.698 (0.560-0.835) 0.800 (0.625-0.975)

0.882
(0.774-0.991)

0.552
(0.371-0.733)

0.730 (0.621-0.840)
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; SVM, support vector machine; XGBoost, extreme
gradient boosting.
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between the EGFR mutation and wild-type groups (detailed in

Supplementary Table S1) is largely consistent with previous studies

(24, 25). We observed minimal correlation between 18F-FDG

uptake and EGFR mutation status in both groups, leading us to

exclude PET metabolic parameters from our radiological model.

Notably, while several studies have suggested that a higher SUVmax

indicates the presence of an EGFR mutation, others have found no

association between 18F-FDG uptake and EGFR mutation status

(26, 27). Such discrepancies may be due to differences in sample

size, sample characteristics, or ROI selection and measurement

methods. In conclusion, PET metabolic parameters appear to

have limited predictive value for EGFR mutations.

The integration of CT equipment into PET/CT scanners

enhances the clarity of morphological features, potentially
Frontiers in Oncology 10
improving the diagnostic accuracy for NSCLC patients. Our study

confirmed that CT morphological features such as air bronchial

sign, pleural indentation sign and spicule sign were associated with

an increased risk of EGFR mutation, which is consistent with

previous studies (12, 28, 29). In addition, other studies have

found that ground glass nodules (GGNs), which include both

pure and mixed ground glass nodules, are often indicative of

EGFR mutations in NSCLC patients (30, 31). Given the

challenges in delineating GGNs on PET images, they were

excluded from our study. Notably, our radiological model based

on CT morphological features showed moderate predictive

performance, with AUC values of 0.632 and 0.677 in the training

and validation groups, respectively.

Research on radiomics for EGFR prediction is growing rapidly,

with many studies confirming its feasibility and potential benefits. In

our study, we used four machine learning classifiers (LR, RF, SVM

and XGBoost) to construct an EGFR mutation prediction model

using six optimal features refined by a four-step dimensionality

reduction process. The AUC values for these models ranged from

0.659 to 0.794 in the training group and from 0.710 to 0.776 in the

validation group. Given the relative stability and commendable

predictive performance of the RF model, with AUC values of 0.785

and 0.776 in the training and validation groups respectively, it was

selected for further research. Although the difference wasn’t

statistically significant, we expect this to be resolved by increasing

the sample size. Introduced by Breiman in 2001, RF is an ensemble

learning method suitable for both classification and regression. It uses

a collection of decision trees to create a diversified prediction model.

Due to its robust predictive accuracy, resistance to overfitting, ability

to model complex non-linear relationships and interpretability, RF

has gained traction in biomedical engineering (32–34). Wang et al.

(35) demonstrated that an RF model based on preoperative CT

radiomics features could detect EGFR mutations in lung
FIGURE 3

ROC curves for each prediction model in the training group (A) and validation group (B). All model results were evaluated using quintuple cross-
validation. ROC, receiver operating characteristic; AUC, area under the curve; LR, logistic regression; RF, random forest; SVM, support vector
machine; XGBoost, extreme gradient boosting.
TABLE 3 The Delong test for RF radiomic, clinical, radiological and
combined model.

Model AUC (95%CI) Statistics P Value

Training set

RF 0.785 (0.726-0.844) -2.55681 0.010

Clinical Model 0.711 (0.645-0.776) -6.61029 <0.001

Radiological Model 0.632 (0.564-0.699) -7.92496 <0.001

Combined Model 0.872 (0.829-0.915) Ref Ref

Validation set

RF 0.776 (0.662-0.889) -1.34423 0.179

Clinical Model 0.758 (0.627-0.890) -1.66593 0.096

Radiological Model 0.677 (0.531-0.822) -2.37707 0.017

Combined Model 0.831 (0.723-0.940) Ref Ref
Using the Combined Model as a reference.
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FIGURE 4

Nomogram evolution and performance. (A) Nomogram based on the combined model. Histological type: 1 represents SCC, 0 represents ADC;
Smoking: 1 represents current or former smoker, 0 represents never smoker; Gender: 1 represents female, 0 represents male; Radiological signs:
1 represents yes, 0 represents no. (B) Calibration curve of the nomogram in the training and validation groups.
FIGURE 5

Decision curve analysis (DCA) for RF radiomic, clinical, radiological and combined models in the training group (A) and validation group (B). The
combined model for EGFR prediction added more value than the use of the treat-all scheme for threshold probabilities >20% in both the training
and validation groups.
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adenocarcinoma patients, achieving AUC values of 0.70 and 0.64 for

the training and validation groups, respectively. Gu et al. highlighted

the superior performance of an RF-based radiomics classifier

(AUC=0.776) in predicting Ki-67 expression levels in NSCLC

patients (36). Some studies (24, 26, 37) have suggested that

radiomics signatures from 18F-FDG PET/CT images provide better

EGFR mutation predictions than those from stand-alone CT or

conventional PET images. Recent studies typically report AUC

values between 0.57 and 0.86 when relying on PET/CT radiomics

features (16, 24, 38, 39). While factors such as image data sources,

spatial resolution, post-processing, model algorithms and data size

can introduce variability, the collective body of work, including our

study, underscores the potential of radiomics-based machine learning

models for EGFR mutation prediction.

In our study, PET and CT images were filtered and pre-

processed prior to feature extraction. This step is critical because

it minimizes image acquisition errors and ensures that the results

are both stable and reliable. Our results underline that the final six

radiomics features are highly reliable. Even when different machine

learning algorithms are used to construct models using these

features, the resulting models consistently show commendable

predictive performance. Notably, five of the six radiomics features

were wavelet features, highlighting the central role of features

derived from wavelet-filtered images in the radiomics model.

Wavelet transform, a widely used method for noise reduction,

data smoothing and filtering, is excellent at revealing specific

patterns hidden in large datasets. By capturing tumor

heterogeneity, wavelet features potentially improve the predictive

power of the model (40). Similarly, Zhang et al. (41) found that

seven out of twelve wavelet-transformed features correlated with

EGFR mutations. This suggests that texture and high-dimensional

features may have a more robust association with EGFR

mutation status.

Although the RF radiomics model in our study showed slightly

better predictive power than the clinical and radiological models,

reliance on it alone for clinical applications may be limited. Zhang

et al. (38) found that a model combining PET/CT radiomics with

clinical features (gender and smoking history) outperformed a

model based on PET/CT radiomics alone, with AUC values of

0.86 vs 0.79 in the training group and 0.87 vs 0.85 in the validation

group. Another study constructed an integrated model using CT

radiomics, CT radiological features and clinical features to predict

EGFR mutations in adenocarcinoma patients, achieving AUCs of

0.849 and 0.835 in the training and validation groups, respectively

(41). Chang et al. (37) also showed that a combined model

integrating PET/CT radiomics with CT morphological features

was more effective in predicting EGFR mutations in lung

adenocarcinoma than a model based on PET/CT radiomics alone

(AUC: 0.84 vs. 0.76 in the training group and 0.81 vs. 0.75 in the

validation group). In our study, the combined model incorporating

rad-score, clinical and radiological features achieved AUCs of 0.872
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and 0.831 in the training and validation groups, respectively,

outperforming the stand-alone clinical and radiological models.

To further improve the clinical utility, we developed a radiomics-

based nomogram that integrates the Rad score with the

aforementioned clinical and radiological features to provide a

visualized prediction. Decision curve analysis (DCA) further

validated the clinical applicability of this nomogram.

Our study has several limitations that need to be considered.

First, it is a single-center retrospective study with a relatively small

sample size. A larger sample size can enhance research reliability,

interpretability, and generalization, while mitigating selection bias. To

further validate and improve model performance, we plan to expand

the sample size or collaborate with multicenter data for both single-

center and external validations in future work. Second, the use of

manual and semi-automated outlining methods introduces the

possibility of human error. These methods may also lack the

repeatability seen with fully automated outlining. Third, while our

study provides an initial exploration of radiomics using four different

classifiers, the optimal feature selectionmethod andmachine learning

algorithm for specific applications remains a matter of debate. Future

research will combine radiomics with deep learning to achieve fully

automated analysis of the entire process from tumor segmentation to

prediction, and improve prediction efficiency (AUC > 0.9) to enhance

its clinical applicability.
5 Conclusions

In conclusion, the combination of radiomics and machine

learning using 18F-FDG PET/CT images offers a promising

approach to identify EGFR mutation status in NSCLC patients.

The integration of clinical and radiological features with the Rad

score further improves the predictive accuracy. Radiomics-based

nomograms provide a valuable, non-invasive and visually intuitive

tool for screening patients with EGFR mutations in a

clinical setting.
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