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Interobserver variability in
organ delineation on
radiotherapy treatment
planning for nasopharyngeal
carcinoma: A dosimetric and
prognostic analysis
Meining Chen1†, Yinglin Peng1†, Ruotong Chen1, Qiuying Xie2,
Dengyuan Chen3, Jinping Shi2, Rong Huang2, Jun Zhang1,
Chong Zhao1, Li Chen1*, Xiaowu Deng1* and Yimei Liu1*

1Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong
Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical
Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China, 2Department
of Radiation Oncology, the First People’s Hospital of Foshan, Foshan, China, 3Department of
Radiation Oncology, Luoding People’s Hospital, Yunfu, China
Background and purpose: This study aimed to analyze the impact of

interobserver variability (IOV) on clinical dosimetry and prognosis, specifically

investigating the correlation between IOV and clinical prognosis in the context of

intensity-modulated radiation therapy (IMRT) for nasopharyngeal

carcinoma (NPC).

Materials and methods: Twelve NPC patients who underwent IMRT were

selected. Four radiotherapy physicians from two different-tier cancer centers

independently delineated target volumes and organs at risk (OARs) for each

patient. These delineations were compared against gold standard structures from

a regional cancer center. The IOV among physicians and its effect on clinical and

prognosis were analyzed. The relationships between the IOV, dosimetry, and

prognosis were investigated using spearman’s correlation analysis.

Results: The target volume and OARs delineation differed significantly among

physicians. This variability led to reduced prescription dose coverage (PDC) of the

planning target volume (PTV) and increased doses to OARs, impacting tumor

control probability (TCP) and normal tissue complication probability (NTCP).

Compared to standard delineations, all four physicians showed decreased TCPs

(average decrease in DTCP >1%) and a significant increase in NTCPs of OARs. The

relative volume difference (DV) of target volumes correlated strongly with DPDC
(R=0.686) and DTCP (R=0.703). Moreover, in the validation set, DV also strongly

correlated with DTCP (R = 0.778).
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Conclusion: Substantial IOV in delineating NPC target volumes and OARs for

IMRT was observed. This variability affects plan optimization, dose distribution,

and clinical prognosis. DV can serve as a risk predictor for assessing delineation

variability in NPC radiotherapy treatment planning.
KEYWORDS

intensity-modulated radiotherapy, interobserver variability, normal tissue complication
probability, tumor control probability, nasopharyngeal carcinoma
1 Introduction

Intensity-modulated radiation therapy (IMRT) is the primary

treatment for nasopharyngeal carcinoma (NPC) and delivers high

doses to tumors while reducing radiation exposure to the

surrounding organs at risk (OARs), thus enhancing the

therapeutic ratio (1–3). The precise delineation of target volumes

and critical OARs is essential for accurate IMRT implementation.

Given the complex anatomical features of NPC, coupled

with interobserver variability (IOV) in clinical experience,

understanding of guidelines, and delineation methods,

inconsistencies in target and OAR contouring have negatively

impacted NPC radiotherapy outcomes, substantially influencing

treatment precision and effectiveness (4–7).

Several studies (8–11) have reported considerable variations

among physicians in contouring target volumes and OARs for the

same NPC patients by quantifying IOV in terms of geometric

volume metrics such as the dice similarity coefficient (DSC),

average surface-to-surface distance (ASSD), and volume

measurements. Nevertheless, assessing whether this delineation

variability translates into clinical prognosis implications poses a

significant challenge, resulting in a deficiency of universally

accepted clinical standards for quantifying IOV (12).

While several studies have delved into the consequences of IOV

on treatment plan optimization and discrepancies in dose

distribution (13, 14), there is a scarcity of research that has

specifically addressed the impact of IOV on the clinical prognosis

of radiotherapy. Moreover, investigations into prostate (12, 15) and

rectal cancers (16) have revealed weak or no correlations between

common IOV geometric indicators and dosimetric parameters or

clinical prognosis, posing a significant challenge to clinical practice.

However, Jameson et al. (17) reported that relative volume

difference (DV) in lung cancer was correlated with the tumor

control probability (TCP), suggesting that the DV could serve as a

prognostic indicator. Yet, the correlation between IOV and clinical

outcomes in the context of complex NPC radiotherapy cases

remains unclear.

Therefore, this study aimed to analyze IOV in target volume

and OAR delineation by physicians from different-tier cancer

centers for NPC radiotherapy. By investigating the impact of IOV

on dosimetry and prognosis, we aim to identify that are closely
02
related to prognosis, ultimately contributing to the homogenization

of IMRT treatment planning.
2 Materials and methods

2.1 Patient datasets and contouring

This retrospective analysis included 12 newly diagnosed,

pathologically confirmed stage I - IVB NPC patients (7th edition

of the AJCC staging system, see Supplementary Table 1) who were

treated with IMRT at a regional cancer center between May 2017

and October 2018. All patients had complete pretreatment imaging,

including MRI simulation and both contrast-enhanced and non-

contrast CT scans. Before the distribution of images, CT and MR

images undergo automatic rigid registration on the Monaco

planning system (Version 5.1, Elekta, Sweden). Subsequently,

physicians manually adjust these images with reference to bony

landmarks at the skull base, such as the clivus and sphenoid sinus.

This study was approved by the Institutional Review Board of Sun

Yat-sen University Cancer Center (ID: B2024-111-01), and all

patients provided written informed consent.

For each patient, four physicians from two different-tier cancer

centers independently delineated the target volume and OARs using

the Monaco planning system (Version 5.1, Elekta, Sweden).

Specifically, Physicians A, B, and C, each with 5 to 10 years of

experience were affiliated with a city-level cancer center. Physician

D, with 6 years of experience was affiliated with a county-level

cancer center. Notably, the contouring results of Physician D

required collective discussion and confirmation within their

department. Additionally, the delineated gold standard volumes

(SVs) integrate automatic delineation algorithms with expert

consensus. Initially, we utilized ABAS software (Version 2.01,

Elekta AB, Stockholm, Sweden) to generate primary OARs

delineations. Subsequently, three senior radiation oncology

experts (each with over 10 years of experience in NPC) from a

regional cancer center manually delineated the target volumes and

revised OARs according to International Commission on Radiation

Units and Measurements (ICRU) reports 50, 60, and 83 (18–20),

which were then refined through iterative consensus until an inter-

observer DSC score of over 0.90 was achieved.
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The target volumes included the gross tumor volume of the

nasopharynx (GTVnx), number of positive neck lymph nodes

(GTVnd), high-risk clinical target volume (CTV1), and

prophylactic irradiation target volume (CTV2). The volumes of the

OARs encompassed the brainstem, spinal cord, lens, optic nerves,

optic chiasm, pituitary, parotid glands, temporal lobes,

temporomandibular joints, and mandible. Planning target volumes

(PTVs) corresponding to setup uncertainties were generated for

GTVnx, GTVnd, CTV1, and CTV2, as well as planning risk

volumes (PRVs) were created the spinal cord, optic chiasm, optic

nerves, and temporal lobe based on predefined margins.
2.2 Geometric difference analysis

The IOV metrics include DV (Equation 1), maximum-to-

minimum ratio (MMR) (Equation 2), coefficient of variation

(CV) (Equation 3), DSC (Equation 4), and 95% Hausdorff

distance (HD95) (Equation 5) (21, 22). These are detailed as follows:

DV was the difference between the individual volume delineated

by a physician at a county or city cancer center ( VM) and the

standard delineated volume   (VS):

DV = VM − VS (1)

MMR reflects the volumetric variation in organs delineated

independently by different physicians.

MMR =
Vmax

Vmin
(2)

where Vmax and Vmin are the maximum and minimum volumes

of the delineated structures, respectively.

The CV indicates the dispersion of organ volume delineations

among different physicians. A higher CV signifies greater IOV.

CV =
Vstd

Vave
(3)

where  Vstd and Vave represent the standard deviation and

average volume of the evaluated structure, respectively.

The DSC reflects the overlap of structures delineated

independently by different physicians. It is recommended that a

DSC value greater than 0.7 be used as a criterion for good

concordance when evaluating differences in image volume

delineation (23).

DSC =
2(V1∩V2)
V1j j + V2j j (4)

where V1 and V2 represent the volumes delineated by two

physicians, and (V1∩V2) is the intersecting volume of V1 and V2.

The HD95 reflects the similarity between the contours of two

structures, defined as the maximum distance from any point on one

contour to its nearest point on the other contour. The formula is:

HD   (A, B) = 95%max
a∈A

min
b∈B

d(a, b)f g
� �

(5)
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where a and b denote the contours of structures A and B,

respectively, and d(a,b) is any metric between these points.
2.3 Treatment planning

All contoured structures were imported into the Eclipse

treatment planning system (Version 15.6; Varian Medical

Systems, Palo Alto, CA, USA). For each patient, the target area

and OARs delineated by different physicians were independently

subjected to 9-field uniform dynamic IMRT simultaneous

integrated boost planning by the same experienced dosimetrist in

a fully blinded manner. The same prescription and OAR dose

constraints were applied to all plans with 6 MV X-ray irradiation at

prescription doses of 70, 66, 60, and 54 Gy for PTVnx, PTVnd,

PTV1, and PTV2, respectively, and the irradiation was delivered 33

times. The planned dose was calculated using a grid size of 2.5 mm

with an anisotropic analytical algorithm (AAA). Plan optimization

dose constraints were based on the 2019 international guidelines for

prioritization and dose constraints for OARs in NPC (24).
2.4 Dosimetry difference

To evaluate the impact of IOV on PTVs and OARs on dose

distribution in treatment plans and clinical prognosis, dose

prescriptions designed for individual contouring structures were

mapped onto gold standardized structures. Dosimetric parameters,

such as prescription dose coverage (PDC) (Equation 6) and relative

dose difference DD_diff) (Equation 7), were used to analyze the

discrepancies between each individualized and gold standard plan.

The dosing schedule for a radiotherapy program must first

ensure that the planned target site is exposed to sufficient prescribed

doses of radiation. Accordingly, we define the PDC of the PTV as

the evaluation index of the target dose, which is calculated using the

following formula:

PDC =
PTV100%

PTV
� 100% (6)

where PTV represents the volume of the contoured PTV, and

PTV100% is the volume of the PTV that receives 100% of the

prescribed dose.

The Dmax, or D1cc for 1cc volume was used to analyze serial-

type OARs such as the spinal cord and brainstem. The Dmean, or

D1cc for 1cc volume was used to analyze parallel-type OARs, such

as the parotid gland. DD_diff reflects the magnitude of dose

parameter differences for OARs between plans developed at

different levels of cancer centers and standard plans. It is defined as:

DD _ diff =
DM − DS

DS
(7)

DM is the dose parameter from the county or city-level cancer

centers, and DS is the dose parameter from the regional

cancer center.
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2.5 Radiobiological analysis

TCP, a radiobiological index for PTVnx, was computed using

the Schultheiss logistic model (25), expressed as (Equation 8):

TCP =
1

1 + ( TCD50
EUD )4g 50

(8)

where TCD50 denotes the dose at which no more than 50% of

patients treated with radiotherapy will experience severe radiation

damage 5 years posttreatment; g50 is a unique value when TCP=0.5

and D=D50; and EUD is the equivalent uniform dose, a measure of

the dose that would produce the same radiobiological effect if the

tissue or organ were uniformly irradiated, given by (Equation 9):

EUD = o
i
ViD

a
i

 !1
a

(9)

Following Okunieff et al. (26), the radiobiological parameter

TCD50 for TCP was defined as 61.69 Gy, g50 as 3.38, and a as -8.

The normal tissue complication probability (NTCP) was

assessed using a modified linear-quadratic model proposed by

Zaider et al. (27), expressed as (Equations 10, 11):

NTCP(D,V) = EXP½−N0V
−kexp −aDGf g� (10)

G = 1 +
D

(a b
�

)

" #
(11)

where N0 and k are nonnegative adjustable parameters that vary

according to tissue or organ type; D is the dose received by normal

tissue; V is the volume when the tissue is uniformly irradiated; a is

the coefficient for lethal damage; and a
b
�

is the ratio of lethal to

sublethal damage coefficients. The parameters required for the

NTCP model calculations are provided in Supplementary Table 2.
2.6 Statistical analysis

All data were analyzed using SPSS version 22.0 (IBM SPSS, Inc.,

Chicago, USA). IOV delineation discrepancies, dosimetric

parameters, TCPs, and NTCPs between the four physicians and

the gold standard were compared using paired t-tests or Wilcoxon

signed-rank tests, with significance set at P<0.05. Spearman’s rank

correlation analysis was used to assess the correlation between IOV,

dosimetric parameters, and clinical prognosis parameters, with a

threshold of P<0.05 indicating significant correlations, Spearman’s

correlation coefficient (R) indicated the strength of correlations, and

the sign of R denoted the direction of association (12).

Geometric evaluation indices of the IOV that showed significant

correlations and correlation coefficients |R|>0.4 were selected and

designated as predictors of delineation discrepancy risk.
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2.7 Validation for risk predictors of IOV

A case of a 65-year-old man previously treated with IMRT and

pathologically staged as T2N2M0 was randomly selected. Ten

radiation oncologists from eight cancer centers independently

delineated the target volumes and OARs for NPC. The structures

contoured by these physicians were used in the ABAS software to

establish a consensus “true structure set” by applying the STAPLE

(Simultaneous Truth and Performance Level Estimation)

algorithm, which serves as the gold SV within the validation

cohort (28).

Based on the various delineations and planned dose

distributions within the validation set, the IOV risk factors among

different physicians were compared and analyzed for their

correlation with clinical outcomes. This analysis aimed to validate

the feasibility and generalizability of IOV risk factors as predictors

of clinical prognosis.
3 Results

3.1 IOV in target volume delineation

Significant IOV was observed in the delineation of GTVnx

among the four physicians. Notably, the mean GTVnx volumes

were considerably higher when compared to the standard volumes

(SVs). The MMR and CV for these delineations were (mean ± SD)

3.64 ± 1.60 and 0.44 ± 0.17, respectively, with average

DSC values<0.6.

IOV was less for organs with clear boundaries and larger

volumes, such as the brainstem, mandibles, and eyes. The average

MMR was<1.8, and the CV was<0.18, with average DSC values

>0.8. Conversely, IOV was considerably larger for organs with

relatively obscure boundaries and smaller volumes, such as the

optic nerves and pituitary. The average MMR and CV exceeded 3

and 0.5, respectively, and the average DSC values were<0.7

(Table 1, Figure 1).

Supplementary Table 3 displays the HD95 values between the

delineations of the four physicians. For critical OARs, including the

spinal cord, eyes, temporomandibular joint, lenses, optic nerves,

and pituitary, the HD95 values for the delineations by Doctor D, a

county-level physician, were markedly greater than those of the

other three city cancer center physicians.
3.2 IOV in dose distribution in treatment
planning

The mean PDC values for treatment plans devised at the county

and city cancer centers exhibited varying degrees of decline, with

the most pronounced reduction observed in one city planning
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FIGURE 1

Comparison of Dice similarity coefficients (DSCs) between structures delineated by four physicians from the county and city-level cancer centers
and the gold standard volume. (A–C) represent the DSCs between three physicians from city cancer centers and the gold standard. (D) represents
the DSC between the physician from a county-level cancer center and the gold standard.
TABLE 1 Volume differences for structures delineated by four physicians versus the gold standard structure.

Structures
SV A B C D

CV MMR
V (cc) △V(cc) △V (cc) △V(cc) △V (cc)

GTVnx 29.93 ± 37.06 22.54 ± 26.87** 31.38 ± 30.68** 31.08 ± 27.27** 19.42 ± 29.87** 0.44 ± 0.17 3.64 ± 1.60

Brainstem 25.77 ± 4.49 -0.66 ± 4.08 -1.53 ± 2.48* -1.14 ± 3.25 -1.22 ± 3.54 0.08 ± 0.03 1.24 ± 0.13

Spinal cord 14.73 ± 5.51 1.22 ± 4.60 -1.98 ± 4.45 -1.58 ± 4.57 -4.73 ± 4.88** 0.22 ± 0.05 1.77 ± 0.32

TP lobe-L 88.75 ± 5.93 -31.81 ± 15.53 -17.79 ± 8.65 -35.68 ± 12.77 -16.28 ± 10.54 0.23 ± 0.02 1.77 ± 0.32

TP lobe-R 94.93 ± 8.16 -39.98 ± 17.37 -26.98 ± 13.05 -43.00 ± 16.26 -22.42 ± 14.48 0.28 ± 0.09 1.96 ± 0.43

Mandible L 36.05 ± 6.19 6.20 ± 4.73** 12.41 ± 5.09** 13.92 ± 5.79** 3.14 ± 3.61* 0.15 ± 0.04 1.44 ± 0.18

Mandible R 36.46 ± 6.99 1.17 ± 6.84 12.48 ± 3.65** 14.14 ± 4.79** 2.08 ± 3.82 0.18 ± 0.21 1.56 ± 0.23

Parotid L 24.09 ± 6.73 -8.05 ± 4.60** -1.90 ± 2.44** -7.08 ± 5.42** -1.60 ± 5.03 0.26 ± 0.08 1.84 ± 0.31

Parotid R 24.30 ± 6.80 -8.59 ± 6.14** -2.09 ± 3.71* -7.65 ± 7.00** -2.71 ± 2.87* 0.23 ± 0.10 1.75 ± 0.39

Eye L 6.88 ± 1.11 2.26 ± 1.14* 2.13 ± 0.92* 2.27 ± 1.23* 0.80 ± 1.14 0.14 ± 0.05 1.45 ± 0.23

Eye R 6.68 ± 0.97 2.53 ± 0.90** 2.23 ± 0.80** 1.88 ± 1.34** 1.25 ± 1.06** 0.14 ± 0.05 1.48 ± 0.27

TMJ L 1.68 ± 0.74 0.76 ± 0.94** 0.22 ± 0.78 0.33 ± 0.98 0.49 ± 0.64* 0.24 ± 0.12 2.05 ± 0.88

TMJ R 1.58 ± 0.79 1.26 ± 1.43** 0.42 ± 1.10 0.78 ± 1.43* 1.16 ± 0.62** 0.35 ± 0.10 2.61 ± 0.84

Len L 0.11 ± 0.05 0.07 ± 0.09* 0.05 ± 0.10 0.00 ± 0.06 0.04 ± 0.07 0.39 ± 0.18 2.0 ± 0.47

Len R 0.12 ± 0.04 0.05 ± 0.07* 0.03 ± 0.08 -0.01 ± 0.05 0.00 ± 0.06 0.35 ± 0.11 1.92 ± 0.29

Optic chiasm 0.56 ± 0.14 -0.01 ± 0.26 -0.15 ± 0.23 -0.16 ± 0.20* 0.23 ± 0.53 0.25 ± 0.09 1.86 ± 0.37

Optic nerve L 0.19 ± 0.1 0.14 ± 0.15* 0.27 ± 0.17** 0.15 ± 0.14* -0.08 ± 0.09* 0.56 ± 0.14 4.54 ± 4.92

Optic nerve R 0.21 ± 0.11 0.17 ± 0.17* 0.28 ± 0.19** 0.16 ± 0.20* -0.11 ± 0.11* 0.60 ± 0.11 5.18 ± 1.17

Pituitary 0.14 ± 0.07 0.01 ± 0.12 0.14 ± 0.19* -0.02 ± 0.09 -0.02 ± 0.08 0.53 ± 0.22 3.33 ± 1.58
F
rontiers in Oncology
 05
SV represents the gold standard volume. A, B, C, and D denote the relative volume differences between the volumes delineated by four physicians from two different-tier cancer centers and the
standard volume.
*Denotes a significant difference in the delineated volumes by four physicians from two different-tier cancer centers compared to SV, where ** indicates P<0.01 and * indicates P<0.05.
TMJ, temporomandibular joint; TP lobe, temporal lobe.
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group, where the average PDC% decreased by >10%. Moreover, in

treatment plans originating from these centers, doses of OARs

increased to differing extents. Among these organs, dose variations

for the brainstem, spinal cord, and mandibles were relatively minor,

with average relative dose differences<20%. In contrast, dose

differences for the optic nerves and optic chiasm were

considerably larger, with average relative dose differences

>50% (Table 2).

Figure 2 illustrates the dose distribution for plans designed by

two physicians from a county or city cancer center for a specific

patient. Compared to the gold standard plan Figure (Figure 2S),

(Figure 2A) indicated that the plan developed at the county or city

cancer center demonstrated inadequate PDC due to suboptimal

target volume delineation. Conversely, Figure 2B shows an overt

spillage of the prescription dose beyond the intended target volume

due to an overly expansive target volume delineation by a physician

from county or city cancer center.
Frontiers in Oncology 06
3.3 IOV and clinical prognosis

Table 3 presents the differences in TCP and NTCP between the

treatment plans designed by physicians and the gold standard plans.

Compared to the gold standard plans, the TCPs for the target volumes

decreased by >1% in the plans designed by the physicians, with some

patients experiencing a significant decline of up to 17.83%.

Additionally, the NTCPs for the physician plans increased, with the

most notable increase observed in the optic chiasm, where the DNTCP
exceeded 4.9% compared to that of the gold standard plan.
3.4 Correlation between delineation
variability, dosimetry, and clinical prognosis

Figure 3 illustrates the correlation between geometric evaluation

metrics of GTVnx, OARs, and PTVnx regarding the DPDC and
TABLE 2 Relative dosimetric differences between treatment plans designed by the four physicians and the reference gold standard plan.

Structures
Dose S A B C D

parameter Dose △D_diff △D_diff △D_diff △D_diff

PTVnx PDC 98.83% ± 1.66% -9.37% ± 16.16%* -7.62% ± 12.70%* -10.54% ± 16.81%* -8.71% ± 12.61%*

Brainstem Dmax (Gy) 47.90 ± 6.11 6.75% ± 9.50%* 13.28% ± 10.29%** 10.54% ± 14.00%** 14.64% ± 9.40%**

Spinal cord Dmax (Gy) 35.57 ± 2.89 8.83% ± 8.86%** 14.40% ± 14.00%** 10.52% ± 11.00%** 13.97% ± 11.48%**

TP lobe-L Dmean (Gy) 11.24 ± 6.25 24.78% ± 52.26% 26.89% ± 46.01% 31.87% ± 56.56%* 57.85% ± 55.52%**

TP lobe-R Dmean (Gy) 10.00 ± 5.22 27.89% ± 46.05%* 26.91% ± 43.78%* 30.77% ± 49.95% 66.65% ± 54.39%**

Mandible L Dmean (Gy) 35.23 ± 5.60 10.16% ± 8.80%** 11.49% ± 7.04%** 11.52% ± 7.55%** 19.82% ± 13.27%**

Mandible R Dmean (Gy) 35.27 ± 6.75 11.31% ± 11.02%** 13.95% ± 7.94%** 11.37% ± 9.00%** 15.59% ± 11.22%**

Parotid L Dmean (Gy) 30.65 ± 4.67 21.07% ± 14.97%** 5.92% ± 14.10%* 13.08% ± 18.55%* 1.18% ± 17.07%

Parotid R Dmean (Gy) 30.55 ± 4.85 24.70% ± 15.39%** 5.44% ± 14.13% 18.64% ± 20.39%* 1.11% ± 17.30%

Eye L Dmean (Gy) 5.82 ± 3.49 17.52% ± 75.45% 26.60% ± 92.91% 22.50% ± 79.72% 77.84% ± 51.50%**

Eye R Dmean (Gy) 5.52 ± 2.74 14.77% ± 59.85% 21.39% ± 64.12% 19.77% ± 69.17% 56.30% ± 35.44%**

TMJ L Dmean (Gy) 30.08 ± 9.37 15.97% ± 12.62%** 17.07% ± 16.03%** 28.24% ± 36.24%* 39.88% ± 30.08%**

TMJ R Dmean (Gy) 26.83 ± 9.16 23.53% ± 18.85%** 19.14% ± 24.29%** 24.32% ± 33.00%* 36.56% ± 50.39%**

Len L Dmax (Gy) 5.21 ± 2.73 11.86% ± 43.12% 18.51% ± 49.73% 20.32% ± 51.00% 77.75% ± 66.83%*

Len R Dmax (Gy) 5.12 ± 2.55 15.18% ± 55.69% 22.41% ± 57.49% 20.22% ± 64.95% 62.70% ± 43.64%**

Optic chiasm Dmax (Gy) 23.26 ± 21.63 60.11% ± 244.77% 84.11% ± 284.74% 74.40% ± 267.25%
151.33%
± 170.30%**

Optic nerve L Dmax (Gy) 20.40 ± 18.28 100.90% ± 307.65% 81.23% ± 265.32% 108.50% ± 282.07%
146.95%
± 139.35%**

Optic nerve R Dmax (Gy) 20.51 ± 18.78 54.25% ± 182.68% 59.44% ± 206.86% 79.14% ± 231.94%
140.53%
± 130.20%**

Pituitary Dmax (Gy) 44.45 ± 19.93 22.73% ± 112.06% 24.22% ± 80.58% 38.73% ± 101.75% 66.86% ± 106.06%**
A, B, C, and D represent the relative dose differences between the plans from four groups of physicians at two different-tier cancer centers and the reference plans.
*Denotes statistically significant differences between treatment plans devised by physicians at two distinct tiers of cancer centers and the reference plans, where ** indicates P<0.01 and *
indicates P<0.05.
TMJ, temporomandibular joint; TP lobe, temporal lobe.
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DTCP. The DV for GTVnx strongly correlated with the DPDC of

PTVnx (R=0.686, P<0.01). HD95 for the left mandible moderately

correlated with DPDC of PTVnx (R=0.405, P<0.01), while other

metrics demonstrated weak or no correlation with DPDC.

Additionally, DV of GTVnx strongly correlated with DTCP of

PTVnx (R=0.703, P<0.01). The DV of the left temporal lobe

moderately correlated with DTCP of PTVnx (R=-0.401, P<0.01);

other metrics displayed weak or no correlation with DTCP.
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3.5 Predictive factors for IOV risk

The delineation outcomes in the validation set revealed that

only the DV of GTVnx may be a predictive factor for IOV risk. DV
exhibited strong and moderate correlations with DTCP (R=0.778)

and DPDC (R=0.596) of PTVnx, respectively (Figures 4A, B). In

contrast, HD95 for the left mandible showed a weak or no

correlation with DPDC of PTVnx, and the same was observed
FIGURE 2

Comparison of prescription dose distributions between physician treatment plans and the gold standard reference plan. (S) illustrates the dose
distribution for the gold standard reference plan. (A, B) depict the dose distributions of two distinct treatment plans, each devised by a physician
from the city or county cancer center, respectively.
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between the left temporal lobe and DTCP of PTVnx

(Figures 4C, D).
4 Discussion

Existing studies have analyzed the magnitude of IOV in

contouring target volumes and OARs in NPC patients,

highlighting the significant impact of IOV on dose distribution in

radiotherapy treatment plans (13, 14). However, the narrow focus

on numerical differences in contouring may have limited clinical

value, particularly when geometric evaluations fail to establish a

direct and clear correlation with optimized dose distributions and

long-term patient prognosis. Merely quantifying delineation

variability cannot guide clinical decisions, optimize treatment

plans, or predict treatment prognosis.

Our findings revealed significant differences in contouring NPC

target volume and OARs among physicians and the gold standard,

particularly for small-volume organs with ambiguous boundaries,

with mean DSC values consistently<0.7 and mean MMR values >3.

More critically, this IOV has tangible impacts on dose distributions

in treatment plans. In this study, the mean PDC values for PTVnx

decreased by varying degrees, with the most affected plan groups

experiencing PDC reductions >10%. This significant deviation falls

well below the PDC > 95% standard recommended by the

RTOG0225 (29) and RTOG0615 (30) guidelines, leading to a
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notable decrease in the patients’ 5-year survival rate (31).

Furthermore, the doses delivered to OARs increased by varying

degrees, particularly affecting the optic nerves and chiasm.

Compared to the standard treatment plan, the average Dmax

values for all plan groups increased by > 50%, indicating that

some patients received radiation doses far exceeding the safe

upper limit set by the guidelines (Dmax< 60Gy) (24). This

situation has had a significant negative impact on patients’ visual

field and contrast sensitivity, potentially leading to vision loss (32).

Peng et al. (13) observed similar decreases in PDC for PTVnx and

increases in dose parameters for the optic nerves and chiasm in a

multicenter study comparing NPC organ delineation variation.

Moreover, any errors in delineating target volume and OARs can

lead to reduced PDC for targets and increased OAR dose

parameters, increasing the risk of recurrence and potentially

causing severe radiation complications (7, 33, 34). Our findings

revealed that TCP decreased by >1% across physician treatment

plans from city or county-level cancer centers, while the NTCP for

OARs increased, with the NTCP for the optic chiasm

exceeding 4.9%.

This study investigated the associations between IOV in NPC

target volume delineation, dosimetric parameters, and clinical

prognosis (TCPs). Our findings revealed that changes in PTVnx

(DPDC) correlated significantly with the relative volume differences

(DV) in GTVnx in both the experimental and validation sets, albeit

with differing sensitivities. Furthermore, commonly used DSC and
TABLE 3 Clinical prognostic evaluation parameters between treatment plans from the four physicians and the gold standard plan.

Structures
S A B C D

TCP/NTCP △TCP/△NTCP △TCP/△NTCP △TCP/△NTCP △TCP/△NTCP

PTVnx 91.38% ± 0.63% -1.89% ± 5.45% -1.10% ± 3.01% -1.75% ± 4.51% -1.93% ± 2.95%*

Brain stem 0.03% ± 0.02% 0.01% ± 0.04% 0.01% ± 0.02% 0.01% ± 0.03% 0.02% ± 0.01%**

Spinal cord 0.03% ± 0.02% 0.03% ± 0.02%** 0.07% ± 0.11%** 0.03% ± 0.02%** 0.05% ± 0.05%**

TP lobe-L 0.23% ± 0.54% 0.93% ± 1.92% 0.60% ± 1.14%* 0.65% ± 1.31%* 0.32% ± 0.90%*

TP lobe-R 0.13% ± 0.54% 0.34% ± 1.10% 1.95% ± 5.89%** 0.27% ± 0.92% 0.31% ± 1.03%

Mandible L 0.82% ± 2.34% 0.55% ± 0.98%* 1.20% ± 2.63%** 0.74% ± 1.48%* 1.88% ± 3.63%**

Mandible R 0.25% ± 0.39% 1.26% ± 3.99% 1.65% ± 4.30%* 0.31% ± 0.62%* 1.50% ± 3.49%**

Parotid-L 2.86% ± 3.60% 8.86% ± 4.97%** 2.06% ± 4.00% 5.52% ± 5.41%* 1.32% ± 5.93%

Parotid-R 3.15% ± 4.34% 11.94% ± 8.85%** 1.28% ± 2.85% 8.10% ± 9.56%* 1.46% ± 7.37%

TMJ-L 0.28% ± 0.87% 3.10% ± 10.29% 0.57% ± 1.34% 2.78% ± 8.55% 7.33% ± 17.57%*

TMJ-R 0.27% ± 0.95% 1.35% ± 4.68% 1.98% ± 6.85% 1.02% ± 3.52% 3.71% ± 9.87%*

Lens-L 0.07% ± 0.07% 0.00% ± 0.04% 0.02% ± 0.04% 0.00% ± 0.03% 0.29% ± 0.61%**

Lens-R 0.06% ± 0.06% 0.01% ± 0.05% 0.04% ± 0.13% 0.00% ± 0.04% 0.10% ± 0.12%**

Nerve-L 0.05% ± 0.18% 0.11% ± 0.40% -0.03% ± 0.19% 0.00% ± 0.24% 0.32% ± 0.65%*

Nerve-R 0.03% ± 0.18% 0.30% ± 1.03% 0.02% ± 0.08% 0.26% ± 0.90% 0.49% ± 1.11%*

Chiasm 3.46% ± 11.28% 7.61% ± 17.78% 6.32% ± 14.72% 6.54% ± 14.21% 4.90% ± 8.62%*
S denotes the clinical prognostic parameters of the standard plan. A, B, C, and D represent the differences in clinical prognostic parameters between the two different-tier cancer centers and
standard plans.
*Indicates significant differences when comparing city or county-level cancer center protocols to the standard protocol, with ** indicating P<0.01 and * indicating P<0.05.
TMJ, temporomandibular joint; TP lobe, temporal lobe.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1510568
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1510568
ASSD indices were not sensitive enough to predict changes in target

coverage and DTCP. This observation aligns with the seminal work

of Voet et al. (35) who systematically reported no significant

correlation between these geometric metrics and DPDC. Notably,
even when achieving satisfactory contour consistency thresholds

(e.g., DSC ≥ 0.8 and ASSD< 1 mm), substantial degradation in

prescription dose coverage (up to 11 Gy) was observed in some

cases. Roach et al. (12) analyzed that this reason might stem from

the inherent limitations of DSC and ASSD in distinguishing

between observer contours positioned inside versus outside the

SVs. In contrast, DV more accurately reflects the extent of target

over-contouring and its impact on DPDC.
Moreover, Jameson et al. (17). reported that variation in target

volume exhibited a higher correlation with TCP than other

geometric evaluation indicators in lung cancer. However, unlike

the strong correlation (|R| = 0.778, P<0,01) demonstrated in this

study, it exhibits a weak correlation. (|R| = 0.42, P<0.01). This

discrepancy may be due to their study utilizing 3D-CRT treatment

plans, as opposed to IMRT treatment planning incorporated in this

study. IMRT treatment plans generate steeper dose gradients
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around the target volumes, increasing the sensitivity of target

volume dosimetry to inter-observer contouring variations.

This study reveals significant interobserver variations in target

volume and OARs delineation among radiation oncologists across

different-tier cancer centers, with these discrepancies potentially

impacting TCP in treatment planning. To enhance quality control

in radiotherapy contouring, we propose the following evidence-

based strategies: (1) Establish target-priority contouring principles.

The biggest complication of cancer treatment is tumor recurrence.

Therefore, when it is considered that there is an overlap between the

tumor target area and the OAR, this area should be included in the

target delineation scope first. (2) Through systematic training and

education, the proficiency of physicians at municipal and county-

level tumor centers in mastering guidelines can be improved,

thereby narrowing the gap in their delineation experience and

reducing delineation differences (5). (3) Utilizing multi-modal

imaging techniques such as MRI/PET-CT to assist in organ

delineation can improve the accuracy and consistency of

delineation, further reducing the differences between physicians.

A representative study in non-small cell lung cancer revealed that
FIGURE 3

Correlations between geometric evaluation metrics and change in prescription dose coverage (DPDC) and change in tumor control probability
(DTCP). (A) R values representing correlations between gross tumor volume of the nasopharynx (GTVnx) and various organs at risk (OARs) with
DPDC. (B) R values representing correlations between GTVnx and various OARs with DTCP. Significant correlations between geometric evaluation
parameters and DPDC or DTCP are indicated, with ** indicating P<0.01 and * indicating P<0.05. TMJ, temporomandibular joint; TP lobe,
temporal lobe.
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FDG-PET/CT-guided contouring achieved a tumor control

probability (TCP) of 24.0 ± 5.6%, representing a 3.8-fold increase

compared to CT-only approaches (6.3 ± 1.5%, p<0.001) (36). This

modality fusion strategy effectively minimizes clinician-dependent

contouring variations while enhancing dosimetric planning

reliability. (4) Promoting the use of automatic delineation

methods (such as ABAS or AI-based systems) can significantly

reduce inter-observer variability (IOV) while improving efficiency

(15, 37, 38). Mavroidis et al. (39) demonstrated that

implementation of the ABAS automated contouring software in

rectal cancer significantly improved TCP for target volumes while

reducing NTCP for the small intestine. In addition, we propose

enhancing current AI contouring models through two clinically-

grounded strategies: establishing a standardized delineation

repository by selecting radiotherapy plans from patients

demonstrating optimal clinical outcomes, with precise extraction

of target volume and OAR anatomical configurations. And

implementing deep neural networks with integrated confidence

estimation modules, trained on prognosis-optimized datasets to
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create AI-assisted contouring systems. Such outcome-driven

intelligent systems are anticipated to not only enhance

segmentation precision but also standardize implementation

protocols, thereby improving radiotherapy efficacy consistency

and ultimately optimizing both patient survival quality and

clinical benefits. (5) The introduction of the cross-review

mechanism, through peer or superior physician review and

discussion, can improve planners’ understanding of medical

images and improve delineation accuracy. (6) Prioritize the

systematic integration of inter-observer variability (IOV)

quantification into radiotherapy contouring workflows,

particularly for defining PTV/PRV margins for GTV or critical

OARs, through rigorous analysis of large-scale multi-institutional

datasets and validation via prospective clinical trials incorporating

dose accumulation analytics, to ensure dosimetrically optimized

treatment safety and protocol standardization.

This study still faces certain limitations. First, we have not

conducted systematic comparisons between individual contouring

structures and clinical guidelines/consensus standards, nor
FIGURE 4

Correlations between delineation risk predictors in the validation cohort. (A, B) Correlations between the relative volume difference of the gross
tumor volume of the nasopharynx (DV) and change in prescription dose coverage (DPDC), as well as change in tumor control probability (DTCP),
respectively, in the validation set. (C) Correlation between the 95% Hausdorff distance (HD95) value for the left mandible and DPDC in the validation
set. (D) Correlation between DV for the temporal lobe L and DTCP in the validation cohort.
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performed quantitative assessments of their compliance. Future

research could establish a guideline-based validation framework,

implementing statistical comparisons between multi-observer

results and established specifications to provide more actionable

quality control recommendations for clinical practice. Second, the

TCP calculation formula only evaluates the influence of physical

parameters of radiotherapy plan, and does not involve the possible

influence of other clinical factors (such as combination

chemotherapy, targeted therapy, etc.) on treatment results.

Therefore, DV demonstrates strong predictive value for short-

term treatment responses, such as dose distribution. However, its

utility in predicting long-term survival outcomes, like overall

survival or progression-free survival, may be limited. This is

because most clinical treatments for NPC are combined with

chemoradiotherapy, targeted therapy, immunotherapy, etc. Third,

constrained by the current cohort size, we were unable to perform

stratified subgroup analyses to explore potential confounding

variables. To address this, subsequent phases of research will

prioritize expanding the patient population and conducting

hypothesis-driven subgroup analyses. Specific focus will be

directed toward variables such as tumor stage, baseline functional

status, and operator-dependent factors (e.g., physician contouring

experience), aiming to elucidate modifiers of the observed IOV-

outcome correlations.
5 Conclusion

Physicians exhibit notable variability in the contouring of target

volumes and OARs in NPC patients, particularly in delineating

target volumes and small-volume OARs. This IOV impacts the

optimization of treatment planning and the precision of dose

distribution and may lead to reduced TCP and increased NTCP

for OARs. We also noted that DV was strongly correlated with

changes in TCP, potentially serving as a predictive factor for

assessing the risk of IOV. This predictive capability holds

prospective implications for clinical outcomes, offering insight

into the potential effectiveness of therapeutic interventions.
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