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Background: Tumor displays various forms of tumor heterogeneity including

immune heterogeneity that allow cancer cells to survive during conventional

anticancer drug interventions. Thus, there is a strong rationale for overcoming

anticancer drug resistance by employing the components of immune cells. Using

the immune system to target tumor cells has revolutionized treatment. Recently,

significant progress has been achieved at preclinical and clinical levels to benefit

cancer patients.

Approach: A review of literature from the past ten years across PubMed, Scopus,

and Web of Science focused on immunotherapy strategies. These include

immune checkpoint inhibitors (ICIs), tumor-infiltrating lymphocyte therapy,

antibody-drug conjugates (ADCs), cancer vaccines, CAR T-cell therapy, and

the role of the gut microbiome.

Conclusion: While immunotherapy outcomes have improved, particularly for

tumor types such as melanoma and non-small cell lung cancer (NSCLC),

challenges persist regarding predictive biomarker identification and better

management. Ongoing research on modifiers of immune function like gut

microbiome-derived metabolites, next-generation ADCs, and new classes of

biologics is warranted. Overall, continued investigation toward optimizing

synergistic immunotherapeutic combinations through strategic drug delivery

systems is imperative for preclinical and clinical success in cancer patients.
KEYWORDS

cancer drug resistance, gut microbiome, immune checkpoint inhibitors,
immunotherapy, neoplasms
1 Introduction

For a long time, cancer has presented a significant obstacle to medical science, and

conventional treatment methods frequently fail to offer long-term benefits. Recently, cancer

immunotherapy has emerged as a breakthrough approach to treating various malignancies

(1–4). Cancer immunotherapy, which uses the body’s immune system to combat cancer,
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has significantly improved patient outcomes. Cancer

immunotherapy includes living medicines such as chimeric

antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes

(TILs), and non-living drugs such as monoclonal antibodies, and

immune checkpoint inhibitors (ICIs). Cancer immunotherapy is an

essential clinical strategy to improve anti-tumor immune responses

(5–9). Nevertheless, cancers may become resistant to immune

monitoring, which could result in low response rates and

ineffective treatment (10–14). Research on the role of gut

microbiome in cancer immunotherapy is encouraging. Certain

gut bacteria may improve the body’s response to ICIs, potentially

converting non-responders into responders (15–18).

Tumor cells altered signaling pathways, genetic modifications,

and the patient’s microbial signature are the main causes of this

resistance, which makes them less receptive to immunotherapeutic

treatments (15–21). Tumors are capable of creating an

immunosuppressive environment by releasing molecules and

attracting cells that block immune cell infiltration and function

(9, 22–31).

Various types of immunotherapy strategies have been

developed, each with distinct mechanisms and targets (30–41).

Checkpoint inhibitors are drugs that release the brakes on the

immune system, allowing it to recognize and attack cancer cells

more effectively. By blocking certain proteins, checkpoint inhibitors

help unleash the immune system’s full potential. In CAR-T cell

treatment, a patient’s T cells are engineered to express a particular

receptor capable of identifying cancer cells (42–52). These systems

are designed to restore or enhance immune cell activity and amplify

immune responses. The modified T cells are then reintroduced into

the patient, where they become more effective at recognizing and

eliminating cancer cells. Monoclonal antibodies, which are lab-

produced molecules, can specifically identify and bind to targets on

cancer cells. By doing so, they can either directly destroy cancer cells

or stimulate an immune system response against them (53–63).
Abbreviations: CAR, chimeric antigen receptor; engineered receptors on T cells;

TILs, tumor-infiltrating lymphocytes; immune cells that penetrate tumors; ICIs,

immune checkpoint inhibitors; drugs that release immune system brakes; FMT,

fecal microbiota transplantation; transfer of gut bacteria; irAEs, immune-related

adverse events; treatment side effects; SDDSs, smart drug delivery systems;

targeted delivery technologies; GM, gut microbiome; microbial community in

intestines; CTLA-4 and PD-1/PD-L1; immune checkpoint proteins; MHC, major

histocompatibility complex; proteins for antigen presentation; TCR, T-cell

receptor; antigen recognition complex; Tregs, regulatory T cells;

immunosuppressive T cells; MDSCs, myeloid-derived suppressor cells; TAMs,

tumor-associated macrophages; immunosuppressive myeloid cells; TME, tumor

microenvironment; cellular surroundings of tumor; TEM, effector memory T

cells; antigen-experienced T cells; ADC, antibody-drug conjugate; targeted drug

delivery; mAbs, monoclonal antibodies; engineered antibodies; FDA, Food and

Drug Administration; US regulatory agency; MSI, Microsatellite Instability;

genomic instability marker; PARP, poly ADP-ribose polymerase; DNA repair

enzyme; NKT, natural killer T cells; specialized immune cells; GBM, glioblastoma

multiforme; aggressive brain cancer; TNBC, triple-negative breast cancer;

aggressive breast cancer type; pCR, pathological complete response; absence of

cancer after treatment; DCs, dendritic cells; antigen-presenting cells.
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The gut microbiome, comprising the diverse community of

microorganisms residing in the gastrointestinal tract, has garnered

recognition as a crucial factor in immunotherapy (64–70).

Researchers have suggested that the gut microbiome

holds potential as both biomarkers and targets for manipulation

to predict and augment the effectiveness of antitumor

immunotherapy across various cancer types (71–77). Efforts to

modify the gut microbiome using probiotics, prebiotics,

antibiotics, or fecal microbiota transplantation (FMT) are being

explored to improve immunotherapy outcomes (75–77).

Immunotherapy has altered the way that cancer is treated, but

there are still some issues. Multidisciplinary cooperation, ongoing

research, and creative thinking are needed to overcome these

obstacles. This paper explores the potential of immunotherapy in

cancer treatment, focusing on overcoming resistance, identifying

predictive biomarkers, managing immune-related adverse events

(irAEs), improving affordability, optimizing combination therapies,

enhancing smart drug delivery systems (SDDSs), and leveraging the

gut microbiome (GM).
2 Tumor immune heterogeneity

Tumor cells acquire several hallmark capabilities that enable

their malignant growth and spread. These include sustaining

proliferative signaling, evading growth suppressors, resisting cell

death, enabling replicative immortality, inducing angiogenesis, and

activating invasion and metastasis (15–17). Tumors also exhibit

genome instability and inflammation, which facilitate tumor

progression. Most critically, tumors evolve mechanisms to avoid

immune destruction, known as immune evasion. This capability

allows tumors to suppress, inactivate, or avoid detection by the

immune system (18–21). Immunosuppressive cells, inhibitory

receptors, cytokines, and disrupted antigen presentation weaken

anti-tumor immune responses. Overcoming these barriers is crucial

for successful immunotherapy.

A key feature underlying immune evasion is marked by

heterogeneity within the tumor and its microenvironment. This

heterogeneity spans multiple dimensions at genetic, epigenetic,

phenotypic, functional, and microenvironmental levels. Intra-

tumoral immune heterogeneity involves spatial, temporal, and

genomic variations in the abundance, composition, functional

orientation, and organization of immune cells (19–21). Tumor

heterogeneity allows resistant subclones to grow, helping the

tumor evade treatment. These differences determine whether a

tumor is inflamed with immune cells or suppressed by regulatory

components. Monitoring immune profiles over time and space is

crucial to understanding resistance. Advanced profiling of tumor-

infiltrating lymphocytes and myeloid cells has identified immune

subtypes linked to different responses. Understanding the causes

and patterns of heterogeneity can help overcome treatment failure

(9, 22–24).

The immune landscape of tumors critically impacts their

susceptibility to immunotherapies like immune checkpoint

blockade. However, the development of resistance remains a key
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limitation. Tumors exploit numerous tactics to evade immune

attack and blunt immunotherapeutic efficacy (9, 15–24). These

include the loss of immunogenic antigens, defects in antigen

presentation, increased expression of alternative immune

checkpoints, recruitment of immunosuppressive cells, and the

release of inhibitory cytokines. Therapies initially effective at

unleashing anti-tumor immunity eventually confront resistant

subclones or a recalibrated microenvironment (9, 19–24). Even

inflamed tumors with high T-cell infiltration can acquire resistance.

Tracking the evolution of the immune contexture and escaping

subclones is essential to therapeutic durability. Strategies to

overcome resistance include disrupting suppressive networks,

boosting T cell function, eliminating immunosuppressive cells,

converting them into immune-activating cells, and targeting non-

immunogenic tumor niches (9, 24). Ultimately, deciphering and

redirecting immune heterogeneity in space and time provides a path

to more effective and sustained immunotherapy responses.
3 Cancer immunotherapy

Cancer immunotherapy, also referred to as biologic therapy, is a

ground-breaking treatment modality that aims to enhance the

body’s immune system to recognize and destroy cancer cells (9,

21–24). Unlike chemotherapy, radiation, or targeted therapy, which

directly attack cancer cells, immunotherapy boosts the immune

system to fight cancer (9, 25–27). The major plus point of

immunotherapy lies in the fact that it damages only the

cancerous cells and the healthy cells remain minimally unaffected.

This reduces the side effects of cancer treatment as well it puts

patients’ lives at a lesser risk of death by cancer (9, 25–31).

Immunotherapy has revolutionized cancer treatment. The idea

of using the immune system to fight disease dates back centuries. In

the late 19th century, William Coley noticed that some cancer

patients went into remission after bacterial infections. This led to

the foundation of immunotherapy by stimulating the immune

response against cancer (9). Researchers in the early 20th century,

including Paul Ehrlich and Emil von Behring, explored immune

stimulation by developing serums and antibodies to combat

diseases like diphtheria and tetanus. These studies demonstrated

the potential of immune-based interventions (25).

The field of tumor immunology emerged in the mid-20th

century when Lewis Thomas and others began investigating the

interaction between the immune system and cancer cells. They

observed the presence of immune cells within tumors and

recognized the potential for immune responses against cancer. In

the 1960s, interferons were discovered as natural proteins with

potent antiviral and antitumor properties. Interferon therapy

represented one of the earliest attempts at immunotherapy for

cancer treatment (26). In 1975, Georges Köhler and César Milstein

pioneered the hybridoma technique, enabling the production of

large quantities of specific mAbs (27, 28). Rituximab, the first FDA-

approved mAb for treatment, marked a significant discovery. James

Allison and Tasuku Honjo’s discoveries of cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and programmed cell death protein
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1 (PD-1), respectively, opened new avenues for cancer

immunotherapy (29, 30). Immune checkpoint inhibitors, such as

PD-1 inhibitors (nivolumab, pembrolizumab, cemiplimab), CTLA-

4 inhibitor (ipilimumab), and PD-L1 inhibitors (atezolizumab,

durvalumab, avelumab), have transformed cancer treatment by

helping the immune system recognize and attack cancer cells (9,

15–24). Adoptive cell transfer (ACT) therapy modifies immune

cells-specifically, T cells-in patients to improve their capacity to

combat cancer. Carl June and associates invented the chimeric

antigen receptor (CAR) T-cell therapy, which has shown promise in

the treatment of several blood malignancies (31). A summarized

flow model on the rationale of cancer immunotherapies is

presented (Figure 1).
4 Types of immunotherapies

Immunotherapy includes different types, each targeting specific

aspects of the immune response to cancer. These treatments offer

new hope for lasting responses, better survival rates, and improved

quality of life for cancer patients. This section explores their

mechanisms and clinical impact.
4.1 Immune checkpoint inhibitors

Immune checkpoint proteins are known to suppress the immune

system through various pathways that can prevent harm to healthy

tissues. However, cancer cells exploit immune checkpoint proteins

such as CTLA4 and PD1 to evade immune attack. Encouraging

preclinical and clinical developments have been reported on immune

checkpoint inhibitors (ICIs) that can block these proteins and in turn

allowing immune cells to recognize and attack cancer cells (17, 32–

41). Two key checkpoint proteins, CTLA-4 and PD-1, play crucial

roles in regulating the function of T cells. CTLA-4 dampens T-cell

activation by engaging with its ligands, while PD-1 modulates T-cell

activity in peripheral tissues through its interaction with PD-L1 and

PD-L2 (32). ICIs have displayed promise as therapeutic interventions

for cancer by reversing the immune system’s suppressive effects on

tumor immunity (33, 34).

Early investigations showcased the effectiveness of anti-CTLA-4

therapy in mouse models of tumors, whereas blocking PD-1 or PD-

L1 bolstered anti-tumor immune responses. Consequently,

antibodies targeting CTLA-4, PD-1, and PD-L1 were developed to

hinder their interaction with respective ligands. Clinical trials

involving antibodies such as ipilimumab and nivolumab, aimed at

CTLA-4 and PD-1/PD-L1 respectively, demonstrated lasting

responses in melanoma and other cancers. However, they were

also linked to severe irAEs like colitis, dermatitis, thyroiditis,

pneumonitis, and hepatitis (35). Efforts have been made to

explore combination therapies targeting multiple immune

checkpoints, leading to increased response rates albeit with a

higher occurrence of severe irAEs. Besides the CTLA-4 and PD-1/

PD-L1 pathways, other inhibitory receptors like LAG-3, TIM-3, and

TIGIT have been targeted in combination with anti-PD-1 therapy.
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Nevertheless, the potential severity and lethality of ICI-associated

toxicities have become apparent. Fatalities, occurring sporadically

and early during treatment, exhibit different patterns of organ

involvement between anti-CTLA-4 and anti-PD-1/PD-L1

therapies (36, 37). Colitis is more frequently associated with anti-

CTLA-4 treatment, while pneumonitis, hepatitis, and neurotoxicity

are more observed with anti-PD-1/PD-L1 treatment.

ICIs have revolutionized cancer treatment, including malignancies

previously deemed untreatable (38). These agents can incite

inflammation and tissue damage in various organs. Myocarditis, a

rare yet severe toxicity associated with ICIs, has garnered attention due

to its often swift and fatal progression. The underlying mechanisms

and specific antigens that trigger ICI-associated myocarditis remain

poorly understood (39–41). Deaths related to combination therapy

frequently stem from colitis or myocarditis, with the latter exhibiting

the highest fatality rate among irAEs (40-50%). It is imperative to

develop strategies that effectively manage ICI-associated toxicities

without compromising their anticancer efficacy. While ICIs have

shown encouraging responses in some cancer patients, however,

develop resistance over time is a concern driven by various

alterations in the tumor microenvironment.

Primarily, tumors fail to respond from the start due to poor

immune cell infiltration or lack of antigens for T-cell recognition

(38–40). At the same time, acquired forms of resistance due to

mutations reduce antigen presentation or increase immune

checkpoint molecules. Also, immune-mediated resistance is

observed with the decline of T-cell functions and the emergence

of immunosuppressive cells. In the context of the pro-tumor

microenvironment, various non-cellular components such as

immunosuppressive molecules or cellular components in the

stromal cells that hinder the immune response (39, 40). A

summary of the various classes of cancer immunotherapies with

suitable examples of clinical drugs is provided (Figure 2).
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4.2 Chimeric antigen receptor T-cell
therapy

Beyond antibody-based techniques, the use of autologous T cells

modified by gene transfer to express receptors specific to chemicals

found on malignant cells offers promise in cancer therapies (42, 43).

This technique entails inserting genes encoding antigen receptors into

the patient’s T cells, which are then grown in vitro to produce

memory and effector lymphocytes capable of vigorous proliferation

in the body, ultimately exerting potent anti-tumor effects (44, 45).

Using chimeric antigen receptors (CARs) to genetically reroute and

reprogram T cells is a noteworthy method of bypassing cancer

tolerance. Synthetic receptors enable precise targeting of surface

antigens without requiring Major Histocompatibility Complex

(MHC) molecules. They combine T-cell functions with the

antigen-recognition ability of antibodies (46). Liquid cancers are

better suited for this kind of treatment.

More than thirty years ago, the first synthetic immunoglobulin/

TCR chimeric molecule with antibody-like specificity was

expressed, sparking the start of the development of CARs. Later

research showed that T cells may be activated by a CAR made up of

CD8 and the CD3z chain without the need for their native TCR

(47). CARs typically comprise an external domain that identifies

tumor antigens and one or more intracellular signaling regions that

cause T-cell activation (48, 49). A major advantage of CAR-based

immunotherapy is that scFv (Single-chain variable fragments) from

antibodies have a much higher affinity than TCRs. CAR T cells can

directly target intact surface proteins without needing antigen

processing or MHC presentation, reducing the risk of tumor

escape (50–52). Moreover, CARs make it possible to recognize

antigens that TCRs may miss or find difficult to recognize,

such as glycolipids, abnormally glycosylated proteins, and

conformational epitopes.
FIGURE 1

Cancer immunotherapies are attributed with targeted and enhanced anti-tumor response over traditional cancer therapy.
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4.3 Tumor-infiltrating lymphocyte therapy

As a type of adoptive cellular therapy, TIL therapy comprises

harvesting lymphocytes that have penetrated tumors, growing and

amplifying them in vitro, and then infusing the cells back into

patients to treat them (53). TIL therapy offers unique advantages

over other adoptive cell therapies for solid tumors. It has better

tumor-targeting ability, lower off-target toxicity, and diverse T-cell

receptor (TCR) clonality (54). TIL therapy was developed by

extracting TIL from several mouse tumor models for the use of

TIL therapy in human advanced cancers (55).

TIL treatment was tried clinically for the first time, and in

patients with metastatic melanoma, it had an objective response rate

of 60%. However, the features of solid tumors present serious

obstacles to the creation of successful adoptive cellular therapies

(56). Solid tumors are highly diverse, making it hard to find a

universal target, unlike blood cancers with clear markers. Targeting

a single antigen can lead to resistant clones or antigen loss. Even

with many adoptively transferred T cells, solid tumors often show

limited infiltration (57). The immunosuppressive tumor

microenvironment (TME) contains regulatory T cells (Tregs),

myeloid-derived suppressor cells (MDSCs), and tumor-associated

macrophages (TAMs). These cells weaken T-cell function by

increasing immune-inhibitory molecules, cytokines, and

metabolites while reducing co-stimulatory molecules (58, 59).

Compared to other adoptive cellular therapies like CAR-T and

TCR-T cell therapies, tumor heterogeneity is more efficiently

addressed by TIL, which is made up of T cells with various TCR

clones that can recognize a variety of tumor antigens.

Notably, in solid tumors with high mutation loading, like

melanoma, TIL has proven to be more clinically effective than

CAR-T treatment. TIL cells are mostly made up of effector memory

T (TEM) cells that express chemokine receptors including CCR5

and CXCR3, having been triggered by tumor antigens in the body
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(60). After being transferred into patients, TIL can readily move to

antigenically different tissues, such as malignancies, because of their

receptors. Because TCRs were negatively selected during the early

stages of T cell immunity formation, TIL treatment has therefore

demonstrated minimal off-target damage (61). On the other hand, if

tailored tumor-targeting molecules show cross-reactivity with

antigens found in normal tissues, such as single-chain variable

segments in CAR-T or affinity-enhanced TCRs in TCR-T cell

treatments, it could be harmful. In the treatment of melanoma,

this strategy has demonstrated encouraging outcomes, with some

patients seeing significant response rates (62, 63). Optimizing TIL

treatment and expanding its efficacy to cover additional cancer

types are ongoing endeavors. A summary on the comparison

between different adoptive cellular therapies, clarifying their

advantages and limitations is presented (Table 1).
4.4 Antibody-drug conjugate

The notion of antibody-drug conjugate (ADC) is a revolutionary

one that combines the powerful efficacy of cytotoxic medications with

the targeting capability of monoclonal antibodies (mAbs) (64–73, 78–

80). ADCs provide accurate targeting and concurrently powerful

therapeutic effects by conjugating mAbs to cytotoxic payloads using

specific chemical linkers (64). Attaching a large hydrophilic antibody

improves the therapeutic index by preventing the toxic payload from

entering cells without the target antigen. In 2000, the FDA approved

Mylotarg® (gemtuzumab ozogamicin), the first ADC drug for acute

myeloid leukemia (AML), marking the beginning of the ADC era in

targeted cancer therapy (65, 66).

The three parts of an ADC are the chemical linker, the cytotoxic

payload, and the antibody. The antibody has minimal

immunogenicity and a long plasma half-life, and it selectively

binds to the target antigen produced on tumor cells, facilitating
FIGURE 2

Types of immune checkpoint inhibitors (ICIs) with clinically approved drugs.
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effective internalization (67). The linker, which connects the

antibody to the cytotoxic drug, determines ADC stability and

payload release. ADCs bind to tumor cells, get internalized, and

release their toxic payload into lysosomes. This triggers cell death or

apoptosis through mechanisms like targeting microtubules or DNA

(68). Because ADCs have a low oral bioavailability and are easily

broken down by digestive enzymes, they are usually given

intravenously. ADCs are anticipated to revolutionize cancer

therapy by offering a focused and effective therapeutic strategy,

maybe taking the place of traditional chemotherapies, thanks to

their growing targets and indications. ADCs are a potentially

beneficial tactic in the fight against cancer due to their accurate

targeting, efficient killing of cancer cells, improvement of the

therapeutic window, and reduction of off-target side effects.

ADCs’ lethal effects are further amplified by the bystander effect

and possible influence on the tumor microenvironment (69, 70).

As of present, the European Medicines Agency (EMA) has

approved four antibody-drug conjugates (ADCs), while the FDA

has given regulatory approval for nine ADCs in the US (78, 79).

Kadcyla® is an ADC approved by the FDA in 2013 and used to treat

metastatic HER2-positive breast cancer. It combines the cytotoxic

payload DM1 (Derivative of Maytansine 1) with the HER2-

targeting monoclonal antibody trastuzumab (80). In 2011, the

FDA approved Adcetris® for treating systemic anaplastic large-

cell lymphoma and Hodgkin lymphoma. This ADC consists of the

CD30-targeting antibody brentuximab and the antimitotic drug

MMAE. Its strong clinical results have provided patients with more

treatment options (71, 72). The FDA approved Padcev® in 2019 to

treat metastatic urothelial carcinoma. It comprises MMAE, a

chemical that disrupts microtubules, and enfortumab, a

monoclonal antibody that targets nectin-4. Patients who have
Frontiers in Oncology 06
previously had immune checkpoint inhibitors and platinum-

based chemotherapy have shown improvement with Padcev®

(73). In 2019, the FDA approved Enhertu® to treat metastatic

HER2-positive breast cancer. In 2019, the FDA approved Enhertu®

for metastatic HER2-positive breast cancer. This ADC combines

trastuzumab, a HER2-targeting antibody, with deruxtecan, a

topoisomerase I inhibitor. It has shown strong clinical responses,

especially in patients resistant to previous HER2 therapies (74).

Patients with restricted therapy options now have treatment options

thanks to these ADCs, which have shown extraordinary success in

treating a variety of cancers and having safety profiles (including

colorectal, breast, and lymphoma cancer). We may expect the

creation of new ADCs and the extension of their uses in the fight

against cancer as long as research in this area continues.
4.5 Cancer vaccines

The advancement of cancer immunotherapy has given rise to

several instruments and methods for thwarting the immune-

evading processes employed by cancer cells. These resources

include immunocompetent cells such as T and dendritic cells, as

well as antibodies, peptides, proteins, and nucleic acids (75–77, 81–

86). Based on their structure and substance, cancer vaccines

developed with these methods can be divided into three primary

classes. Cell vaccines fall within the first group; they are a type of

immunotherapy that employs immune or tumor cells (77). Tumor

cell vaccines use modified tumor cells to trigger an immune

response against cancer-specific antigens. In contrast, immune

cell vaccines enhance and modify immune cells, like T and

dendritic cells, to boost their ability to recognize and attack
TABLE 1 A summary on the comparison between different adoptive cellular therapies, clarifying their effectiveness, advantages and limitations
are presented.

Feature TIL Therapy CAR-T Therapy TCR-T Therapy

Target Type Tumor-infiltrating lymphocytes (polyclonal,
recognizing multiple tumor antigens)

Single-chain variable fragment (scFv)
targeting specific surface antigens

TCR engineered to recognize intracellular
antigens via MHC

Tumor Targeting Broad, due to TCR clonality diversity Narrow, depends on selected antigen Broader than CAR-T but still limited to
MHC-restricted antigens

Effectiveness in
Solid Tumors

High, especially in tumors with high mutation load
(e.g., melanoma)

Limited due to poor tumor infiltration More effective than CAR-T but still affected
by antigen heterogeneity

Antigen
Recognition

Recognizes both intracellular and surface antigens Only targets surface antigens Recognizes intracellular antigens via
MHC presentation

Tumor Infiltration High due to natural homing ability (CCR5,
CXCR3 expression)

Poor infiltration in solid tumors Moderate infiltration

Off-
Target Toxicity

Low, as TCRs undergo natural negative selection Higher risk if target antigen is expressed in
normal tissues

Moderate, as affinity-enhanced TCRs may
cross-react

Challenges Tumor heterogeneity, immunosuppressive TME Antigen loss, poor infiltration, TME barriers Requires MHC compatibility, risk of
cross-reactivity
TIL Therapy: Tumor-Infiltrating Lymphocyte Therapy; CAR-T Therapy: Chimeric Antigen Receptor T-cell Therapy; TCR-T Therapy: T-cell Receptor Therapy.
Target Type, refers to the specificity of the T cell or engineered receptor used to recognize tumor antigens; Tumor Targeting, describes the range and diversity of tumor antigens that the therapy
can effectively recognize and target; Effectiveness in Solid Tumors, indicates the therapeutic efficacy of the approach in treating solid malignancies; Antigen Recognition, specifies whether the
therapy detects extracellular (surface) or intracellular antigens via MHC presentation; Tumor Infiltration, measures the ability of therapeutic T cells to migrate into and penetrate tumor tissue;
Off-Target Toxicity, assesses the likelihood of unintended cytotoxicity against healthy tissues expressing similar antigens; Challenges, highlights key biological and technical barriers limiting the
therapy's effectiveness or applicability.
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cancer (81). Provenge (sipuleucel-T; Dendreon Corporation)

received FDA approval in 2010 as a prostate cancer vaccine. Since

then, it has attracted a lot of interest in the field of autologous

immune cell-based immunotherapy (82). Vaccines based on

particular proteins or peptides derived from tumor-associated

antigens fall into the second category. The ability of these

antigens to trigger an immune response against cancer cells is the

basis for their selection. The immune system may identify and

target cancer cells that express the matching antigens by delivering

these protein/peptide vaccines, which trigger an anti-tumor

immune response (83). An immunostimulatory adjuvant-based

strategy has been developed to improve the immunogenicity and

effectiveness of peptide vaccines.

Nucleic acid vaccines, which include DNA, RNA, and viral

vectors used to transfer genetic material encoding tumor-associated

antigens, make up the third category. The goal of this strategy is to

ingest the genetic instructions necessary for the patient’s cells to

produce these antigens directly (84–86). By doing this, the antigens

can be produced internally by the patient’s cells, which will then

mount an immunological defense against cancer cells that express

those antigens.

A summarized flowmodel is depicted to highlight the cell-based

cancer immunotherapies with suitable clinically approved

anticancer drugs (Figure 3). Also, a tabular summary of various
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cancer immunotherapy approaches with comparisons of

mechanisms, efficacy, and advantages is given (Table 2).
5 Preclinical and clinical trial advances

Immunotherapy has witnessed remarkable success in the

treatment of various cancers. Checkpoint inhibitors have

revolutionized the management of melanoma, lung cancer, and

renal cell carcinoma. Clinical trials have shown that patients treated

with these inhibitors experience improved survival rates and

prolonged progression-free periods compared to conventional

treatments (87–93, 107, 119–124). CAR-T cell therapy has shown

outstanding success in blood cancers like acute lymphoblastic

leukemia and diffuse large B-cell lymphoma. It has led to

complete remission in patients who did not respond to traditional

treatments (108–117).

Polymerase Proofreading-Associated Polyposis (PPAP) or

POLE-mutated and Microsatellite Instability (MSI) endometrial

cancers have high tumor-infi ltrating lymphocytes and

neoantigens. This suggests they may respond well to

immunotherapy, especially PD-1/PD-L1 checkpoint inhibitors

(88–93, 122–124). In a phase 2, pembrolizumab, an anti-PD-1

antibody, was tested in MMR-deficient tumors identified by PCR,
FIGURE 3

Types of cell-based cancer immunotherapies with suitable examples of clinical drugs.
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regardless of origin. The FDA later granted accelerated approval for

pembrolizumab to treat MSI or MMR-deficient solid tumors,

including endometrial cancer (88–91). Although MSI or POLE-

mutated status is commonly associated with favorable responses to

immunotherapy, some endometrial cancers without these specific

alterations have also shown responses (90–92). Ongoing clinical

trials in MSS endometrial cancers aim to enhance the efficacy of

immune checkpoint inhibitors by combining them with various

agents, such as upfront chemotherapy, poly (ADP-ribose)

polymerase (PARP) inhibitors, or antiangiogenic drugs.

Additionally, the investigation of combination therapies with

other immunotherapeutic agents and radiation therapy is of

interest (93). Notable ongoing studies include the double-blind,

placebo-controlled phase 3 AtTEnd trial (ClinicalTrials.gov

identifier NCT03603184) that randomizes patients with metastatic

or inoperable uterine carcinoma or carcinosarcoma to receive

carboplatin and paclitaxel plus placebo or carboplatin, paclitaxel,

and atezolizumab with placebo continued until disease

progression (122).

Research is in the early preclinical stage on using natural killer T

(NKT) cells to treat glioblastoma multiforme (GBM). Studies show

NKT cells can kill GBM cell lines and reduce tumor burden in GBM

xenograft mouse models (107, 123, 124). When NKT cells are

administered along with a-GalCer (KRN7000), a synthetic

glycosphingolipid, the survival of mice with intracranial tumors is

enhanced. Type I NKT cells have been shown to exhibit killing

activity against CD1d-positive GBM cell lines or patient-derived

GBM cells after expansion with IL-2 and a-GalCer. The production
of IFN-g, TNF-a, granzyme B, and IL-4 is significantly increased. In

an orthotopic GBM model, co-injecting human type I NKT cells

with a-GalCer into tumor-bearing mice with CD1d-positive U251

cells significantly extends survival. However, in an intracranial

injection model, type I NKT cells do not inhibit the growth of
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CD1d-negative U87 cells. This suggests that human-type I NKT

cells specifically target CD1d-expressing GBM cells (108, 109).

With the FDA approval of pembrolizumab, immunotherapy

has developed as a prominent treatment approach for triple-

negative breast cancer (TNBC) (125). Although atezolizumab

initially showed promise, its approval for advanced TNBC was

withdrawn due to the lack of benefit observed in the IMpassion131

trial (110, 111). Further analysis of this trial is crucial to evaluate

potential confounders, such as tumor-infiltrating lymphocytes

(TILs), and determine if they were imbalanced between treatment

arms, as observed in the NeoTRIPaPDL1 trial (112). In the curative

setting, several studies have demonstrated a pathological complete

response (pCR) benefit with the addition of immunotherapy to

neoadjuvant chemotherapy regimens for early-stage TNBC (113).

KEYNOTE-522 trial, pembrolizumab is now approved as part of

neoadjuvant treatment and as a single-agent adjuvant treatment for

high-risk early-stage TNBC (114). Ongoing trials such as

IMpassion030 (NCT03498716) will provide further confirmation

if this benefit extends to patients receiving solely adjuvant

chemotherapy, who might potentially have a lower volume of

immunogenic tumor antigens (115). Additionally, the value of

adjuvant immunotherapy alone in patients with residual disease

after neoadjuvant chemotherapy would be addressed by the SWOG

1418 trial (NCT02954874) (116).

There are increasing preclinical and clinical reports to evaluate

various combinations of ICIs and cell-based therapies such as CAR-

T cells and TILs (117, 118, 126–141). A promising evaluation of

CHECKMATE-9ER is reported that combined nivolumab

(Opdivo) and ipilimumab (Yervoy) in renal cell carcinoma (142).

Notable ICIs for combinatorial anticancer therapy trials such as

KEYNOTE-671 to evaluate pembrolizumab (Keytruda) +

chemotherapy in triple-negative breast cancer (143–147). Also,

JULIET is under evaluation as tisagenlecleucel (Kymriah) to treat
TABLE 2 Cancer Immunotherapy Approaches: Comparisons on mechanisms, efficacy, and advantages.

Immunotherapy
Approach

Mechanism of Action Clinical Efficacy Key Advantages References

Immune Checkpoint
Inhibitors (ICIs)

Block negative regulators (e.g., PD-1, CTLA-
4) to enhance T-cell response

20-50% ORR in various cancers (e.g.,
melanoma, lung, kidney)

Improved survival,
durable responses

(32–34)

CAR-T Cell Therapy Genetically modified T-cells recognize and
attack cancer cells

50-90% ORR in B-cell malignancies
(e.g., ALL, DLBCL)

High response rates, potential
for cure

(87–93)

Cancer Vaccines Stimulate immune response against
tumor antigens

10-30% ORR in various cancers (e.g.,
prostate, lung)

Safe, potential for
combination therapies

(4, 75–77, 81,
94–101)

Adoptive T-
Cell Therapy

Infuse expanded, tumor-specific T-cells 50-70% ORR in melanoma and
other cancers

Personalized, potential for long-
term responses

(102–105)

Monoclonal Antibodies Target tumor-associated antigens (e.g.,
HER2, EGFR)

10-50% ORR in various cancers Well-established,
targeted therapy

(98, 106)

Oncolytic Viruses Selectively infect and kill cancer cells,
stimulate immunity

10-30% ORR in various cancers Novel approach, potential for
combination therapies

(13)

Tumor-
agnostic Therapies

Target shared tumor antigens (e.g., TMB,
MSI-H)

20-50% ORR in various cancers Potential for broad applicability (91)

Combination
Immunotherapies

Combine ICIs, CAR-T, vaccines, or
other approaches

Enhanced efficacy, potential for
synergistic effects

Promising clinical trials,
improved outcomes

(107–118)
ORR, Overall Response Rate; ALL, Acute Lymphoblastic Leukemia; DLBCL, Diffuse Large B-Cell Lymphoma; TMB, Tumor Mutational Burden; MSI-H, Microsatellite Instability-High.
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relapsed/refractory diffuse large B-cell lymphoma. Another clinical

trial on JCAR017 (lisocabtagene maraleucel) is reported in relapsed/

refractory B-cell lymphomas (144). Clinical trials of IMPOWER150

are reported on the combined effects of atezolizumab (Tecentriq),

carboplatin, and paclitaxel in non-squamous non-small cell lung

cancer (146).

Besides ICIs in cancer immunotherapies, evaluation of CAR-T

therapy as ZUMA-2 is presented to test the effects of axicabtagene

ciloleucel (Yescarta) in refractory/relapsed follicular lymphoma

(148). The combination of nivolumab, ipilimumab, and radiation

therapy for glioblastoma is being explored. Additionally, an

overview of clinical trials on cancer immunotherapy combined

with other treatments is provided (142–152) (Table 3).

In recent, significant strides have been made to develop nucleic

acid vaccines including various forms of DNA and RNA vaccines as

a new form of arsenal in cancer immunotherapy (94–101, 156–158).

The progressive intent behind the development of these cancer

vaccines could be attributed to precision, high efficacy, and fewer

side effects notable clinically approved drugs such as Cavatak

(CF33) as DNA vaccines and mRNA-4157, BNT111 as RNA

vaccines (97–101, 106, 157, 158). However, the effectiveness of

DNA and mRNA cancer vaccines is limited by the evolving

complexity and heterogenei ty of the tumor immune

microenvironment at both intra-tumoral and inter-tumoral levels.
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A summary table presents various nucleic acid vaccines for cancer

immunotherapy, including their mechanisms and outcomes (97–

101, 106, 157, 158) (Table 4).
5.1 Microbiome and immunotherapy

In terms of innate immunity, the immune system actively

shapes the GM composition from an early age, and the GM, in

turn, influences the immune system’s development (102–104, 159–

164). Key interactions between the gut microbiome (GM) and the

immune system influence the development of a balanced GM and

proper immune function from birth. Disruptions in GM

composition, such as antibiotic use, can contribute to immune-

related disorders later in life, including asthma and inflammatory

bowel disease (104, 105, 165–168). Dysbiosis has the potential to

influence both tumor development and the failure of ICI-based

therapies overall. A balanced and diverse gut microbiome can

activate the immune system to combat cancer and facilitate a

robust response to anti-cancer immunotherapies, particularly ICIs

(169–181). Several studies have established a correlation between

gut microbiota (GM) composition and immunotherapy efficacy

(102–105, 162–181).
TABLE 3 A summary on clinical trials of cancer immunotherapies in combinatorial drug treatments for cancer patients.

Trial Name Trial
Phase/
Clinical
Trails
Number

Target
Indication

Therapeutic
Approach

Key Outcomes/Summary References

KEYNOTE-189 Phase 3
NCT02578680

NSCLC ICI (pembrolizumab
+ chemo)

ORR: 48%, PFS: 9.0 mo, OS: 22.4 mo (143, 147)

JULIET Phase 2
NCT02445248

DLBCL CAR-T (tisagenlecleucel) ORR: 53%, DCR: 80% (144)

CheckMate 067 Phase 3
NCT01844505

melanoma ICI (nivolumab
+ ipilimumab)

ORR: 57%, PFS: 11.5 mo, OS: 58% (142)

IMpower150 Phase 3
NCT02366143

NSCLC ICI (atezolizumab +
carboplatin + paclitaxel)

ABCP significantly improved OS compared to BCP, including in
patients with EGFR/ALK mutations and liver metastases (ORR:
45%, PFS: 8.3 mo, OS: 19.4 mo)

(146, 153)

ZUMA-2 Phase 2
NCT02601313

follicular
lymphoma

CAR-T
(axicabtagene ciloleucel)

Single infusion of KTE-X19 led to durable responses in patients
who had failed previous therapies, including BTK inhibitors
(ORR: 95%, DCR: 100%)

(148, 154)

CHECKMATE-
9ER

Phase 2
NCT03141177

Advanced
renal
cell carcinoma

Nivolumab + cabozantinib
vs. sunitinib

Combination therapy demonstrated significant improvements in
OS, and response rates with manageable safety profile (Median
PFS: 16.6 months vs. 8.3 months; ORR: 55.7% vs. 27.1%)

(145, 151, 155)

TRANSCEND
NHL 001

Phase 2
NCT02631044

NHL
CAR-T
(lisocabtagene maraleucel)

ORR: 74%, DCR: 93%
(152)

KEYNOTE-522
Phase 2
NCT03036488

Triple-
negative
breast cancer

Pembrolizumab +
chemotherapy vs. placebo +
chemotherapy (neoadjuvant
followed by adjuvant)

Addition of pembrolizumab to neoadjuvant chemotherapy
significantly increased pCR rates and improved event-free
survival in early TNBC (pCR rate: 64.8% (pembrolizumab) vs.
51.2% (placebo); 3-year EFS: 84.5% vs. 76.8%)

(142, 149, 150)
NSCLC, Non-Small Cell Lung Cancer; mCRC, Metastatic Colorectal Cancer; RCC, Renal Cell Carcinoma; NHL, Non-Hodgkin Lymphoma; AML, Acute Myeloid Leukemia; ICI, Immune
Checkpoint Inhibitor; CAR-T, Chimeric Antigen Receptor T-cell therapy; mAb, Monoclonal antibody; OV, Oncolytic virus; ORR, Overall Response Rate; PFS, Progression-Free Survival; OS,
Overall Survival; DCR, Disease Control Rate.
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Clinical data showed that tumors in antibiotic-treated or germ-free

mice did not respond to anti-CTLA-4 immunotherapy. The anti-

cancer effect of anti-CTLA-4 relied on Bacteroides species, particularly

Bacteroides fragilis (160). Additionally, non-responder mice to anti-

PD-L1 therapy showed improved responses when given feces from

responder mice or orally administered Bifidobacterium. Another

clinical finding pointed out that a higher proportion of Bacteroidetes

was associated with reduced colitis risk in melanoma (MM) patients

treated with immune checkpoint inhibitors (ICIs) (161, 180).

Frankel et al. (163) identified GM signatures associated with ICI

efficacy in MM patients using metagenomic and metabolomic

profiling. Responders had enriched Bacteroides caccae,

Faecalibacterium prausnitzii, Bacteroides thetaiotamicron,

Holdemania filiformis, and Dorea formicogenerans, with anacardic

acid as a consistently enriched metabolite. Chaput et al. (164) found

that MM patients with Bacteroides-driven baseline microbiota had

longer progression-free survival (PFS) than those with

Faecalibacterium-driven microbiota.

Matson et al. (102) identified enrichment of Bifidobacterium

longum, Collinsella aerofaciens, and Enterococcus faecium in

responders. Gopalakrishnan et al. (103) observed higher alpha

diversity, Ruminococcaceae abundance, and enriched anabolic

pathways in responders. Tanoue et al. (166) isolated an 11-strain

bacterial consortium that enhanced CD8+ T-cell levels and

MHC-I expression in dendritic cells (DCs). Xu et al. (167)

showed Prevotella spp. and Akkermansia spp. can affect

glycerol-lipid metabolism and anti-PD-1 efficacy. Mager et al.

(168) found that Bifidobacterium pseudolongum produces

inosine, which activates anti-tumor CD8+ T cells via the A2A

receptor. Si W et al. (169) and Shi Y et al. showed that

Lactobacillus rhamnosus GG and Bifidobacterium spp. enhance

immunotherapy through the cGAS/STING pathway in dendritic

cells. A summary of cancer immunotherapy and gut microbiome

combinations, supported by preclinical and clinical evidence, is

presented (168–181) (Table 5).
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6 Challenges and future directions

Despite its success, cancer immunotherapy faces challenges that

limit its effectiveness and widespread use. Cancer cells adapt by

evading immune detection, downregulating target antigens, altering

antigen presentation, and creating immunosuppressive

microenvironments. Understanding these strategies is a key to

improving treatments. Another major challenge is selecting the

right patients for therapy. Not all patients respond equally to

immunotherapy, and currently, we struggle to predict who will

benefit most. The complex interplay between a patient’s immune

system, their unique tumor characteristics, and even their gut

microbiome make it difficult to design regimes and create

combinations of medical, radiation and surgical oncology

interventions. This heterogeneity makes identifying reliable

predictive biomarkers challenging. When we activate the immune

system against cancer, we sometimes trigger immune responses

against healthy tissues as well. These irAEs can affect virtually any

organ system and may force treatment interruptions or

discontinuation. Finding the balance between maintaining

therapeutic efficacy while minimizing these side effects remains a

delicate challenge.

The high cost of immunotherapies, especially ICIs and CAR-T cell

therapy, creates access disparities and strains healthcare systems.

Addressing this economic barrier is crucial. Combining

immunotherapy with other treatments like chemotherapy or

radiation shows promise for better outcomes. However, identifying

the optimal combination strategies and determining the optimal

sequencing of therapies is complex. Comprehensive studies are

needed to elucidate the most effective combinations and treatment

sequences to maximize therapeutic synergies and minimize toxicity.

SDDSs achieve this by co-delivering multiple therapeutic agents to

tumor cells or immunosuppressive cells, thereby increasing drug

concentration at the desired site and improving efficacy. They are

used to reverse the immunosuppressive microenvironment created by
TABLE 4 Summary on nucleic acid vaccines for cancer immunotherapies, with mechanisms and outcomes.

Vaccine Type Approved
Drug

Target Antigen Cancer Type Outcome References

DNA vaccine Cavatak (CF33) MUC1, EGFR Various Enhanced anti-tumor immunity (97)

RNA vaccine mRNA-4157 PD-L1 Melanoma, NSCLC Increased tumor-
infiltrating lymphocytes

(98)

mRNA vaccine BNT111 MUC1, CEA Breast,
lung, colorectal

Induced antigen-specific T-cells (99)

Electroporated DNA vaccine Intuvax (hTERT) hTERT Prostate cancer Improved overall survival (100)

Personalized neoantigen
RNA vaccine

mRNA-5671 Mutated
tumor antigens

Melanoma,
lung cancer

Durable clinical responses (101)

DNA vaccine Vigil (p53) p53 Breast,
lung, colorectal

Enhanced anti-tumor immunity (157)

RNA-Lipoplex vaccine BI
1361849 (RNActive)

MUC1 Lung,
pancreatic cancer

Increased tumor-specific T-cells (158)

mRNA vaccine CV8102 VEGFR2 Renal cell carcinoma Reduced tumor growth (106)
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tumors. Furthermore, SDDSs modulate the interferon signaling

pathway and enhance the effectiveness of cell therapies.

Understanding the microbiome at strain-level along with species-

level in gut and TME can open up a new level of personalized

medicine. Having that extra resolution is crucial if we are to

understand what is happening in the human body and the interplay

between cancer treatment and the microbiome. Being able to test the

specific mechanisms of this relationship between specific strains and

response is the next horizon in this research, and one that could benefit

human health in a multitude of ways (94). Rare cancers are challenging

to study and treat. While immunotherapy can be highly effective, its

outcomes can be unpredictable. Research shows that the microbiome

influences responses to combination immunotherapy, while

monotherapy yields different results. This highlights the need to

consider the microbiome when developing treatments. Additionally,

live biotherapeutic products could provide beneficial bacteria to

enhance immunotherapy, improving patient responses.
7 Conclusion

Immunotherapy has transformed the field of oncology and

given patients fresh hope, revolutionizing the treatment of cancer.

In several cancer types, it has demonstrated notable success by

enabling the immune system to target cancer cells. To improve the

outcomes of cancer immunotherapies in combinatorial treatments,

a cohesive approach could involve developing strategies to address

tumor cell resistance. There may be need for accessible and reliable

data on predictive biomarkers that may be helpful for the selection

of the right cancer immunotherapies for the right cancer patients.

The use of AI and machine learning can be adopted to decide

the optimal dose and treatment modalities of combinatorial

therapies involving various cancer immunotherapies.
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For personalized medicines, concerted and comprehensive

efforts are needed at the level of microbiome and outcome of

cancer immunotherapies. Also, the expanded domain of cancer

immunotherapies may be converged for rare cancers and, the

influence of circadian rhythm on the success and failure of

cancer patients.

In the future, oncolytic viruses, vaccines based on neoantigens,

live biotherapeutics, immune engineering methodologies, and

combinatorial avenues with engineered microbiomes can be

explored as new forms of cancer therapeutics. Achieving this

requires AI-driven predictive tools to optimize the type, dose, and

timing of immunotherapies, alone or in combination.

An approach incorporating predictive biomarkers, AI-driven

treatment personalization, and microbiome-based strategies will be

instrumental in refining cancer immunotherapies. Biomarkers will

help identify patients who will benefit the most, AI will optimize

prognosis treatment selection, dosage, and response prediction,

while microbiome-based interventions could enhance

immunotherapy efficacy. Cancer immunotherapy is not just a

promising frontier—it is a transformative force reshaping

oncology. With strategic integration of advanced technologies, it

holds the potential to shift cancer from a life-threatening disease to

a manageable condition. To improve cancer treatment, CAR-T

cells, mRNA, and DNA vaccines should be prioritized for greater

efficacy, lower toxicity, personalized care, better accessibility, and

long-term monitoring of side effects.
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Immunotherapy Microbiota-
Based Approach
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Potential
Benefits

References

Checkpoint Inhibitors Fecal Microbiota
Transplantation (FMT)

Enhance immune response, reduce
immune suppression

Preclinical: improved tumor
control, increased TILs

Enhanced efficacy,
reduced toxicity

(175, 176)

CAR-T Cell Therapy Microbiome modulation
via dietary fiber

Improve CAR-T cell
expansion, persistence

Preclinical: enhanced CAR-T
cell efficacy

Increased
treatment success

(177)

Cancer Vaccines Probiotics
(e.g., Lactobacillus)

Enhance antigen presentation,
stimulate immune response

Clinical: improved vaccine
efficacy in melanoma

Enhanced
immune response

(178)

Adoptive T-
Cell Therapy

Microbiota-derived
metabolites (e.g., SCFAs)

Enhance T-cell function, reduce
immune suppression

Preclinical: improved T-cell
expansion, tumor control

Improved
treatment outcomes

(179)

Oncolytic Viruses Bifidobacterium-
based therapy

Enhance virus-mediated tumor lysis,
stimulate immune response

Preclinical: improved tumor
control, increased survival

Enhanced
antitumor efficacy

(180)

Immune
Checkpoint Blockade

Akkermansia
muciniphila-
based therapy

Enhance immune response, reduce
immune suppression

Clinical: improved treatment
outcomes in melanoma

Enhanced efficacy,
reduced toxicity

(181)
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