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Background: Lung squamous cell carcinoma (LUSC) is a malignant disease

associated with poor therapeutic responses and prognosis. Preliminary studies

have shown that the dysregulation of long non-coding RNAs (LncRNAs) is linked

to cancer development and prognosis. However, research on the role of

LncRNAs in LUSC remains limited.

Methods: In this study, we aimed to develop a LncRNA signature for improved

prognostic prediction in LUSC and to elucidate the underlying mechanisms. We

utilized expression data of LncRNAs and clinical information from 471 LUSC

patients in The Cancer Genome Atlas (TCGA), randomly dividing them into a

training set (n=236) and a testing set (n=235).

Results: A prognostic signature model comprising seven LncRNAs was

constructed using multivariate Cox regression analysis based on the training

set. Using a risk score cutoff value of -0.12 (log2-transformed), patients were

categorized into high-risk (n=101) and low-risk (n=370) groups. The high-risk

group demonstrated significantly worse overall survival (OS) compared to the

low-risk group (p<0.0001). The risk score showed strong prognostic predictive

ability for LUSC patients, as evidenced by the area under the ROC curve (AUC:

0.66, 0.67, and 0.67) and nomogram analysis (C-index, calibration, and decision

curve analysis) for 1-, 3-, and 5-year survival predictions. Independent prognostic

factors for LUSCwere identified, including risk group (HR=0.3, 95% CI: 0.22–0.4),

stage (HR=1.78, 95% CI: 1.28–2.48), and age (HR=1.02, 95% CI: 1.00–1.04). KEGG

enrichment analysis revealed that mRNAs influenced by the seven targeted

LncRNAs, associated with immune evasion, were primarily linked to pathways

such as chemical carcinogenesis, Th17 cell differentiation, NF-kB signaling, and

proteoglycans in cancer. Expression levels of 14 target genes related to tumor
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immune tolerance were significantly suppressed, with eight confirmed via

real-time PCR and western blot analysis. Additionally, CIBERSORT analysis of

immune cell-related gene expression between normal and LUSC tissues

indicated activation of the immune system in LUSC patients.

Conclusion: In conclusion, our findings highlight the clinical significance of the

seven LncRNA signature in predicting survival outcomes for LUSC patients.
KEYWORDS

long non-coding RNA, prognosis, lung squamous cell carcinoma, immune escape, seven
LncRNA signature
Introduction

In recent years, the incidence of lung cancer has been steadily

increasing, making it the leading cause of cancer-related deaths

worldwide, with a five-year survival rate of less than 15% (1, 2).

Despite advances in treatment, the etiology of lung cancer remains

largely unclear, and the primary treatment for patients is still

surgery combined with adjuvant therapy. The majority of lung

cancer cases are classified as non-small cell lung cancer (NSCLC),

which primarily consists of lung adenocarcinoma (LUAD) and

LUSC. Patients with LUSC are often diagnosed at an advanced

stage, limiting the effectiveness of available treatments, which may

not be administered in a timely manner. Additionally, LUSC

patients generally exhibit lower sensitivity to chemotherapy and

radiation compared to patients with small-cell lung cancer.

Currently, the tumor node metastasis (TNM) staging system is

widely used in clinical settings to guide treatment decisions and

predict the prognosis of cancer patients, including those with lung

cancer (3, 4). However, the clinical application of TNM staging has

certain limitations, such as its inability to accurately predict survival

outcomes for many patients following surgical resection, and the

presence of inconsistent results among patients within the same

stage category (5, 6). Therefore, there is an urgent need to identify

novel independent biomarkers for diagnosing and predicting the

prognosis of LUSC.

Recent advancements in high-throughput technologies, such as

microarrays, sequencing, and mass spectrometry, now allow for the

simultaneous evaluation of thousands of molecular expression profiles

(7). These breakthroughs, coupled with the growing body of research,

have revealed that certainmolecular markers are closely associated with

tumor phenotype and clinical behavior, particularly LncRNAs. These

findings hold significant promise for clinical practice in predicting the

long-term outcomes of cancer patients (8–10). Aberrant expression of

LncRNAs is frequently observed in various types of cancer and has

been linked to tumorigenesis and progression. For example, several

well-characterized LncRNAs, such as HOTAIR, MALAT1, and

NEAT1, are upregulated in breast cancer, gastric cancer, and
02
hepatocellular carcinoma (11–13). Moreover, multiple differentially

expressed LncRNAs have been identified in lung cancer studies,

some of which have been implicated in clinical diagnosis and

treatment (14). In this study, we identified a set of seven prognostic

LncRNA biomarkers associated with overall survival (OS) in LUSC

patients. Using these LncRNAs, we developed a 7-LncRNA risk score

model that effectively predicts patient OS. These findings were

subsequently validated in both the testing set and the entire dataset.
Materials and methods

Tissue samples and the reagent

This study included six patients who underwent resection for

LUSC at the Department of General Surgery, Taizhou Hospital of

Zhejiang Province. All resected specimens were collected and

preserved at the Bioresource Center of Taizhou Hospital. The

study was approved by the Ethics Committee of Taizhou Hospital.

Reagents used in the study included: Trizol reagent (CW2602M,

Beijing Kangwei Century Biotechnology), Reverse Transcription Kit

(CW0744M, Beijing Kangwei Century Biotechnology), Fluorescent

Quantitative PCR Kit (CW2602M, Beijing Kangwei Century

Biotechnology), and primary antibodies including CFLAR,

CSF2RA, ICAM1, IL18R1, CISH, CXCL3, IL17D, p-NF-kBa,
NF-kBa, and b-Actin (YT0877, YT5262, YT2269, YT5472,

YT5920, YT2075, YT6048, YP1372, YT2419, and YT0099 from

ImmunoWay Biotechnology).
Clinical information and RNA
expression data

Raw RNA-Seq count data and corresponding clinical information

for LUAC patients were obtained from the TCGA-LUAC database

(https://xenabrowser.net/datapages/). Patients lacking essential data,

such as RNA expression profiles from lung cancer tissue, follow-up
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survival information, age, gender, and TNM stage, were excluded.

Ultimately, 471 patients were included in the study and randomly

divided into a training cohort (n = 236) and a testing cohort (n =

235) for model development and validation, respectively. Raw

RNA-Seq data were annotated using GENCODE v33 and

subsequently normalized using FPKM values.
Development and validation of the
LncRS model

The most significant survival-related LncRNAs were identified

using the Least Absolute Shrinkage and Selection Operator (LASSO)

regression model in the training group, based on common prognostic

LncRNAs previously filtered by univariate Cox regression (P < 0.05).

Stepwise multivariate Cox regression analysis was employed to

construct the LncRNAs risk signature (LncRS), following

collinearity testing based on the Akaike Information Criterion

(AIC). The aim was to establish a prognostic signature with

optimal predictive capability while using the fewest LncRNAs. The

LncRS formula is as follows: LncRS =ok
(i=1)(Expi *  b i), where k and

i represent the total number and the sequence number of the

significant prognostic LncRNAs, Expi represents the normalized

expression values of the corresponding LncRNA for each sample,

and bi represents the regression coefficient of the corresponding

LncRNA from multivariate Cox regression analysis.

Risk scores were calculated for each patient in the training

cohort, and patients were divided into high- and low-risk groups

using a predefined cutoff determined by the “survminer” R package.

Kaplan-Meier survival curves and log-rank tests were performed to

compare survival between high- and low-risk groups. A scatter plot

was used to illustrate patient survival status and time based on

ascending risk scores, with a heatmap showing the expression levels

of LncRS-related LncRNAs. Time-dependent ROC analysis was

performed at 1, 3, 5, 7, and 10 years to assess the diagnostic

performance of LncRS.
Independent survival prognostic effect of
risk group in TCGA cohort

To assess whether LncRS could serve as an independent

prognostic index, univariate (P < 0.2) and multivariate Cox

regression analyses were performed, adjusting for clinical factors

such as age, gender, tumor location, tumor stage, and pathologic

TNM stage in the TCGA cohort (P < 0.05). We also examined the

correlation between LncRS-related LncRNA expression levels and

survival outcomes. Key findings from univariate and multivariate

Cox regression analyses, including Hazard Ratios and P-values,

were visualized in a forest plot.
Nomogram construction and verification

A nomogram was constructed to visually represent the survival

probabilities of LUAC patients at 1, 3, and 5 years based on their
Frontiers in Oncology 03
risk group and key clinical parameters. The concordance index (C-

index) and decision curve analysis (DCA) were used to evaluate the

prognostic accuracy of the nomogram.
The prognostic diagnosis accuracy of
LncRS verification in TCGA subgroups

Patients in the TCGA-LUAC cohort were stratified into

subgroups based on critical clinical parameters, including age,

gender, tumor location, tumor stage, and pathologic TNM stage.

Kaplan-Meier survival analysis and subgroup forest plots were

generated to compare survival between high- and low-risk groups

within these subgroups.
Gene co-expression network and gene
functional enrichment analysis

Pearson correlation analysis was used to assess co-expression

relationships between LncRS-related LncRNAs and mRNAs in the

entire TCGA dataset [correlation coefficient (r) > 0.25, P < 0.05].

Tumor immune-related genes were obtained from GeneCards using

the search term “tumor immune” (https://www.genecards.org/).

Overlapping genes from these sets were subjected to Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis. We identified 14 key regulatory genes

associated with tumor immune function and pathways through GO

and KEGG analysis [r > 0.25; abs (log2 Fold change) > 1.3].
Real-time PCR assay

Total RNA was extracted from LUSC tissue samples using

Trizol reagent. The RNA was then reverse transcribed into cDNA

using a reverse transcription kit. Quantitative PCR was performed

using a fluorescent PCR kit to measure the mRNA expression levels

of target genes. Data were expressed as 2- DDCt, with b-actin serving

as the internal control (n=6).
Western blot assay

Tissue samples were lysed using RIPA buffer containing 1%

protease inhibitors in an ice bath for 30 minutes to extract proteins.

Protein concentrations were determined using a BCA protein

quantification kit (P1511, Beijing Applygen Technologies).

Protein samples were separated by SDS-PAGE at 120V for 75

minutes and transferred to PVDF membranes at 250mA.

Membranes were blocked with 5% skimmed milk for 2 hours,

then incubated overnight at 4°C with primary antibodies (1:1000

dilution). The next day, membranes were incubated with secondary

antibodies (1:10,000 dilution) for 2 hours at room temperature, and

protein bands were visualized using an ECL kit (P1050, Beijing

Applygen Technologies). b-actin served as an internal control.
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Statistical analysis

Statistical analyses were performed using R software (version

4.1.1). Nomogram plots were generated using the “rms” R package.

Kaplan-Meier survival analysis was conducted using the “survival”

package, with P-values calculated by log-rank tests. Independent

prognostic factors were identified through univariate and

multivariate Cox regression analyses using the “survival” package.
Results

Identification of a prognostic LncRNAs
signature in the training set

A total of 471 LUSC patients were randomly divided into a

training dataset (n = 236) and a testing dataset (n = 235).

Multivariate Cox regression was initially used to identify

prognostic LncRNAs from the training set. This analysis revealed
Frontiers in Oncology 04
a significant association between the OS of LUSC patients and seven

specific LncRNAs were RP11.279O17.1, DKFZP434A062,

RP11.534L20.5, CTA.292E10.6, CDIPT.AS1, RP6.24A23.7, and

LINC00628. A 7-LncRNA risk signature was constructed by

linearly combining the expression levels of these seven LncRNAs,

weighted by their respective Cox regression coefficients. The

heatmap (Figure 1B) illustrates the relative expression levels of

the seven prognostic LncRNAs, sorted according to their risk scores.

Patients were then stratified into low- and high-risk groups based

on an optimal cutoff for their risk scores, as shown in Figure 1B.

Furthermore, the distribution of risk scores for each patient was

visually represented, demonstrating that the mean survival time of

high-risk patients was significantly shorter than that of low-risk

patients, with a higher mortality rate observed in the high-risk

group (Figure 1B). Kaplan-Meier survival analysis showed that

patients in the high-risk group had significantly poorer prognosis

compared to those in the low-risk group (Figure 1E). Additionally,

the AUCs for 1-, 3-, 5-, 7-, and 10-year OS in the training cohort

were 0.65, 0.73, 0.69, 0.71, and 0.80, respectively (Figure 2H).
FIGURE 1

The risk score distribution, duration and survival statues of LC patients and heatmaps of the seven-gene signature relative expression in the total
TCGA cohort (A), training TCGA cohort (B), and testing TCGA cohort (C). Kaplan-Meier analysis of the low‐ and high-risk group patients in the total
TCGA cohort (D), training TCGA cohort (E), and testing TCGA cohort (F).
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Validation of the seven-LncRNA signature
in the testing set and full dataset

The robustness of the 7-LncRNA signature was further

validated in both the testing set and the entire cohort. As shown

in Figure 1C, similar to the training cohort, the same risk score

formula effectively stratified patients into high- and low-risk groups

in the testing cohort using a cutoff of -0.12 (log2-transformed). A

significant survival difference was observed between these two

groups. Kaplan-Meier survival analysis confirmed that the high-

risk group in the testing cohort had a significantly worse prognosis
Frontiers in Oncology 05
compared to the low-risk group (P < 0.001; Figure 1F). Consistent

results were obtained when analyzing the entire TCGA dataset of

471 patients (Figures 1A, D). The AUCs for 1-, 3-, 5-, 7-, and

10-year OS in the testing cohort were 0.71, 0.68, 0.65, 0.70, and 0.84,

respectively (Figure 2L). For the overall cohort, the AUCs for OS at

these time points ranged from 0.66 to 0.73 (Figures 2J, K).

Additionally, clinical factors such as age (Figures 2A, C), stage

(Figures 2D, F), and multigene expression (Figures 2G, I) were also

analyzed across risk groups. These findings are consistent with

previous studies, supporting the 7-LncRNA signature as a robust

prognostic indicator for LUSC patients.
FIGURE 2

ROC curve analysis of age, stage, multigene and all union index according to the 1, 3, 5, 7, and 10-year survival of the area under the AUC value in
the total TGCA cohort (A, D, G, J), training TGCA cohort (B, E, H, K), and testing TGCA (C, F, I, L).
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Development and validation of a
predictive nomogram

To improve the accuracy of survival predictions for LUSC

patients, a prognostic nomogram was developed based on

clinical data from 471 LUSC patients, integrating the risk

score derived from clinical factors such as age, multigene

expression, and tumor stage (Figure 3A). Calibration plots

demonstrated that the nomogram performed well in predicting

1-, 3-, and 5-year OS for LUSC patients (Figures 3B–D).

Decis ion curve analys i s showed that the nomogram

outperformed other models at various threshold probabilities

(Figures 3E–G). These results suggest that the prognostic

nomogram is highly effective in predicting 1-, 3-, and 5-year

survival outcomes for LUSC patients.
Frontiers in Oncology 06
Independence of the LncRNA signature for
survival prediction and subgroup analysis

Univariate and multivariate Cox regression analyses

were conducted to evaluate whether the prognostic value of the 7-

LncRNA signature was independent of other clinical factors. The

results showed that both the risk group and the 7-LncRNA

signature were independent prognostic indicators for LUSC

patients in univariate analysis (Figures 4A, B). In multivariate

analysis, after adjusting for clinical variables such as age and

AJCC stage, the risk group and 7-LncRNA signature remained

significant independent prognostic factors (Figures 4C, D).

Furthermore, the prognostic efficacy of the 7-LncRNA

signature was consistent across various subgroups in the entire

cohort, stratified by age (Supplementary Figure S1A), gender
FIGURE 3

A prognostic nomogram predicting 1-, 3-, and 5- year OS of LC (A). Calibration plots of the nomogram for predicting the proportion of patients
with 1-, 3-, or 5-year OS (B-D). Decision curve analysis of nomogram predicting 1-, 3-, and 5- year OS of LC comparing the age, stage and
multigene (E-G).
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(Supplementary Figure S1B), AJCC stage (Supplementary Figure

S1C), and TNM grade (Supplementary Figure S1D–F).
Potential biological roles of the
LncRNA signature

KEGG pathway analysis was performed on the protein-coding

genes that were significantly associated with the model LncRNAs in

TCGA-LUSC, using the entire human genome as the background.

The results revealed that the prognostic LncRNAs were primarily

enriched in pathways related to immune function, including Th17

cell differentiation, TNF signaling, NF-kB signaling, JAK-STAT

signaling, Toll-like receptor signaling, and cytokine-cytokine

receptor interaction (Figure 5B, P < 0.05). Moreover, the expression

levels of the enriched genes were notably suppressed in LUSC

patients. Gene Ontology (GO) enrichment analysis indicated that

co-expressed genes were significantly downregulated and enriched in

immune-related GO terms, such as mast cell activation involved in

immune response, negative regulation of TNF production, regulation

of leukocyte degranulation, and negative regulation of tumor necrosis

factor superfamily cytokine production (Figure 5A, P < 0.05). These

findings were further supported by cnetplot analyses for KEGG and

GO (Figures 5C, D), and emapplot analysis revealed network

interactions among key KEGG pathways and GO terms

(Figures 5E, F). The expression levels of 14 target genes (BMP2,

CCL4, CFLAR, CISH, CSF1, CSF2RA, CSF3, CXCL3, ICAM1,

IL17D, IL18R1, NFKBIA, PYGM, TNFSF14) associated with tumor
Frontiers in Oncology 07
immune tolerance were significantly suppressed (Figure 5D). PCR

and western blot analyses confirmed the downregulation of eight of

these genes, yielding consistent results (Figure 6).
Discussion

Lung cancer remains the leading cause of cancer-related

mortality worldwide, yet treatment options continue to be

limited. The clinical efficacy of available treatments is hindered by

delayed diagnosis, limited therapeutic approaches, and the

emergence of relapse and resistance (15). LUSC, a subtype of

NSCLC, accounts for nearly 40% of all lung cancer cases. Early

detection and timely intervention in LUSC can significantly

improve patient prognosis, alleviating both the financial burden

on patients and enhancing their overall quality of life (16). For

decades, cancer research focused predominantly on protein-coding

genes (17). However, recent studies have shifted toward exploring

the role of non-coding RNAs (ncRNAs) in cancer, including

microRNAs (miRNAs), long non-coding RNAs (LncRNAs),

circular RNAs (circRNAs), and PIWI-interacting RNAs

(piRNAs). These studies have highlighted the crucial regulatory

roles of ncRNAs in cancer development and progression,

broadening our understanding beyond protein-coding genes (18,

19). Chen et al. and Zhou et al. established a distinct panel of

LncRNAs with significant diagnostic value for predicting the

prognosis of LUAD (20, 21). Zhang et al. developed a prognostic

model for LUSC patients based on nine specific LncRNAs
FIGURE 4

Forrest plot of the univariate Cox regression analysis OS of clinical factors (A) and seven-gene signatures (B). Forrest plot of the multivariate Cox
regression analysis OS of clinical factors (C) and seven-gene signatures (D). Forrest plot of the univariate Cox regression analysis OS of risk score
group in subgroup of clinical factors (E). *p<0.05; **<0.01; ***<0.0001.
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(AC013457.1, AC124067.2, AP001189.1, AP002360.1, BANCR,

LINC00519, LINC01807, MIR3945HG, FAM83A−AS1, and

POU6F2−AS2) (22). However, research on prognostic biomarkers

for LUSC patients remains limited.

In the present study, we further investigated the role of LncRNAs

in LUSC and identified seven previously unstudied LncRNAs

significantly associated with the OS of LUSC patients. A significant

survival difference was observed between the low-risk and high-risk

groups, stratified by the risk score derived from our model in the

training set. In addition, mean survival time, mortality rates, and

overall prognosis varied significantly between these groups (Figure 1).

These findings were validated in the testing dataset and across the

entire cohort, yielding consistent results that have not been previously

reported (22). We assessed the prognostic ability of our model using

ROC curve analysis. Although the prognostic value of the AUC is

modest, there is currently no better alternative for prediction.

Relevant studies have also used AUC values to predict overall

survival (OS), demonstrating its strong predictive ability (23, 24).

In our study, the AUCs for 1-, 3-, 5-, 7-, and 10-year OS in the

training group were 0.65, 0.73, 0.69, 0.71, and 0.80, respectively

(Figure 2H). Notably, the AUCs for 1- and 5-year OS were consistent

with those reported in previous studies, further confirming the
Frontiers in Oncology 08
reliability of our results (23, 24). Moreover, our study offers more

detailed information and greater accuracy than the single AUC value

of 0.65 for 3-year survival reported by Zhang et al. (22). Notably, our

prognostic model outperformed other clinical variables, including

TNM stage (AUCs of 0.57, 0.55, 0.54, 0.55, and 0.40) and age (AUCs

of 0.56, 0.60, 0.59, 0.54, and 0.60), across all time points in predicting

the prognosis of LUSC patients. A prognostic nomogram was

constructed, demonstrating excellent accuracy in predicting 1-, 3-,

and 5-year OS, an achievement not previously reported in the

literature (Figure 3). Multivariate Cox regression analysis confirmed

that the 7-LncRNA signature remained an independent predictor of

OS in LUSC patients (Figure 4). Furthermore, subgroup analysis

confirmed the strong predictive ability of the risk score for OS across

various LUSC subpopulations, stratified by age, gender, tumor stage,

and other clinical features (Supplementary Figure S1). These results

suggest that the 7-LncRNA signature is a robust prognostic marker

for LUSC that remains independent of other clinical variables.

To explore the underlying biological mechanisms of tumor

immune inhibition in LUSC, we performed GO and KEGG

enrichment analyses based on the 7-LncRNA model. Th17 cells,

along with their associated cytokines, are implicated in immune

responses across various tumors (25). IFN-g and IL-17 stimulate
FIGURE 5

Biological functions (A) and the signaling pathways (B) of co-expressed genes related the model LncRNAs. The network regulation relationship
between the co-expressed genes and biological functions (C)/the signaling pathways (D). The network regulation relationship among the biological
functions (E)/the signaling pathways (F).
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Th17 cell differentiation, leading to the production of CXCL9 and

CXCL10, which recruit Th1 and NK cells to the tumor

microenvironment, enhancing antitumor immune responses (26).

Interestingly, our results indicated that the expression of protein-
Frontiers in Oncology 09
coding genes involved in Th17 cell differentiation (Figure 5B) was

significantly suppressed in LUSC patients (Figure 5D). NF-kB plays

a key role in immune cell function, promoting inflammation by

inducing the expression of cytokines and chemokines, which inhibit
FIGURE 6

The PCR and WB analysis results of the eight genes in tumor tissues. (A) Protein expression of the eight genes was significantly decreased in the
tumor groups. (B-I) mRNA expression of the eight genes was significantly inhibited in the tumor groups. *p<0.05; **<0.01; NS>0.05.
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tumor growth (27). It has also been implicated in tumorigenesis

(28). The activation of TNF-a and IL-1, which stimulate NF-kB
through their receptors, enhances innate immune responses and

promotes tumor cell apoptosis (29, 30). TNF-a exhibits

antineoplastic properties (31), and its receptors are significantly

downregulated in high-stage NSCLC. Additionally, STAT3 and

STAT5, members of the STAT family, are implicated in tumor

initiation and progression (32). It has been shown that STAT3

inactivation reduces TNF-a expression, leading to a loss of its

ability to bind the TNF-a promoter (33, 34). Our findings

(Figures 5, 6) demonstrated significant downregulation of genes

associated with the TNF pathway (NFKBIA, CSF1, ICAM1,

CXCL3), the NF-kB pathway (CCL4, CFLAR, NFKBIA,

TNFSF14, ICAM1, CXCL3), JAK-STAT signaling (CSF2RA,

CISH, CSF3), Toll-like receptor signaling (CCL4, NFKBIA), and

Th17 cell differentiation (NFKBIA), further supporting the

involvement of these pathways in LUSC (35–37).

Immune escape is a critical mechanism in tumorigenesis, and

recent studies have shown that LncRNAs like SNHG12 facilitate

immune evasion in NSCLC by interacting with HuR to increase

PD-L1 and USP8 levels (38). Our study revealed that 14 target
Frontiers in Oncology 10
genes associated with immune tolerance were significantly

suppressed in LUSC and were linked to the 7-LncRNAs of our

risk model (Figures 5, 6). Despite this, immune infiltration,

including T cells, B cells, NK cells, and monocytes, was

prominently activated in LUSC patients (Figure 7). While

numerous studies have reported immune infiltration in tumors

such as breast cancer and glioblastoma multiforme (39, 40), not

all immune infiltrates exert antitumor effects (41, 42). The

mechanisms by which the seven prognostic LncRNAs contribute

to immune escape in LUSC remain unclear and warrant

further investigation.

There are several limitations to this study. First, the 7-LncRNA

signature was derived from a relatively small cohort of 236 patients.

Second, while bioinformatics analyses provided insights into the

potential functions of the LncRNAs, the exact molecular mechanisms

remain unclear and require further validation through experimental

studies. Third, due to insufficient data, we were unable to assess the

impact of treatment strategies or medications on patient outcomes in

LUSC. In conclusion, we have identified seven LncRNA biomarkers

that can effectively predict OS in LUSC patients, providing valuable

insights for prognostic prediction in this patient population.
FIGURE 7

The immune infiltration reaction including T cells, B cells, NK cells and monocytes were prominent active in LUSC patients. **<0.01;
***<0.0001; NS>0.05.
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