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Ruiqing Meng3 and Xiaowei Wu4

1Department of Nuclear Medicine, Cancer Hospital of China Medical University, Liaoning Cancer
Hospital and Institute, Shenyang, China, 2School of Intelligent Medicine, China Medical University,
Shenyang, China, 3Department of Biomedical Engineering, China Medical University, Shenyang, China,
4Department of Infectious Disease, The First Hospital of China Medical University, Shenyang, China
Background: In order to investigate the value of radiomic features derived from

enhanced computed tomography (CT) for assessment of therapeutic efficacy in

patients with Esophageal squamous cell carcinoma (ESCC) underwent

neoadjuvant immunochemotherapy (NICT).

Methods: The primary cohort of this study included 120 ESCC patients who

received NICT from April 2020 to August 2023, comprising 52 patients with good

responders (GR) and 68 patients with non-good responders (non-GR) after NICT,

the external validation cohort included 30 patients from another hospital,

comprising 14 patients with GR and 16 patients with non-GR after NICT.

Features were derived from both the intra-tumoral and peri-tumoral regions of

the tumor in the enhanced CT image, and the least absolute shrinkage and

selection operator (LASSO) regression was used to establish predictive radiomic

models (Rad-Scores) and T-stage model for predicting therapeutic response

to NICT.

Results: The Rad-Score for predicting response to NICT generated the area under

the curve (AUC) values of 0.838, 0.831, and 0.769 in the training, internal validation,

and external validation cohorts, respectively. For T-stage, corresponding AUC

values were 0.809, 0.800, and 0.716 in the same cohorts. Additionally, the

nomogram model produced AUC values of 0.867, 0.871, and 0.818 in the

training, internal validation, and external validation cohorts, respectively.

Conclusions: The established models demonstrate promising predictive

potential for assessing the efficacy of NICT in ESCC patients, which may assist

clinicians in formulating appropriate treatment strategies.
KEYWORDS

esophageal carcinoma, neoadjuvant therapy (NACT), computer tomography, radiomics,
therapeutic response
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Background

Esophageal carcinoma (EC) is one of the most common

malignant tumors globally (1). Esophageal squamous cell

carcinoma (ESCC) counts for 90% of all esophageal carcinomas

worldwide, while esophageal adenocarcinoma (EAC) comprises

10% (2). ESCC patients generally have a poor prognosis, with 5-

year survival rate is only 20% (3). In Western Europe, the incidence

rates of ESCC in men and women are 6.6% and 1.8% (4).

Neoadjuvant chemotherapy or neoadjuvant chemoradiotherapy

combined with radical esophagectomy has gradually replaced

surgical treatment, becoming the standard treatment for locally

advanced ESCC. Neoadjuvant therapy refers to certain treatments

administered before curative treatment to reduce recurrence rate by

eliminating micrometastases and it increases the success rate of

subsequent surgeries (5, 6).

However, during the course of radiotherapy, there may be an

increase in surgical complexity and the onset of related

complications such as radiation pneumonitis and esophageal

fistula, leading to a decrease in patients’ quality of life. This could

ultimately be a contributing factor to the poorer prognosis of ESCC

patients. The incidence of local or distant metastases remains high,

necessitating the further development of a novel adjuvant treatment

regimen (7). Immunotherapy combined with chemotherapy offers a

new strategy for patients with esophageal squamous cell carcinoma.

Studies have shown (8, 9) that compared to neoadjuvant

chemotherapy and radiotherapy, this treatment significantly

reduces the difficulty of surgical resection, leading to overall good

postoperative recovery in patients. Therefore, preoperative

assessment of response to neoadjuvant immunochemotherapy

(NICT) is crucial for devising appropriate individualized

treatment plans.

Radiomics is a technique that transforms medical imaging data

into exploitable quantitative information through statistical and

machine learning methods (10), which enables objective and

comprehensive assessment of tumor heterogeneity (11). In the

past few years, CT imaging has played an irreplaceable role in

cancer detection, screening, and treatment efficacy assessment (12).

Currently, enhanced CT serves as a crucial tool for assessing the

initial staging and treatment response of ESCC patients. Whether

radiomic information based on enhanced CT can predict the

efficacy of NICT for ESCC remains unknown. Furthermore,

previous radiomic studies on ESCC (13–17)have primarily

focused on intra-tumoral regions, with little attention paid to

peritumoral radiomics features. Therefore, we have included peri-
Abbreviations: AUC, Area under the curve; EAC, Esophageal adenocarcinoma;

EC, Esophageal carcinoma; ESCC, Esophageal squamous cell carcinoma; GLCM,

Gray-level co-occurrence matrix; GLDM, Gray-level dependence matrix;

GLRLM, Gray-level run length matrix; GLSZM, Gray-level size zone matrix;

GR, Good responders; ICC, Intraclass correlation coefficients; NICT,

Neoadjuvant immunochemotherapy; NGTDM, Neighboring gray tone

difference matrix; non-GR, Non-good responders ROC, Receiver operating

characteristic; ROI, Region of interest; TRG, Tumor regression grade.
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tumoral regions of the tumor, attempting to find potentially

valuable information.

This study aims to develop a radiomic nomogram based on

enhanced CT, integrating intra-tumoral and peri-tumoral radiomic

features with clinical predictive indicators to identify good

responders (GR) and validate its performance on external

validation cohort.
Methods

Patients

The retrospective study was approved by the hospital’s Ethics

Committee (No.XJS20230632), and the requirement for informed

consent from patients was waived. We retrieved the hospital records

of patients admitted from April 2020 to August 2023, and a total of

120 patients were included in this study. And external validation

was conducted by including 30 patients from another hospital

during the same period. Patients were categorized into GR and

non-GR groups, with GR and non-GR including tumor regression

grade (TRG) 1–2 and TRG 3-5, respectively.

Inclusion criteria: (1) Patients confirmed by hospital pathology

biopsy to have esophageal squamous cell carcinoma; (2) All included

patients were of Han Chinese ethnicity, and age 18–75 years old; (3)

Patients with locally advanced ESCC cT1-4aN+M0 or T3-4aN0M0;

(4) Enhanced CT scan performed within one week before

neoadjuvant therapy; (5) Neoadjuvant therapy regimen includes

neoadjuvant chemotherapy combined with immunotherapy,

administered synchronously; (6) Radical surgery performed after

neoadjuvant therapy. (7) Complete clinical data available. Exclusion

criteria: (1) Patients who have undergone radiotherapy; (2) Patients

with advanced malignant tumors in other sites; (3) Lack of complete

clinical data; (4) Patients unable to tolerate chemotherapy and

immunotherapy; (5) Severe artifacts affecting the clarity of lesion

images on CT scans. Figure 1 depicts t Patient inclusion and

exclusion process diagram.

All patients were subjected to stratified sampling and randomly

divided into training and validation groups at a ratio of 2:1. Clinical

characteristics and pathological information included age, gender,

tumor location, Clinical T stage, lymph node N stage, metastasis M

stage, pathological diagnosis, clinical stage, and number of

treatment cycles.
Tumor regression grading criteria

The Mandard standard (18) was the earliest standard used for

postoperative TRG in ESCC treatment. According to the

relationship between residual tumor cells under the microscope

and fibrosis response, the Mandard standard divides tumor

regression response into 5 levels: TRG level 1=no residual cancer

cells, replaced by a large amount of fibrosis; TRG level 2=scattered

cancer cells in fibrosis; TRG level 3=more fibrosis than residual

cancer cells; TRG level 4=less fibrosis than residual cancer cells;

TRG level 5=no tumor regression changes. The pathological
frontiersin.org
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response is evaluated by pathologists specializing in ESCC, and any

cancer cells that do not survive in all excised specimens are referred

to as GR. Patients with TRG scores of 1 and 2 are classified as good

responders. Patients with TRG levels of 3, 4, and 5 are defined as

non-good responders.
CT data acquisition and tumor
segmentation

Before underwent NICT, patients in the training and internal

validation cohorts underwent chest contrast-enhanced scans using

the Netherlands Philips IQon spectral CT, and patients in the

external validation cohort underwent contrast-enhanced CT scans

using the Netherlands Brilliance iCT 256 (Philips Healthcare). The

scan parameters were as follows: tube voltage of 120 kVp, automatic

tube current modulation (RightDose), pitch of 1.016, detector

collimation of 0.625 mm × 64, gantry rotation time of 0.5 s for

one revolution, matrix size of 512 × 512, and reconstructed slice

thickness of 5 mm. An iodinated contrast agent (300 mg/mL) was

administered at 1.5 ml/kg body mass at a 2 mL/s rate.

In this study, we utilized Pyradiomics (version 2.1.0) for feature

extraction, R (version 4.2.0) for statistical analysis and modeling,

and Python (version 3.7) for additional data processing. The

computational tasks were performed on a workstation equipped

with a 12th-generation Intel Core i9–12900 processor (CPU, base

frequency 2.4 GHz), 64GB of memory (RAM), and an NVIDIA
Frontiers in Oncology 03
GeForce RTX 3090 Ti graphics processing unit (GPU). All images

were adjusted according to the window location and window width

set at 40 and 350.For each CT sequence, regions of interest (ROIs)

were manually delineated slice by slice by a radiologist with 15 years

of experience using ITK-SNAP v3.6 (www.itksnap.org). The ROIs

included both intra-tumoral and peri-tumoral regions. In all slices

containing the primary lesion, the intra-tumoral delineation

covered the entire tumor. The peri-tumoral region was annotated

by the radiologist, including adjacent tissues and lymph nodes

around the esophagus, excluding airways, aorta, vertebrae, and

jugular vein. Supplementary Figure shows enhanced CT images

and images after ROI delineation for two ESCC patients.
Radiomics feature extraction

This study utilized the Pyradiomics software package in Python

v3.6 to extract a total of 1967 features from the CT sequences of

each patient. These features can be divided into 18 first-order

features, 14 shape-based features, and 75 texture features. Texture

features include 24 Grey Level Co-occurrence Matrix (GLCM)

features, 16 Grey Level Run Length Matrix (GLRLM) features, 16

Grey Level Size Zone Matrix (GLSZM) features, 5 Neighboring

Grey Tone Difference Matrix (NGTDM) features, and 14 Grey

Level Dependence Matrix (GLDM) features. These features also

include high-dimensional feature types, calculated from images

transformed by 8 filters (including wavelet, Laplacian of Gaussian,
FIGURE 1

Patient inclusion and exclusion process diagram.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2025.1511691
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1511691
square, square root, logarithm, exponential, gradient, and local

binary pattern 2D filters). For a detailed description of the

features and extraction protocol, please refer to the Pyradiomics

documentation (https://pyradiomics.readthedocs.io).
Feature selection

Feature selection was performed using R language (version: 3.6).

Firstly, 30 patients were randomly selected, and a second ROI

segmentation was performed on the CT images of the patients by

another radiologist. The Intraclass Correlation Coefficient (ICC)

was then used to assess the reliability of features extracted from

ROIs delineated by different radiologists (19), with features having

an ICC exceeding 0.80 considered more reliable and retained.

Subsequently, the Mann-Whitney U test was used to screen the

remaining features, a widely used non-parametric test method, to

evaluate features extracted from intra-tumoral and peri-tumoral

radiomic features separately or in combination for identifying GR,

with features having P < 0.05 considered statistically significant and

retained. Next, using the “glmnet” package in R language, features

with non-zero coefficients were retained using the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm with 10-fold

cross-validation (20). Finally, the Akaike Information Criterion was

used as the stopping criterion to perform logistic regression on the

selected features.
Model establishment

The most predictive features selected from enhanced CT were

used to construct the radiomics model. For the selected features

from enhanced CT, feature fusion was performed using LASSO

coefficients to establish a multi-phase CT radiomics fusion model

(Rad-Score). Clinically significant features were selected using the

Mann-Whitney U test and chi-square test (P < 0.05), and a clinical

prediction model was constructed using logistic regression. During

model development, the training dataset was randomly split into

five equal folds. The model was trained on four folds and validated

on the remaining one, rotating until each fold had served as the

internal validation set. Performance metrics, such as accuracy and

area under the curve, were recorded and the averaged value of them

was used as the final metrics to evaluate the model’s performance.

Finally, the model’s performance was evaluated using the external

validation set. The “rms” package in R language was used to

combine Rad-Score with clinically significant features to construct

a nomogram model.
Model validation

IBM SPSS Statistics (version: 24) was used to conduct statistical

analysis on all clinical features. To evaluate the correlation between

intra-tumoral and peri-tumoral radiomic features and clinical
Frontiers in Oncology 04
features, the Mann-Whitney U test was performed for age, and

the chi-square test was performed for gender, tumor location,

pathological type, N stage, M stage, clinical stage, and number of

chemotherapy cycles. The significance level was set at 0.05 for two-

sided hypothesis testing.

To assess the predictive performance of the three models,

including, Rad-Score, T-stage, and Nomogram, receiver operating

characteristic (ROC) curve analysis was conducted on both the

training and internal validation cohorts. ROC curves were plotted

using the “pROC” package in R language, and the area under the

ROC curve (AUC) was calculated. The Delong test was used to

compare the differences between the ROC curves of each model

(21). The maximum Youden index was used as the optimal

threshold to calculate accuracy (ACC), specificity (SPE), and

sensitivity (SEN). Calibration curve and decision curve analyses

were performed using the “rmda” package in R to evaluate the

clinical utility of the nomogram model (22, 23).
Results

Patients

This study included a total of 120 patients in the primary cohort,

with 90 patients in the training cohorts and 30 patients in the internal

validation cohorts, comprising 115 males and 5 females, All included

patients were of Han Chinese ethnicity, the GR rate of the primary

cohort was 43.3%. Additionally, 30 patients from another hospital were

included as external validation cohort, with 27 males and 3 females, the

external validation cohort GR rate of 46.7%. The mean (SD) age of all

patients was 61.47 (7.04) years, the percentage of all patients with

tumors located at proximal third was 16.0%, located at middle third

was 52.67%, and located at distal third was 31.33%. Analyses based on

Student’s t-test, the Mann–Whitney U test, the chi-square test, or

Fisher’s exact test revealed that there was a significant difference in T

stage between the GR and non-GR groups in the training cohort,

internal validation cohort, and external validation cohort (training

cohort P=0.035; internal validation cohort P=0.047; external validation

cohort P=0.041). However, there were no significant differences

between the GR and non-GR groups in terms of gender, age, tumor

location, N stage, staging of distant metastasis, clinical stage, and

number of chemotherapy cycles in the training cohort, internal

validation cohort, and external validation cohort (P>0.05). The final

model was built using the T stage as the predictor variable. The

statistical analysis results of clinical features for all patients are

presented in Table 1.
Development of the radiomics signature

For the 1967 features extracted from enhanced CT, analysis was

conducted using the Mann-Whitney U test, and logistic regression

was applied with the AIC criterion as the stopping rule. The final

selection identified 5 radiomic features as the most important
frontiersin.org

https://pyradiomics.readthedocs.io
https://doi.org/10.3389/fonc.2025.1511691
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1511691
predictive factors for constructing the radiomics model for

predicting GR. The LASSO algorithm, used for feature selection,

was visualized in Figure 2.
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The fusion of the final selected features is used to construct the

radiomics label Rad-Score for enhanced CT imaging. The formula is

as follows:
TABLE 1 Statistical analysis results of patient clinical features.

Characteristic

Training Cohort (n=90)

P

Internal Validation
Cohort (n=30)

P

External Validation
Cohort (n=30)

P
non-

GR (n=51)
GR

(n=39)
non-

GR (n=17)
GR

(n=13)
non-

GR (n=16)
GR

(n=14)

Sex 0.154 0.150 0.144

Male 49 38 17 11 15 12

Female 2 1 0 2 1 2

Age (Mean ± SD) 61.53 ± 7.40 61.80 ± 6.76 0.719 60.93 ± 7.14 59.47 ± 7.21 0.368 62.43 ± 6.14 61.87 ± 7.28 0.427

Tumor location 0.165 0.182 0.206

Proximal third 5 8 2 4 2 3

Middle third 27 21 11 4 9 7

Distal third 19 10 4 5 5 4

Clinical T stage 0.035* 0.047* 0.041*

1 3 2 0 1 1 1

2 8 5 3 1 2 4

3 33 26 10 10 7 6

4 7 6 4 1 6 3

Clinical N stage 0.147 0.379 0.453

0 4 3 4 3 1 2

1 39 30 12 8 11 6

2 7 5 1 1 2 4

3 1 1 0 1 2 2

Staging of
distant metastasis

0.522 0.695 0.697

0 35 26 12 11 12 13

1 16 13 5 2 2 3

Clinical stage group 0.107 <0.001* 0.052

I 3 5 0 1 1 0

II 4 6 1 2 2 1

III 37 23 12 6 10 9

IV 7 5 4 4 3 4

Number of
treatment cycles

0.596 0.817 0.806

2 13 21 10 5 6 7

2+ 38 18 7 8 10 7
frontie
* P<0.05.
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Rad − Score = −12:755 − 0:033� wavelet :HHH_ glszm _

SizeZoneNonUniformity − 2:654

�original _ firstorder _Median + 18:982� wavelet :HLL _ glcm _

MaximumProbability − 0:003� logarithm _ glszm _

HighGrayLevelZoneEmphasis − 0:049� wavelet : LHH_

glszm _ SmallAreaHighGratLevelEmphasis :

Figure 3 displays the results of Rad-Score in distinguishing GR

patients from non-GR patients. The study indicates that the Rad-
Frontiers in Oncology 06
Score can accurately differentiate between the majority of patients

with GR and non-GR.
Construction and evaluation of the
nomogram

The nomogram model, integrating Rad-Score and T-stage, was

constructed as depicted in Figure 4. Calibration curve results indicated

that the predictive values of the nomogrammodel aligned well with the

actual outcomes. Table 3 evaluated and compared the predictive

performance of Rad-Score, T-stage, and the nomogram. In both the
FIGURE 2

Features selected using LASSO. (A) represents the results of ten-fold cross-validation, where red dots denote the coefficients corresponding to each
l, and the dashed line indicates the specific l values. (B) illustrates the LASSO coefficient plot, with each curve representing the trajectory of change
in the coefficient of each independent variable, and the corresponding vertical axis represents the regression coefficient of the variable. Table 2
presents the results of the radiomics feature selection, wherein 5 features were selected from the pool of 1967 features.
TABLE 2 The predictive performance of the ultimately selected radiomics features.

Feature Cohort Mean ± SD P AUC

GR non-GR

lbp.2D_firstorder_
Median

Training 4.470 ± 0.507 4.200 ± 0.407 0.025 0.633

Internal Validation 4.400 ± 0.507 4.200 ± 0.414 0.237 0.600

External Validation 4.200 ± 0.414 4.200 ± 0.414 0.235 0.601

logarithm_glszm_
HighGrayLevel
ZoneEmphasis

Training 295.088 ± 186.703 389.111 ± 156.683 0.031 0.656

Internal Validation 365.573 ± 152.244 415.395 ± 150.685 0.530 0.569

External Validation 374.278 ± 171.454 452.241 ± 157.627 0.587 0.574

wavelet.HHH_glszm_
SizeZoneNonUniformity

Training 17.955 ± 10.003 29.865 ± 21.880 0.015 0.674

Internal Validation 21.718 ± 13.061 30.786 ± 16.798 0.081 0.678

External Validation 19.255 ± 11.571 28.637 ± 18.918 0.074 0.671

wavelet.HLL_glcm_
MaximumProbability

Training 0.246 ± 0.036 0.229 ± 0.041 0.032 0.656

Internal Validation 0.238 ± 0.033 0.209 ± 0.046 0.026 0.716

External Validation 0.261 ± 0.045 0.187 ± 0.045 0.021 0.705

wavelet.LHH_glszm_
SmallAreaHighGray

LevelEmphasis

Training 19.765 ± 7.750 26.685 ± 13.441 0.022 0.664

Internal Validation 20.236 ± 8.538 24.950 ± 10.926 0.218 0.631

External Validation 20.026 ± 8.736 25.869 ± 12.147 0.201 0.549
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training and internal validation cohorts, Rad-Score exhibited higher

AUC and SEN compared to the T-stage. The AUC of the nomogram

outperformed both Rad-Score and the T-stage (AUC in the training

cohort: nomogram vs. Rad-Score vs. T-stage = 0.867 vs. 0.838 vs. 0.809;

AUC in the internal validation cohort: nomogram vs. Rad-Score vs.

T-stage = 0.871 vs. 0.831 vs. 0.800; AUC in the external validation

cohort: nomogram vs. Rad-Score vs. T-stage = 0.818 vs. 0.769 vs.

0.716). Figure 5 illustrates the ROC curves of each model. The decision

curve analysis (DCA) (Figure 6) demonstrated a favorable net benefit

of the nomogram in predicting GR. ESCC patients could benefit more

when the threshold probability is between 0.08 and 0.85.
Frontiers in Oncology 07
Discussion

Predicting the efficacy of neoadjuvant therapy in ESCC patients

is crucial for the development of personalized treatments. Although

previous studies have attempted to predict the efficacy of treatments

for certain diseases using biomarkers, there are currently no

definitive biomarkers for immunotherapy in ESCC (24–26).

Research has shown that utilizing tumor imaging data can

provide more direct insights (16). Considering the accessibility

and health economics of examinations, as a recommended

method for preoperative tumor staging in esophageal cancer
FIGURE 4

Developing nomograms to predict the GR status of ESCC patients. (A) represents the developed nomogram. (B) represents the calibration curve of
the nomogram on the training cohort, (C) represents the calibration curve of the nomogram on the internal validation cohort. and (D) represents the
calibration curve of the nomogram on the external validation cohort.
FIGURE 3

Rad-Score of ESCC Patients. (A) represents the Rad-Score of each patient in the training cohort, (B) represents the Rad-Score of each patient in the
internal validation cohort. while (C) represents the Rad-Score of each patient in the external validation cohort. The red bars indicate GR patients,
while the green bars indicate non-GR patients.
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treatment guidelines (27), enhanced CT scans are regarded as a

valuable tool. They can identify tumor changes, facilitate

preoperative assessments, and predict treatment efficacy. This

approach offers a macroscopic and direct method to assess tumor

characteristics in patients with ESCC. Previous radiomics studies

have only analyzed the intra-tumoral characteristics of ESCC

patients, However, features should not be limited to the sole

internal region of the tumor. Recent research (28–30) suggests

that surrounding areas can provide complementary information on

tumor heterogeneity. Therefore, we propose a radiomics model

based on enhanced CT images, which combines intra-tumoral and

peri-tumoral radiomics features to predict the efficacy assessment of

ESCC patients after receiving NICT.

In this study, we comprehensively analyzed 1967 radiomics

features extracted from intra-tumoral and peri-tumoral regions

obtained from enhanced CT images. Subsequently, we screened

out image features that can predict the efficacy of neoadjuvant

therapy in esophageal cancer patients. Ultimately, we identified five

most significant features from both intra-tumoral and peri-tumoral

regions. Three features belonged to gray-level size zone matrix

(GLSZM) features. GLSZM quantifies regions of gray levels in

images, defined as the number of connected voxels sharing the

same gray level intensity. One feature belonged to first-order
Frontiers in Oncology 08
features, describing voxel intensity distribution within the image

region defined by a mask. Another feature belonged to gray-level

co-occurrence matrix (GLCM), a method for describing texture

features by studying the correlation of different gray values at

specific angles and distances within an image. The classification

results of these features suggest a potential correlation between

patient GR state and tumor heterogeneity, as features based on first-

order statistics, GLCM, GLSZM, neighborhood gray-tone difference

matrix (NGTDM), gray-level run length matrix (GLRLM), and

gray-level dependence matrix (GLDM) are generally considered to

reflect tumor heterogeneity at both global and local scales (31).

Wu et al. (32) previously, extracted 10 intra-tumoral features from

CT images of 154 patients for analysis. Results showed that some

features could differentiate early (Stages I-II) and advanced (Stages III-

IV) ESCC, with respective training cohort areas under the receiver

operating characteristic curve (AUC) of 0.795 and 0.694, and internal

validation cohort AUCs of 0.762 and 0.624. In contrast, our results

showed that combining intra-tumoral and peri-tumoral tissue in the

predictive model yielded AUC values of 0.809 and 0.800 on the training

and internal validation cohorts, respectively, this suggests that the peri-

tumoral region may provide complementary useful information,

thereby potentially enhancing the predictive ability of the model.

This finding is partially consistent with recent research results (33–
FIGURE 5

ROC curves for Rad-Score, T-stage, and nomogram. (A) represents the ROC curve of the training cohort, (B) represents the ROC curve of the
internal validation cohort, and (C) represents the ROC curve of the external validation cohort. The horizontal axis in the figure represents the value of
100-specificity, and the vertical axis represents the value of sensitivity. The blue line represents the Rad-Score model, the green line represents the
T-stage, and the red line represents the nomogram.
TABLE 3 Comparison of Rad-Score, T-stage, and nomogram.

Radiomics model Training P Internal Validation P External Validation P

AUC ACC SPE SEN AUC ACC SPE SEN AUC ACC SPE SEN

T-stage 0.809 0.683 0.967 0.567 0.800 0.700 0.933 0.667 0.716 0.697 0.857 0.605

Rad-Score 0.838 0.700 0.867 0.733 0.831 0.700 0.800 0.800 0.769 0.775 0.813 0.773

Nomogram 0.867 0.733 0.900 0.733 0.871 0.667 0.867 0.867 0.818 0.795 0.830 0.870

T-stage vs. Rad-Score <0.001* 0.037* 0.028*

T-stage vs. nomogram 0.002* 0.022* 0.019*

Rad-Score vs. nomogram 0.005* 0.596 0.116
frontie
* P<0.05.
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36). Radiomics features, particularly those derived from texture analysis

(e.g., Gray Level Size ZoneMatrix [GLSZM], Gray Level Co-occurrence

Matrix [GLCM], and first-order statistical features), have been

extensively studied as imaging biomarkers reflecting tumor

heterogeneity, which is closely associated with therapeutic response

and prognosis. The features selected in this study underwent a rigorous

statistical screening process (including LASSO regression) to ensure

their predictive validity. While radiomics features are inherently data-

driven and may not always directly correlate with specific

histopathological markers, prior studies suggest that texture-based

metrics can reflect tumor microenvironment characteristics such as

necrosis, fibrosis, and angiogenesis.

Dong et al. (37) and Liu et al. (38)previously demonstrated the

importance of clinical T-stage as a predictive indicator. Through

statistical analysis of clinical features, we also found that T-stage is

an important predictor of GR status, negatively correlated with GR

status in ESCC patients. The AUC for T-stage was 0.809, 0.800, and

0.716 for the training cohort, internal validation cohort, and

external validation cohort respectively. The Rad-Score for

predicting response to NICT achieved an AUC of 0.838 for the

training cohort, 0.831 for the internal validation cohort and 0.831

for the external validation cohort. By combining T-stage with the

established Rad-Score model, we established a clinical imaging

radiomics nomogram, which exhibited the best predictive

performance. the AUC values for the training cohort, internal

validation cohort, and external validation cohort were 0.867,

0.871, and 0.818 respectively. Outperforming both standalone

radiomics and clinical T-stage models, indicating improved ability

to detect GR in patients. DCA indicated that our nomogram model

could provide more benefits for ESCC patients in predicting GR.

The visual approach of the nomogram compared to machine

learning algorithms may assist doctors in diagnostic decision-

making. Predictive models can non-invasively and accurately

predict the efficacy of NICT, providing valuable choices and
Frontiers in Oncology 09
suggestions for personalized treatment of ESCC patients, thus

alleviating the burden and suffering of patients during treatment

and holding significance for prognosis and treatment prediction.

In our study, we adopted LASSO regression due to its ability to

effectively handle high-dimensional data and perform feature

selection by setting the coefficients of certain features to zero,

thereby enhancing the interpretability of the model. In contrast,

other models like Random Forest and XGBoost, which rely on

ensembles of decision trees, lack intuitive transparency in

explaining how predictions are derived. Our choice of LASSO

regression was driven by the need for interpretable results and

clinical applicability in real-world settings. Studies by other scholars

(39, 40)have also use LASSO regression to selected Radiomics

features, demonstrating the efficacy of machine learning in

radiomics-based survival prediction and its significant clinical value.

This study has limitations. Firstly, it is a retrospective study with

a relatively small sample size. In the future, using more clinical data

to validate our model could enhance its robustness. Secondly, the

heterogeneity of patients leads to different responses to treatment.

Although we made effort to ensure consistency in patient during

initial screening, including ethnicity, treatment protocols, and

pathological type. heterogeneity factors such as variations living

environments, histories of smoking or alcohol consumption were

not fully accounted for. These factors may act as additional

confounding variables in predicting therapeutic efficacy,

necessitating large datasets and multicenter studies to address

these complexities. Thirdly, the manual delineation of ROI

introduces variability despite the involvement of radiologists,

leading to poor repeatability of imaging data and time-consuming

operations. Incorporating deep learning-based lesion automatic or

semi-automatic segmentation holds promise for improving this

aspect in our future work. Thirdly, there is a lack of follow-up

data regarding patients’ survival time, which hinders the analysis of

subsequent features and parameters.
FIGURE 6

DCA curves of Rad-Score, T-stage, and nomogram. The horizontal axis in the figure represents threshold probability, while the vertical axis
represents patients’ net benefit. The blue line represents the Rad-Score model, the green line represents the T-stage, and the red line represents
the nomogram.
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Conclusion

The results indicate that the model based on radiomic features

from both intra-tumoral and peri-tumoral regions on enhanced CT

imaging, combined with clinical T-stage features, exhibits

promising predictive potential for assessing the efficacy of NICT

in ESCC patients.
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SUPPLEMENTARY FIGURE

Examples of enhanced CT images and ROI delineation regions in ESCC
patients in this study. (A) represents the original image of a patient with GR,

(B) represents the intra-tumoral image of a patient with GR, and (C)
represents the peri-tumoral image of a patient with GR. (D) represents the

original image of a patient with non-GR, (E) represents the intra-tumoral
image of a patient with non-GR, and (F) represents the peri-tumoral image of

a patient with non-GR. The red areas in the images represent the ROI. No

significant differences were observed upon visual inspection.
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