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Objective: Disulfidptosis is a newly identified type of nonapoptotic programmed

cell death related to mechanisms such as ferroptosis, cuproptosis, pyroptosis,

and necrotic apoptosis. This study explores the role of disulfidptosis-related long

non-coding RNAs (DRLs) in gastric cancer and their potential as

prognostic biomarkers.

Method:We developed a prognostic model using DRL scores to classify patients

based on disulfidptosis activity. We evaluated these scores for correlations with

drug sensitivity, tumor microenvironment (TME) features, tumor mutational

burden (TMB), and prognosis. Potential disulfidptosis-related signaling

pathways were screened, identifying FRMD6-AS as a promising therapeutic

target. FRMD6-AS expression was further validated using real-time fluorescent

quantitative PCR (qRT-PCR).

Results: The DRL-based prognostic model, established through univariate and

multivariate Cox regression and LASSO regression analyses, outperformed

traditional models in predicting prognosis. We divided samples into high-risk

and low-risk groups based on DRL scores, finding that the low-risk group had a

significantly higher survival rate (P < 0.05). A high-precision prediction model

incorporating DRL scores, age, sex, grade, and stage showed strong predictive

value and consistency with actual outcomes. High DRL scores correlated with

higher TME scores and lower TMB. Key signaling axes identified were

AC129507.1/(FLNA, TLN1)/FOCAL ADHESION and AC107021.2/MYH10/(TIGHT

JUNCTION, VIRAL MYOCARDITIS, REGULATION OF ACTIN CYTOSKELETON).

Potentially effective drugs, including BMS-754807, dabrafenib, and JQ1, were

identified. FRMD6-AS emerged as a potential target for gastric cancer treatment.

Conclusions: This study developed a novel prognostic model for gastric cancer

using DRLs, identifying two key signaling axes related to prognosis. JQ1 may be

an effective treatment, and FRMD6-AS could be a promising therapeutic target.
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1 Introduction

Gastric cancer is the fifth most common malignancy and ranks

among the top three in terms of mortality; its risk factors include

Helicobacter pylori infection, age, a high-salt diet and a low-vegetable

and -fruit diet (1). Geographically, East Asia has the highest incidence

of stomach cancer, followed by Eastern and Central Europe (2). Gastric

cancer is generally diagnosed late, which may be related to the lack of

clinical symptoms in the early stage of gastric cancer (3). The 5-year

survival rate of patients with gastric cancer in Japan is approximately

70% (4), while it is approximately 20% lower in many other parts of the

world; this may be related to overdiagnosis in Japan. The discovery of

numerous new markers for gastric cancer highlights the great

heterogeneity of this tumor, which may indicate the need to develop

individualized treatment strategies for patients in the future (5).

The metabolic reprogramming of tumor cells leads to a high

dependence on nutrients such as glucose (6). SLC7A11 (also known

as xCT) is a cystine/glutamate antiporter (7) that is highly expressed

in tumor cells and is an important pathway for cancer cell survival.

Abnormal accumulation of disulfide bonds in cells with high

SLC7A11 expression under glucose starvation conditions induces

a novel form of cell death distinct from ferroptosis, cuproptosis,

pyroptosis, and necrotic apoptosis, which is called disulfidptosis (8).

Disulfidptosis can be triggered by the use of glucose transporter

(GLUT) inhibitors and can inhibit cancer growth (9). Novel

biomarkers related to disulfidptosis can be used for the clinical

diagnosis, prognosis prediction and treatment of liver cancer (10).

Knowledge on disulfidptosis may contribute to the development of

new anticancer treatments (11).

Long noncoding RNAs (lncRNAs), although largely unable to be

converted into proteins, play an important role in a variety of cellular

and physiological functions (12). LncRNAs regulate disulfidptosis and

influence the tumor immune microenvironment and chemotherapy

resistance (13). LncRNAs associated with disulfidptosis may be related

to the prognosis, immune features and drug response of a variety of

tumors, such as breast cancer (14), liver cancer (15), prostate cancer

(16) and endometrial cancer (17). In recent years, numerous studies

have shown that long noncoding RNAs (lncRNAs) play a key role in

the occurrence of gastric cancer (18). Some studies have shown that

LncRNA SNHG3 can promote proliferation and distant metastasis of

gastric cancer cells through via the miRNA139-5p/MYB axis (19).

LncRNA SNHG6 can participate in cisplatin resistance and

development of gastric cancer through miR-1297/BCL-2 axis (20).

To further explore the relationships between lncRNAs associated with

disulfidptosis and gastric cancer, this study integrated the sequencing

data of gastric cancer tissues and adjacent tissues from The Cancer

Genome Atlas database (specifically, the TCGA (21) dataset). In

addition, 24 disulfidptosis-related genes (DRGs)8 (GYS1, NDUFS1,

OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2,

SLC7A11, ACTN4, ACTB, CD2AP, CAPZB, DSTN, FLNA, FLNB,

INF2, QGAP1, MYH10, MYL6, MYH9, PDLIM1, TLN1) were

identified and analyzed. To explore the mechanism and potential

therapeutic targets of the disulfidptosis-related lncRNAs (DRLs)

involved in the occurrence and development of gastric cancer. The

detailed analysis workflow is as shown in Figure 1.
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2 Materials and methods

2.1 Data acquisition and processing

First, we obtained data from the TCGA database (https://

portal.gdc.cancer.gov/) and organized the related gastric cancer

(GC) gene expression data, clinical data, mutation data and copy

number data. The data were processed and analyzed using the

limma, dplyr, ggalluvial, and ggplot2 packages in R software

(version 4.1.3) for data organization, and the survival, caret,

glmnet, survminer, and timeROC packages for model screening.

Additionally, Perl software (version 5.30.0) was utilized for data

processing and analysis. First, the expression matrix for the gastric

cancer samples was generated. Then, the lncRNA and mRNA

expression matrices were generated, and the disulfidptosis mRNA

expression matrix and disulfidptosis lncRNA expression matrices

were compared to identify the DRLs. The correlations between

disulfidptosis-related mRNAs and disulfidptosis-related lncRNAs

were subsequently calculated.
2.2 Screening of lncRNAs associated with
disulfidptosis and establishment and
analysis of DRL signatures

GC-related data were extracted from the TCGA, DRGs were

identified, and a comprehensive analysis was carried out. The

lncRNAs associated with the DRGs were identified via R software,

and the significantly related lncRNAs were subsequently screened

via univariate analysis. Then, univariate and multivariate Cox

regression (22) analysis and LASSO regression analysis (23–28)

were performed to establish a new prediction model; our filtering

conditions were more stringent in these analyses (P < 0.0005). We

randomly grouped the samples and performed more than 100

iterations (in practice, a model can be applied only 3–5 times)

with 100 completely different prediction models. Then, survival

analysis, receiver operating characteristic (ROC) (29) curve

analysis, clinical statistics, and principal component analysis

(PCA) (30) were used to confirm a valid signature. The

expression formula (31) is as follows, where Coefi is the

coefficient and Xi is the expression quantity of the lncRNA:

Riskscore =on
i=1Coef i ∗X. Finally, the correlations between the

DRGs and lncRNAs were analyzed, and a heatmap was generated.
2.3 Verification of the DRL signature

R software was used to conduct subgroup analysis of all samples

related to disulfidptosis genes in the TCGA database. First, the

samples were randomly divided into a training set and a testing set,

with 204 samples in the training set and 203 samples in the testing

set. The baseline characteristics are presented in Table 1. Second,

the two subgroups were subjected to survival analysis according to

receiver operating characteristic (ROC) curves risk curves and

survival status. The lncRNAs of the prediction model were
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subsequently analyzed via cluster analysis, and a heatmap was

drawn. Finally, progression-free survival (PFS) analysis was

carried out to further verify the value of the prediction model.
2.4 Comparison of the accuracy of the risk
score, age, sex, grade and stage in
predicting the prognosis of gastric cancer
and the establishment of a nomogram.

Univariate Cox analysis, multivariate Cox analysis, ROC curve

analysis and Concordance index (32) (C-index) analysis were

carried out for age, sex, grade, stage and risk score, respectively,
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and a nomogram (33) was constructed; then, the predictive

accuracy of nomogram was verified via a calibration curve.
2.5 Stratified analysis of clinical features
and PCA

Survival analysis was performed based on the risk score across

various clinical characteristics, including age, G stage, M stage, sex,

N stage, overall stage, and T stage, to evaluate the accuracy of the

risk score in assessing clinical features of gastric cancer.

Subsequently, principal component analysis (PCA) was conducted

on four distinct sample sets: all gene samples, disulfidptosis gene
FIGURE 1

The complete pipeline of the study.
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samples, disulfidptosis LncRNA samples, and risk LncRNA

samples. The results demonstrated that the risk score exhibited

superior discriminative ability in distinguishing gastric cancer

samples, further validating its prognostic significance.
2.6 Differential gene expression analysis,
gene ontology and Kyoto encyclopedia of
genes and genomes analysis, and gene set
enrichment analysis

The samples were grouped according to the risk score of the

prediction model, and differential expression analysis was

conducted. Significant differentially expressed genes were screened

out, and GO (34–39), KEGG (34, 35, 40) and GSEA (34, 35, 37, 41,
Frontiers in Oncology 04
42) analysis were conducted on these differentially expressed genes

to identify the potential related pathways and functions.
2.7 Analysis of the correlation between the
risk score and gastric cancer
immune features

To comprehensively assess the relevance of the risk score to

immune features in gastric cancer, the tumor microenvironment

(TME) (43), CIBERSORT (34, 35, 44), immCor, immFunction,

tumor mutational burden (TMB) (34, 45, 46), TMB stratified

analysis, and Tumor Immune were analyzed by predictive model

Dysfunction and Exclusion (TIDE) (47) analysis; Fully evaluate the

relevance of risk models to gastric cancer immunity.
TABLE 1 Clinical baseline characteristics of each subgroup.

Covariates Type Test Train Pvalue

Age

≤65 99 (48.77%) 84 (41.18%) 0.1617

>65 103 (50.74%) 118 (57.84%)

unknow 1 (0.49%) 2 (0.98%)

Gender
FEMALE 76 (37.44%) 68 (33.33%) 0.4459

MALE 127 (62.56%) 136 (66.67%)

Grade

G1 4 (1.97%) 8 (3.92%) 0.2756

G2 68 (33.5%) 76 (37.25%)

G3 128 (63.05%) 114 (55.88%)

unknow 3 (1.48%) 6 (2.94%)

Stage

Stage I 25 (12.32%) 30 (14.71%) 0.4743

Stage II 65 (32.02%) 57 (27.94%)

Stage III 87 (42.86%) 80 (39.22%)

Stage IV 16 (7.88%) 23 (11.27%)

unknow 10 (4.93%) 14 (6.86%)

T

T1 7 (3.45%) 14 (6.86%) 0.2304

T2 43 (21.18%) 43 (21.08%)

T3 97 (47.78%) 82 (40.2%)

T4 52 (25.62%) 61 (29.9%)

unknow 4 (1.97%) 4 (1.96%)

M

M0 181 (89.16%) 181 (88.73%) 0.5791

M1 11 (5.42%) 15 (7.35%)

unknow 11 (5.42%) 8 (3.92%)

N

N0 60 (29.56%) 61 (29.9%) 0.7885

N1 58 (28.57%) 50 (24.51%)

N2 38 (18.72%) 39 (19.12%)

N3 38 (18.72%) 44 (21.57%)

unknow 9 (4.43%) 10 (4.9%)
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2.8 Drug susceptibility analysis

Drugs that may have significant differences in efficacy in gastric

cancer treatment were screened via a predictive model and the

OncoPredict (48) package in R software.
2.9 Primer design

Primer design for genes FRMD6-AS2 and GAPDH (Table 2).
2.10 Cell culture

In this s tudy, GES1 (BNCC337969) and HGC-27

(BNCC338546) cells were purchased from Beina Biology (China).

GES1 cells were cultured in complete DMEM-H supplemented with

1% penicillin−streptomycin (Sigma, USA), and HGC-27 cells were

cultured in complete RPMI-1640 supplemented with 1% penicillin

−streptomycin (Sigma, USA).
2.11 RNA extraction and
reverse transcription

The cell precipitate was collected, and 1 mL of TRIzol (CWBIO,

China) was added, and the sample was mixed and incubated on ice

for 5 min for cell lysis. Then, 200 mL of chloroform (High Crystal

Chemical Industry, China) was added to the EP tube, which was

shaken vigorously, left at room temperature for 3 min, and

centrifuged at 12000 rpm at 4°C for 15 min, after which the

supernatant was collected. Then, an equal volume of isopropyl

alcohol (McLean, China) was added, mixed upside down, left for 10

min at room temperature, and centrifuged at 12000 rpm at 4°C for

10 min, after which the supernatant was discarded. Then, 1 mL of

75% ethanol (McLean, China) was added, the mixture was

centrifuged at 12000 rpm at 4°C for 3 min, the supernatant was

discarded, the lid was opened to allow air-drying, 30 mL of DEPC

water was added, and the sample was stored at -80°C. Then, reverse

transcription was performed with a 20 mL reaction volume. The

amount of each component was 3 mL of RNA, 4 mL 5× Hifair® II

Buffer (11119ES60 yeasen), 2 mL Hifair® II Enzyme Mix, 0.5 mL +

0.5 mL random primers N6 (50 mm) + or oligo (dT)18 (50 mM), and

20 mL RNase-free H2O. The samples were added to the EP tube

according to the above reaction system, mixed with a pipette and

put into a PCR (BIO-RAD T100) amplification apparatus. The
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program was set at 25°C for 5 min according to the following

conditions: 42°C for 30 min; 85°C for 5 min; hold at -20°C.
2.12 qRT−PCR

The volume of the fluorescence quantitative PCR reaction

system was 20 mL. The amount of each component was as

follows: UGreener Flex qPCR 2X mix, 10 mL; forward primer (10

µM), 0.5 mL; reverse primer (10 µM), 0.5 mL; cDNA, 1 mL; and
ddH2O, 8 mL. The samples were added to 96-well plates for

fluorescent quantitative PCR according to the above reaction

system and mixed successively. The samples were put into the

fluorescent quantitative PCR instrument (ABI 7500, USA), and the

program was set according to the following conditions: 45 cycles

were carried out in the constant temperature stage is set at 95°C for

30 seconds (denaturation), followed by the cycling stage of 95°C for

10 seconds (denaturation) and 60°C for 30 seconds (annealing) for a

total of 45 cycles. The melt stage consists of 95°C for 15 seconds

(denaturation), 60°C for 1 minute (annealing), 95°C for 15 seconds

(denaturation), and 60°C for 15 seconds (annealing).
2.13 Statistical analysis

In the bioinformatics analysis, statistical analysis was performed

using R software (version 4.1.3), with a P-value of less than 0.05

considered statistically significant. For the experimental part, all

data were replicated three times. Differences between two groups

were compared using the Student t-test, and statistical analysis and

graphing were conducted using GraphPad Prism 8.0 software. A P-

value of less than 0.05 was considered statistically significant.
3 Results

3.1 Construction and validation of a
disulfidptosis-related lncRNA prognostic
signature in gastric cancer

First, the expression matrix of the lncRNAs was extracted via the

data matrix processed with R software (version 4.1.3) and Perl software

(version 5.30.0). The correlations between lncRNAs and disulfidptosis

genes were mapped via the R package ggalluvial (Figure 2A). The

lncRNAs whose expression significantly differed between groups were

screened via univariate Cox analysis and are displayed in a forest plot

(Figure 2B). Subsequently, LASSO regression and multivariate Cox

regression were used to construct a prognostic signature associated with

disulfidptosis in gastric cancer patients (Figures 2C, D); the analysis

included more than 100 iterations, and the final signature was evaluated

via survival analysis, receiver operating characteristic (ROC) curve

analysis, clinical statistics and PCA (Table 3). The formula for the

signature risk score was as follows: risk score = (0.544735914395105 *

AC107021.2 expression) + (0.705013376452246 * AC129507.1

expression) + (0.433534323181848 * ‘FRMD6-AS2’ expression);
TABLE 2 The primers used were purchased from Qingke Biotechnology
Co., Ltd. (China).

Genes Primer sequence

FRMD6-AS2
forward primer 5′- ACTCAGAGGCCACACTAGAT-3’
reverse primer 5′-AGATTGGATGTTGGCACCC-3’

GAPDH
forward primer 5′-ACATCGCTCAGACACCATG-3′
reverse rimer ′-TGTAGTTGAGGTCAATGAAGGG-3′
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heatmap showing the correlation between the individual DRLs and the

risk score (Figure 2E). Next, model lncRNAs and related DRGs were

screened out (Table 4).
3.2 Evaluation of risk stratification and
prognostic value of the DRL signature in
gastric cancer

The samples used to construct the DRL model were subsequently

randomly divided into two groups of equal size (a test group and a

training group). We used the DRL signature to score each sample for
Frontiers in Oncology 06
the entire cohort, the test group sample and the training group and

divided the patients into high-risk and low-risk groups. Survival

analysis, risk score analysis, survival time analysis, enrichment

analysis, PFS (49) analysis were performed for each group. Survival

analysis revealed that the high-risk patients in each group had a worse

prognosis than the low-risk patients (P < 0.05) (Figures 3A-C). Risk

score analysis revealed that the risk score trend of each group was

generally consistent, the risk score of the low-risk group was less than

1, and the risk score of the high-risk group was greater than 1

(Figures 3D-F). Similarly, we conducted survival time analysis for

each group and found that the survival time distribution of patients in

each group was generally consistent: the low-risk group had a lower
FIGURE 2

(A) Sankey diagram of the relationship between disulfide death gene and LncRNA (B) Univariate forest map of LncRNA with significant differences (C)
Shows the lasso regression plot; c. Shows the lasso regression plot (D) Presents the cvfit plot of the lasso regression (E) Heat map of the relationship
between DRGs and signature LncRNAs.
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mortality rate than the high-risk group (Figures 3G-I). Through

enrichment analysis and heatmapping of signature lncRNAs in each

group, AC107021.2, AC129507.1 and FRMD6-AS2 were found to be

high-risk lncRNAs. The PFS analysis revealed that the high-risk

group had lower PFS rates at a given time point than did the low-risk

group (Figure 3M). The median survival time (in years) is: 1.152055.

Independent survival analysis for each lncrna model reveals that each

lncrna can independently influence gastric cancer prognosis

(Figures 4A-I).
3.3 Assessment of risk score and clinical
factors in prognostic signature for
gastric cancer

First, univariate Cox analysis, multivariate Cox analysis, clinical

characteristic ROC curve analysis, survival ROC curve analysis and

concordance index analysis were performed for the risk score and clinical

characteristics of age, sex, grade and stage, respectively. Univariate and

multivariate Cox analyses revealed that age, grade, stage and the risk

score had significant effects on the prognosis of gastric cancer (P < 0.05),

whereas sex had no significant effect on the prognosis of gastric cancer

(P > 0.05) (Figures 5A, B). Clinical characteristic ROC curve analysis

revealed that the area under the curve (AUC) (50–52) value of age, grade,

stage and the risk score was > 0.5, whereas the AUC value of sex was

< 0.5 (Figure 5C). ROC curve analysis of survival years revealed that the

AUC values at 1, 3 and 5 years were all greater than 0.6 (Figure 5D).

Concordance index analysis revealed that the risk score was the main

factor influencing the prognosis of gastric cancer, whereas sex had the

least effect on the prognosis of gastric cancer (Figure 5E). The risk score,
Frontiers in Oncology 07
age, sex, grade, stage, M stage, N stage and T stage were used to establish

a nomogram, which revealed that the risk score and age were

independent influencing factors for the prognosis of gastric cancer

(Figure 5F). Finally, calibration curves were generated to verify the

accuracy of the nomogram predictions (Figure 5G).
3.4 Survival analysis by age, G stage, M
stage, N stage, gender, and T stage in
gastric cancer risk groups

The patients were then grouped by age(< 60 years old and ≥ 60

years old). Survival analysis of the two groups revealed that the survival

rate of the high-risk group was lower than that of the low-risk group

among each of these age groups (P < 0.05) (Figures 6A, B). The samples

were divided into G1–G2 groups and G3 groups by G stage, and

survival analysis was conducted on the two groups. There was no

significant difference in the survival rate between the high- and low-risk

groups among the G1–G2 group (P > 0.05). However, there was a

significant difference in the survival rate between the high- and low-risk

groups among the G3 group (P < 0.05) (Figures 6C, D).We divided the

samples byM stage intoM0 andM1 groups; survival analysis of theM0

group revealed significant differences between the high- and low-risk

groups (P < 0.05). There was no significant difference in survival

between the high- and low-risk groups among the M1 group (P > 0.05)

(Figures 6E, F). The patients were divided into a female group and a

male group, and survival analysis revealed significant differences

between the high- and low-risk groups for both females and males.

The survival rates of the high-risk groups were lower than those of the

low-risk groups (P < 0.05) (Figures 6G, H). By N stage, the high-risk

group was divided into the N0-1 group and the N2-3 group. Survival

analysis revealed that there was a significant difference between the

high- and low-risk groups among patient in these subgroups and that

the high-risk groups had lower survival rates (P < 0.05) (Figures 7A,

B).The patients were divided by stage into Stage I-II and Stage III-IV

groups. The survival analysis of the high- and low-risk samples in each

group revealed significant differences, and the survival rates of the high-

risk groups were lower (P < 0.05) (Figures 7C, D). In the T stage, the

samples were divided into a T1-2 group and a T3-4 group. The survival

analysis of the high- and low-risk samples in each group revealed that

there was no significant difference in the survival rate between the high-

and low-risk groups in the T1-2 subgroup (P > 0.05). The survival rate

of the high- and low-risk groups in the T3-4 subgroup was significant,

and the survival rate of the high-risk subgroup was lower (P < 0.05)

(Figures 7E, F). PCA of the all-gene, DRG, DRL and risk lncRNA

groups revealed that the risk-related lncRNA model presented the

greatest degree of differentiation among samples (Figures 7G-J).
3.5 differential gene expression and
pathway enrichment analysis in gastric
cancer risk scores

First, differential expression analysis was conducted on samples

grouped according to the risk score, and significantly differentially

expressed genes were identified. GO analysis of the differentially
TABLE 3 Results of gastric cancer prognostic model constructed using
subgroups analysis of disulfidptosis-related LncRNAs.

id coef

AC107021.2 0.544736

AC129507.1 0.705013

`FRMD6-AS2` 0.433534
TABLE 4 List of associations between model LncRNAs and related
disulfidptosis genes.

Disulfidptosis cor pvalue Regulation

DSTN 0.402653447 1.72E-17 postive

FLNA 0.503576504 7.09E-28 postive

TLN1 0.495798994 6.02E-27 postive

DSTN 0.458610526 8.07E-23 postive

FLNA 0.485388579 9.69E-26 postive

MYL6 0.417863824 7.67E-19 postive

MYH10 0.452199524 3.71E-22 postive

TLN1 0.410087591 3.84E-18 postive
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expressed genes revealed that the main enriched biological process (BP)

were enriched external encapsulating structure organization,

extracellular matrix organization, extracellular structure organization,

muscle system process, etc. The main enriched cellular component (CC

terms were collagen-containing extracellular matrix, contractile fiber,
Frontiers in Oncology 08
myofibril, sarcomere, I band, etc. The main enriched molecular function

(MF) terms were extracellular matrix structural constituent,

glycosaminoglycan binding, heparin binding, integrin binding, sulfur

compound binding, etc. (Figures 8A-D), (Supplementary 1). KEGG

analysis revealed that the main enriched pathways were the cytoskeleton
FIGURE 3

(A) Survival analysis of high-low risk group in total sample (P < 0.05) (B) survival analysis among high-low risk groups in the test group (P < 0.05) (C)
Survival analysis among high-low risk groups in the training group (P < 0.05)D. risk score of the total sample (E) Risk score of the test group sample
(F) Risk score of the training group sample (G) Survival time plot of the total sample (H) Survival time graph of the sample of the test group (I)
Survival time graph of the training group samples (J) Prognosis of the total sample lncRNA signature heat map (K) Prognostic lncRNA signature heat
map of the test group samples L. lncRNA signature heat map for the training group samples M. PFS between high and low risk groups (P < 0.05).
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in muscle cells, dilated cardiomyopathy, ECM-receptor interaction,

hypertrophic cardiomyopathy, arrhythmogenic right ventricular

cardiomyopathy and other pathways (Figures 9A, B) (Supplementary

2). GSEA revealed enrichment of pathways and functions including

D I L A T E D C A R D I OM YO P A , H Y P E R T R O P H I C

CARDIOMYOPATHY HCM, PROTEASOME, FOCAL ADHESION,

A R R H Y T HMOG E N I C R I G H T V E N T R I C U L A R

CARDIOMYOPATHY ARVC, CALCIUM SIGNALING

PATHWAY, ECM RECEPTOR INTERACTION, DNA
Frontiers in Oncology 09
REPLICATION, CITRATE CYCLE TCA CYCLE, AMINOACYL

TRNA BIOSYNTHESIS (Figures 9C-F) (Supplementary Materials 3,

4). As shown in Supplementary Material 3, we found that FLNA is

enriched in the FOCAL ADHESION pathway and that TLN1 is

enriched in the FOCAL ADHESION pathway. MYH10 was enriched

in the TIGHT JUNCTION, VIRAL MYOCARDITIS, and

REGULATION OF ACTIN CYTOSKELETON pathways, and as

shown in Table 2, FLNA was positively correlated with AC129507.1;

TLN1 was significantly positively correlated with AC129507.1; and
FIGURE 4

Survival Analysis of LncRNA Models. (A) surv.all.AC107021.2. (B) surv.test.AC107021.2. (C) surv.train.AC107021.2. (D) surv.all.AC129507.1. (E)
surv.test.AC129507.1. (F) surv.train.AC129507.1 (G) surv.all.FRMD6-AS2. (H) surv.test.FRMD6-AS2. (I) surv.train.FRMD6-AS2.
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MYH10 was significantly positively correlated with AC107021.2. In

summary, our differential gene expression analysis identified key

biological processes and molecular functions linked to the risk score.

GO analysis revealed enrichments in extracellular matrix and muscle

system processes, while KEGG and GSEA pinpointed important

pathways like cytoskeleton dynamics and cardiomyopathy. Proteins

FLNA, TLN1, and MYH10 were strongly associated with specific

DRLs and crucial pathways such as focal adhesion and tight junctions.

These insights enhance our understanding of gastric cancer prognosis

and suggest potential therapeutic targets.
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3.6 Differences in tumor microenvironment
and immune cell profiles between high-
and low-risk groups

The samples were divided into high- and low-risk groups

according to the risk score. Analysis of the TME scores revealed

significant differences in the stromal score, immune score and

ESTIMATE score between the high- and low-risk groups (P < 0.05)

(Figure 10A). We estimated the levels of 22 kinds of immune cells

(naive B cells, memory B cells, memory B cells, memory T cells, naive
FIGURE 5

(A) Univariate COX analysis of Age, Grade, Stage and Risk score (B) Multi-factor COX analysis of Age, Grade, Stage and Risk score (C) ROC analysis of
Age, Grade, Stage and Risk score (D) ROC curve for 1, 3 and 5 years of Risk Score (E) C curve for Age, Grade, Stage and Risk score (F) norm plot for
T, N, M, Age, Grade, Stage, and Risk score (G) Shows a calibration curve.
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CD8+ T cells, resting memory CD4+ T cells, activated memory CD4+

T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta

T cells, resting NK cells, activated NK cells, monocytes, M0

macrophages, M1 macrophages, M2 macrophages, resting dendritic

cells, activated dendritic cells, resting mast cells, activated mast cells,

eosinophils and neutrophils) in each sample, and a histogram was

drawn (Figure 10B). The high- and low-risk groups were compared to

determine whether there were significant differences in the levels of
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these 22 kinds of immune cells. The levels of naive B cells, plasma cells,

resting memory CD4 T cells, activated memory CD4 T cells, resting

NK cells, activated NK cells (determined via calculation), M0

macrophages, M2 macrophages, resting mast cells, activated mast

cells and eosinophils were significantly different between the high-

and low-risk groups (P < 0.05) (Figure 10C). This further confirms that

the immune cell infiltration patterns differ among different risk groups.

We assessed 29 immune cells/functions (aDCs, APC coinhibition, APC
FIGURE 6

(A) Survival analysis among high-low risk groups in samples younger than 60 years (P < 0.05) (B) survival analysis among high-low risk groups in
samples older than or equal to 60 years (P < 0.05) (C) Survival analysis of G1-G2 samples among high-low risk groups (P < 0.05) (D) Survival analysis
of the high-low risk group of the G3 sample (P < 0.05) (E) Survival analysis in the high-low risk group of sample M0 (P < 0.05) (F) Survival analysis
between high-low risk groups in sample M1 (P > 0.05) (G) Survival analysis among high-low risk groups of Female sample (P < 0.05) (H) Survival
analysis among high-low risk groups in a Male sample (P < 0.05).
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costimulation, B cells, CCR, CD8+ T cells, checkpoint, cytolytic activity,

DCs, HLA, iDCs, inflammation-promoting, macrophages, mast cells,

MHC class I, neutrophils, NK cells, paraination, pDCs, T cell

coinhibition, T cell costimulation, T helper cells, Tfhs, Th1 cells, Th2

cells, TIL, Treg, type I IFN response, and type II IFN response), and we

found significant differences in the enrichment of related genes

between the high- and low-risk groups for B cells, mast cells, MHC

class I cells, neutrophils, pDCs, T helper cells, Th1 cells, Th2 cells, TILs,
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the type I IFN response, the type II IFN response, and 11 immune-

related responses (Figure 10D). This indicates that high-risk groups

may promote the infiltration of immunosuppressive cells and increase

the expression of immune checkpoint genes (ICGs), leading to immune

escape and poor prognosis. For the analysis of the relationship between

the risk score and TMB of gastric cancer, the top 20 genes (TTN, TP53,

MUC16, LRP1B, ARID1A, CSMD3, SYNE1, FAT4, FLG, PCLO,

ZFHX4, ACVR2A, HMCN1, DNAH5, OBSCN, RYR2, SPTA1,
FIGURE 7

(A) Survival analysis among high-low risk groups in N0-N1 samples (P < 0.05) (B) Survival analysis among high-low risk groups in N2-N3 samples (P < 0.05)
(C) Stage |-‖ ‖ Survival analysis of samples in high-low risk groups (P < 0.05) (D) Survival analysis of Stage III-IV samples of high-low risk group (P < 0.05)
(E) Survival analysis of high-low risk group in samples T1-T2 (P > 0.05) (F) Survival analysis between high-low risk groups in T3-T4 samples (P < 0.05) (G) PCA
profile of the total sample (H) PCA distribution of DRG samples I PCA distribution map of DRL sample (J) PCA distribution map of Risk lncRNA sample.
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FAT3, CSMD1, and KMT2D) had higher mutation rates in the

low-risk group (Figures 11A, B). In the risk score-related samples,

there were significant differences in TMB between the high- and

low-risk groups (Figure 11C). There were significant differences in

survival between patients with high and low TMB (H/L TMB) (P <

0.05) (Figure 11D). Stratified survival analysis was performed on

H/L-TMB samples, and the samples were divided into four

subgroups: H-TMB + low risk, H-TMB + high risk, L-TMB +

high risk, and L-TMB + low risk. The survival rate of the high-risk

group was lower than that of the low-risk group (P < 0.05)

(Figure 11E). This further confirms the negative correlation
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between TMB levels and survival prognosis. Analysis of tumor

immune dysfunction and exclusion (TIDE) revealed that the high-

risk group had a higher TIDE score and was more prone to

immune escape (P < 0.05) (Figure 11F).This suggests that tumors

in the high-risk group may suppress immune responses through

multiple mechanisms, leading to poor prognosis. In summary, the

analysis revealed significant differences in TME scores and

immune cell levels between high- and low-risk groups. Notably,

various immune cells such as naive B cells and NK cells, and

immune functions, showed significant variation. High-risk groups

had higher TIDE scores, indicating a greater tendency for immune
FIGURE 8

(A) GO color bar chart of the analysis results (B) GO bar chart of the analysis results (C) Bubble chart of GO analysis results (D) Loop diagram of GO
analysis result.
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escape. Additionally, the low-risk group exhibited higher

mutation rates in key genes and better survival outcomes

compared to the high-risk group.
3.7 Prediction of effective drugs in the
high- and low-risk groups

We set the P value of screening to pFilter = 0.00000000001 for

screening effective drugs. Finally, three drugs with significantly

higher sensitivity in the high-risk group were screened: BMS-

754807, dabrafenib, and JQ1 (Figures 12A-C). As shown in

Figure 11, BMS-754807 and JQ1 had lower scores in the high-risk

group, and these two drugs were more effective in the high-risk

group. However, dabrafenib scored lower in the low-risk group and

was more effective in the low-risk group. These findings indicate

that the model can be used at an individualized level to screen drugs

likely to be effective against gastric cancer.
3.8 In vitro validation of FRMD6-AS2

The results revealed that FRMD6-AS2 was highly expressed in

HGC-27 cells and expressed at low levels in AGS cells compared

with normal GES-1 cells (Figure 13), but there were significant

differences between the two groups (P < 0.05).
4 Discussion

Stomach cancer is a global health problem, with more than 1

million people newly diagnosed worldwide each year, and it

remains the third leading cause of cancer-related death (53). The

pathogenesis of gastric cancer is poorly understood, and there are

many factors that affect gastric cancer, such as neurological (54) and

genetic (55) factors. At present, gastric cancer treatment outcomes

are not ideal, especially for intermediate- and advanced-stage

gastric cancer. Although many therapeutic methods, such as

surgery, chemotherapy, radiotherapy, and immunotherapy, are

used to treat gastric cancer, the therapeutic effect on gastric

cancer is still poor (56). Therefore, new prognostic signatures and

new therapeutic targets are needed for gastric cancer.

The DRL gastric cancer prognostic signatures constructed in this

study were composed of three lncRNAs. The screening criterion was P <

0.0005, and 100 DRL gastric cancer prognostic signatures generated by

more than 100 calculations were screened. The risk score formula for

the selected signature was as follows: Risk score= (0.544735914395105 *

AC107021.2 expression) + (0.705013376452246 * AC129507.1

expression) + (0.433534323181848 * ‘FRMD6-AS2’ expression).

Through verification, it was found that the signature performance was

basically the same in the training group and the experimental group.

The prognosis of the high-risk group was worse than that of the low-risk

group. In addition, in the stratified analysis of 14 clinical factors, there
FIGURE 9

(A) Bar chart of KEGG’s analysis results (B) Bubble chart of KEGG
analysis results (C) GSEA-GO analysis results of high-risk group
results distribution map (D) GSEA-GO analysis results of low-risk
group results distribution map (E) Distribution of results of high-risk
group analyzed by GSEA-KEGG (F) Result distribution map of GSEA-
KEGG analysis results of low-risk group.
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FIGURE 10

(A) TME-score violin chart for the high-low risk group (B) Histogram of percentage distribution of immune cells in the high-low risk group (C) Box
chart of difference analysis of immune cells in high-low risk group (D) Box chart for analysis of differences in immune function between high and
low risk groups (*, P < 0.05; **, P < 0.01; ***, P < 0.001).
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were no significant differences in survival between the high- and low-

risk groups for 3 clinical stratification factors (M1,G1-G2,T1-2), while

there were significant differences in survival between high- and low-risk

groups for the remaining 11 clinical stratification factors (age<60,

age≥60,G3,M0,Female,Male,N0-1,N2-3,Stage I-II,Stage III-IV,T3-4).

These findings further indicate that the DRL-related prognostic model

of gastric cancer can provide more accurate personalized predictions for

the prognosis of gastric cancer patients. These findings indicate that the

prognostic signature has high accuracy.

In this study, relevant samples were screened through

prognostic signatures, and differential expression analysis, GO
Frontiers in Oncology 16
and KEGG analysis, GSEA and other analyses were performed. It

has been found that the AC129507.1/(FLNA, TLN1) signaling axis

affects the prognosis of gastric cancer through the FOCAL

ADHESION pathway. Meanwhile, the AC107021.2/MYH10

signaling axis influences the prognosis of gastric cancer via the

TIGHT JUNCTION, VIRAL MYOCARDITIS, and REGULATION

OF ACTIN CYTOSKELETON signaling pathways. Among the

components of these pathways, the protein encoded by FLNA is a

radioactive protein that can cross-link actin filaments and link actin

filaments to membrane glycoproteins. In previous studies,

AC129507.1 was found to be potentially associated with the
FIGURE 11

(A) High risk group TMB waterfall map (B) Low risk group TMB waterfall map (C) Violin chart of TMB difference analysis for the high and low risk
group (D) Survival analysis diagram of high and low TMB samples (P < 0.05) (E) High-low risk stratified survival analysis diagram for high-low TMB
samples (P < 0.05) (F) Violin chart for analysis of TIDE differences between high and low risk groups (P < 0.05).
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prognosis of prostate cancer (57), but this study is the first to find a

link between AC129507.1 and stomach cancer. FLNA has been

found to be associated with a poorer prognosis for colon cancer

(58); FLNA may be beneficial as a clinical target for gastric cancer

treatment (59), and focal adhesion may be associated with the

prognosis of gastric cancer. Focal adhesion kinase may be a new

target for the treatment of gastric cancer (60). Focal adhesion kinase

(FAK) combined with YAP/TEAD inhibition can significantly

inhibit growth of gastric cancer (61). ORAI2 enhances metastasis

ability of gastric cancer cells by inducing FAK-mediated MAPK/

ERK activation (62). The combination of FAK inhibitors with

MAPK inhibitors or CDK4/6 inhibitors may be applied in the

development of gastric cancer therapies (63). We found that TLN1

may influence prognosis of gastric cancer through the PTK2-PXN-

VCL-E-Cadherin-CAPN2-MAPK1 signaling pathway (64).

Previous studies have shown that AC107021.2 may be associated

with the prognosis of lung adenocarcinoma (65); other studies

found that AC107021.2 may affect the prognosis of gastric cancer

under the condition of hypoxia (66). For MYH10, It was found that

combining FAK inhibitors with MAPK inhibitors or CDK4/6

inhibitors may be associated with drug resistance and prognosis

in ovarian cancer (67), etc. The current study revealed for the first

time that this gene may be related to the prognosis of gastric cancer.

Some studies have shown that Helicobacter pylori may affect

development of gastric cancer by affecting tight junction-encoding

protein (68). The present study is the first to show that viral
FIGURE 12

(A) BMS-754807 Drug PC50 analysis box diagram (P < 0.00000000001) (B) Drug PC50 analysis box diagram for Dabrafenib (P < 0.00000000001)
(C) JQ1 drug PC50 analysis box diagram (P < 0.00000000001).
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FIGURE 13

The qRT-PCR show FRMD6-AS2 was highly expressed in HGC-27
and low in AGS compared with normal GES-1 cells (*,P < 0.05).
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myocarditis is associated with gastric cancer, but the specific

mechanism is unclear and may be related to inflammation;

further research is needed. A study on the relationship between

regulation of the actin cytoskeleton and gastric cancer revealed that

Celastrus orbiculatus Thunb. may affect metastasis of gastric cancer

by regulating the regulation of the actin cytoskeleton (69). In

summary, this study revealed that two signaling axes associated

with disulfidptosis may influence the prognosis of gastric cancer.

FRMD6 antisense RNA 2 (FRMD6-AS2) is a noncoding RNA,

and it has been shown that it may have anticancer effects on

endometrial cancer (70). Tan et al. reported that FRMD6-AS2

may participate in immune regulation in rectal cancer (71). The

methylation of FRMD6-AS2 may be involved in inhibiting the

growth of malignantstruma ovarii (follicular carcinoma) (72). In

this study, FRMD6-AS2 was found to be highly expressed in HGC-

27 cells and expressed at lower levels in AGS cells than in normal

GES-1 cells. These findings indicate that FRMD6-AS2 is different in

normal gastric tissues and gastric cancer tissues, but there may be

differences in its expression in different gastric cancer tissues, with

high expression in some gastric cancer subtypes and low expression

in other gastric cancer tissues. However, further analysis of

pathological tissues is needed to distinguish which subtypes of

gastric cancer may have high or low expression. These findings

also suggest that FRMD6-AS may be a potential target for the

treatment of gastric cancer.

By analyzing the relationship between the TME and the

prognosis of gastric cancer, our study revealed significant

differences in TME scores between the high- and low-risk groups

(P < 0.05). NK cells can kill gastric cancer cells, and this study

revealed that the number of resting NK cells was greater in the low-

risk gastric cancer group than in the high-risk gastric cancer group,

suggesting that resting NK cells are beneficial for the prognosis of

gastric cancer (73). M2 macrophages secrete chitinase 3-like protein

1 (CHI3L1), which promotes the metastasis of gastric cancer cells

(74, 75). On the basis of the above analysis, we conclude that the

prognostic model established in this study can accurately evaluate

the efficacy of immunotherapy for gastric cancer.

Our study utilized a predictive model to identify potential drugs

that may be sensitive in the treatment of gastric cancer. The drugs

identified include BMS-754807, Dabrafenib, and JQ1. We found

that BMS-754807 may have inhibitory effects on tumor growth (76),

although its specific efficacy against gastric cancer requires further

experimental validation. Dabrafenib is primarily used for the

treatment of thyroid cancer and melanoma (77–79). Regarding

JQ1, there is a significant body of research indicating its potential in

treating gastric cancer (80, 81), as it can inhibit the growth and

metastasis of gastric cancer cells. Thus, while all three drugs have

demonstrated therapeutic effects against tumors, only JQ1 currently

has clear evidence of efficacy in treating gastric cancer. Further

research is necessary to explore the potential of BMS-754807 and

Dabrafenib in the context of gastric cancer treatment.

Although this study elucidates the potential role of DRLs in

gastric cancer, several limitations exist. First, the limited number of

samples in the TCGA database may impact the generalizability of

the model. External validation is required and should be addressed
Frontiers in Oncology 18
in future studies. Second, this study is primarily based on

bioinformatics analysis, lacking experimental validation.

Furthermore, the specific molecular mechanisms of DRLs and

how they interact with disulfide death genes require further

experimental research to clarify.
5 Conclusion

In conclusion, we established a new DRL-based prognostic

signature for gastric cancer via a multiple-screen method. This

signature effectively differentiates between high-risk and low-risk

patients, with high-risk patients having poorer outcomes. The

model’s accuracy was confirmed through various analyses,

including survival and clinical factor assessments. Immune profile

differences between risk groups were also noted, with the high-risk

group showing greater immune escape tendencies. Two signaling

axes related to disulfidptosis may be involved in the prognosis of

gastric cancer, and JQ1 may be an effective drug for the treatment of

gastric cancer. Moreover the noncoding RNA FRMD6-AS may be a

potential target for the treatment of gastric cancer, but further

experimental verification is needed. These findings offer more

possibilities for personalized treatment approaches for gastric

cancer in the future.
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