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Introduction: Brain tumors pose significant harm to the functionality of the

human nervous system. There are lots of models which can classify brain tumor

type. However, the available methods did not pay special attention to long-range

information, which limits model accuracy improvement.

Methods: To solve this problem, in this paper, an enhanced short-range and long-

range dependent system for brain tumor classification, named as EnSLDe, is

proposed. The EnSLDe model consists of three main modules: the Feature

Extraction Module (FExM), the Feature Enhancement Module (FEnM), and the

Classification Module. Firstly, the FExM is used to extract features and the multi-

scale parallel subnetwork is constructed to fuse shallow and deep features. Then, the

extracted features are enhanced by the FEnM. The FEnM can capture the important

dependencies across a larger sequence range and retain critical information at a

local scale. Finally, the fused and enhanced features are input to the classification

module for brain tumor classification. The combination of these modules enables

the efficient extraction of both local and global contextual information.

Results: In order to validate the model, two public data sets including glioma,

meningioma, and pituitary tumor were validated, and good experimental results

were obtained, demonstrating the potential of the model EnSLDe in brain

tumor classification.
KEYWORDS

brain tumor classification, feature extraction, feature enhancement, long-range
dependencies, attention
1 Introduction

The brain is the control center of the body, in addition to maintaining the normal

activities of our lives, it also controls our daily senses (hearing, sight, smell, etc.), cognition,

memory, thinking, emotions, and many other aspects of our lives (1). Undoubtedly, the

brain holds paramount importance in our lives. However, brain tumors stand as one of the
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most prevalent afflictions of the nervous system, capable of

significantly impairing its functionality. Timely detection of brain

tumors is essential for enhancing and prolonging patient survival

rates (2, 3). Tumors growing within the skull are generally known as

brain tumors, which encompass primary brain tumors originating

from brain tissue and secondary tumors that metastasize to the skull

from elsewhere in the body (4). The common types of brain tumors

include gliomas, meningiomas, and pituitary tumors (5).

Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT) are two widely used imaging techniques in

medicine that play an important role in labelling abnormalities in

the shape, size or location of the brain (6). While CT is limited to

cross-sectional imaging, MRI offers the flexibility to image in

various orientations, including transverse, sagittal, coronal, and

any desired section. Additionally, MRI excels in providing clearer

differentiation of soft tissues in three dimensions compared to

conventional imaging methods. These advantages have made MRI

the most favored method among physicians and have led to

increasing interest among researchers. However, the analysis of

MRI images by medical professionals to discern the type of tumor is

a complex and time-intensive process. The accuracy of their

diagnosis can be influenced by the subjective expertise and skills

of the physician (7, 8). It is well known that early detection and

timely treatment are crucial for the recovery of brain tumor patients

(9). If the type of brain tumor can be accurately and early identified,

it will greatly increase the patient’s valuable treatment time and thus

significantly improve the likelihood of recovery.

Traditional Machine Learning (ML) has been widely used for

classification problems in Computer-Aided Diagnostic (CAD)

systems (10, 11). For example, Singh et al. (12) proposed a new

classification method using generalized discriminant analysis and

the 1-norm linear programming extreme learning machine. Shahid

et al. (13) used a feature selection algorithm to find the effective

feature subset, which was then used for classification by an Extreme

Learning Machine (ELM) based on hybrid particle swarm

optimization. Xie et al. (14) used the combination of Support

Vector Machine (SVM) and ELM for feature selection, and the

optimal features were used by the classifier to distinguish breast

tumor types. Heidari et al. (15) applied stochastic projection

algorithm to optimize the constructed SVM model embedded

with multiple feature dimensionality reduction methods to

improve the classification performance of the model.

Deep learning stands as a cutting-edge innovation in

classification and prediction, showcasing outstanding

performance in domains necessitating multi-level data processing

such as classification, detection, and speech recognition (16). Deep

learning has the capability to learn features from extensive image

data and extract high-level features from images through layer-by-

layer convolution and pooling operations, achieving automatic

classification of brain tumors. Compared to traditional image

processing methods, deep learning boasts superior feature

extraction capability, higher classification accuracy, as well as

automation and intelligence. In recent years, many studies have

explored the application of deep learning in diagnosing various

diseases. For example, Sarki et al. (17) classified mild and multiple
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diabetic eye diseases by fine-tuning and optimizing the VGG16

model. Jeong et al. (18) used Inception V3 deep learning model to

classify the presence or absence of cardiac enlargement, and the

classification accuracy reached 96.0%. Chowdhury et al. (19)

adopted the improved Xception model to diagnose hair and scalp

diseases and achieved a high accuracy rate. Sharifrazi et al. (20) used

Convolutional Neural Network (CNN) combined with k-means

clustering method to automatically diagnose myocarditis, with an

accuracy of 97.41%. The lesion area in brain tumor images

constitutes only a small portion of the entire image. Furthermore,

when distinguishing between types of brain tumors, both the tumor

region and its surrounding area exert a significant impact on the

classification results (21). In addition, multi-scale feature fusion has

been widely applied to object detection, image segmentation, image

classification, and other fields. Multi-scale networks are capable of

simultaneously extracting features at different scales in images,

thereby more comprehensively capturing the details and overall

information of target objects. For example, in object detection tasks,

small-scale features can be used to detect small objects, while large-

scale features are helpful for detecting large objects. Features at

different scales provide different contextual information, and multi-

scale networks can effectively integrate this information, offering a

more comprehensive and rich visual context. Multi-scale networks

can handle input data at different scales, and this characteristic

significantly enhances the algorithm’s robustness and generalization

performance in complex scenarios (22). A common method for

multi-scale feature fusion is the pyramid structure. The pyramid

structure extracts features at different scales and then fuses these

features to obtain a more comprehensive feature representation.

Specifically, improved methods based on the Feature Pyramid

Network (FPN) architecture achieve deep integration of cross-

scale features by constructing multi-level pyramid-like feature

representations (23, 24).

However, most previous studies did not pay special attention to

the surrounding areas of tumors, i.e., lacking the ability to capture

long-range information, which would affect the performance of

classification. To overcome the shortcoming, this study proposes a

new multi-class brain tumor classification model with enhanced

short-range and long-range dependence, named as EnSLDe. The

model not only has the ability to capture short-range and long-

range dependencies, but also retains local key information. It

consists of three main modules: the Feature Extraction Module

(FExM), the Feature Enhancement Module (FEnM), and the

classification module.Within the FExM, convolutional layers are

combined with residual connections to extract features, while

incorporating an Effective Multi-scale Attention (EMA)

mechanism that simultaneously focuses on channel-wise and

spatial information. The FEnM further strengthens feature

representation, enabling capture of crucial long-range

dependencies while retaining key information within the local

range. The classification module adopts a two-layer fully

connected structure combined with dropout regularization for

brain tumor classification. This approach enhances the model’s

generalization ability, reducing the risk of overfitting, and further

improves the classification performance of the model. We utilized
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two datasets to evaluate the model performance: a three-category

dataset comprising gliomas, meningiomas, and pituitary tumors,

and a four-category dataset including additional healthy categories.

The main contributions of this study are as follows:
Fron
• A new model with enhanced short-range and long-range

dependence is proposed to classify brain tumor images

from MRI.

• FExM is used to extract features from brain tumor images.

The EMA module of FExM integrates channel attention

and spatial attention to provide a more comprehensive

feature representation.

• The FEnM is used to capture important dependencies

across larger sequence scales. And it can also cooperate

with the global adjustment network to fuse the retained

local information with different levels of deep features.

• EnSLDe employs multi-scale parallel subnetworks that

integrate shallow and deep features. This architecture

enables the model to capture comprehensive contextual

information across varying scales, which is critical for

distinguishing between diverse tumor types.

• Based on experimental results using two public datasets, the

proposed method exhibits excellent performance.
2 Related works

Classification of brain tumors is critical for evaluating tumors

and determining treatment options for patients. There are already

many CAD systems used in medical industries to help doctors make

diagnoses. There have been many methods to classify brain tumors,

which can be roughly divided into traditional ML methods, deep

learning methods, and hybrid methods.

In the past, traditional ML has been used to classify brain

tumors. For example, Bansal and Jindal (25) utilized a combination

of grayscale co-occurrence matrix technology and shape-based

feature technology to extract mixed features from the tumor area.

Subsequently, a hybrid classifier consisting of Random Forest

Classifier (RFC), K Nearest Neighbors (KNN) classifier, and

Decision Tree (DT) classifier was used to classify brain tumors.

26 performed image segmentation through a marker-based

watershed algorithm, then combined features with a sequence-

based cascade method, and finally used SVM for classification.

In traditional ML, relevant domain knowledge is needed for

feature extraction, while features can be automatically extracted by

deep learning. The development of deep learning methods has had a

significant impact on the field of medical image analysis

applications, especially in disease diagnosis (27). Recently, deep

learning has achieved remarkable results in brain tumor

classification. For example, Raza et al. (28) proposed a hybrid

deep learning model based on the GoogLeNet architecture. The

last five layers of GoogLeNet were removed and 15 new layers were

added to achieve high accuracy. Dıáz-Pernas et al. (29) proposed a

multi-scale processing based on CNN architecture design for brain
tiers in Oncology 03
tumor classification. The elastic transformation data expansion

method was used to increase the training dataset and prevent

over-fitting. Finally, 97.3% classification accuracy was achieved.

Ayadi et al. (30) proposed an innovative brain tumor

classification model based on CNN architecture, automated

processing and minimizing preprocessing requirements. To fully

evaluate the accuracy of the model, it was tested on three different

brain tumor datasets. Various performance indicators are analyzed

in depth. Sreenivasa Reddy and Sathish (31) proposed a brain

tumor classification and segmentation scheme based on deep

structured architecture. Firstly, adaptive ResUNet3+ with multi-

scale convolution was used to process the collected data. Then, the

parameters of the deep learning method were optimized and

adjusted through the arithmetic optimization algorithm

accelerated by the improved mathematical optimizer. Finally, an

attention-based ensemble convolutional network was introduced

for brain tumor classification. The model demonstrated excellent

performance in both segmentation and classification accuracy. P.

Ghosal et al. (32) integrated the residual network architecture with

the Squeeze and Excitation block to enhance feature extraction and

refinement. Islam et al. (33) optimized the EfficientNet series for the

purpose of brain tumor classification, with EfficientNetB3

demonstrating superior performance. Aurna et al. (34) utilized

multiple MRI datasets and performed feature extraction by

combining pre-trained models and newly designed CNN models.

Among the extracted features, Principal Component Analysis

(PCA) was used to select key features and input them into the

classifier. Musallam et al. (35) proposed a three-step preprocessing

to improve the quality of MRI images and a new Deep

Convolutional Neural Network (DCNN) architecture with 10

convolutional layers. Kumar and Sasikala (36) fused the features

extracted from the shallow and deep layers of the pre-trained

Resnet18 network, and then adopted a hybrid classifier composed

of SVM, KNN, and DT optimized by the Bayesian algorithm

perform classification.

In addition, in order to further improve the accuracy and

efficiency of brain tumor classification models, optimization

algorithms could be used in deep learning. For example, Alshayeji

et al. (37) attained a classification accuracy of 97.374% for automatic

brain tumor classification by combining the layers of two CNN

architectures and fine-tuning the hyperparameters through

Bayesian optimization. Irmak (38) used CNN and grid search

optimization algorithms to propose three different CNN models

to complete three different classification tasks. Almost all

hyperparameters in the model were tuned by grid search

optimization algorithms. Rammurthy and Mahesh (39) used

Whale Harris Hawks Optimization (WHHO), which was a

combination of Whale Optimization Algorithm (WOA) and

Harris Hawks Optimization (HHO) to optimize the deep

convolutional network. Alyami et al. (40) used deep convolutional

networks and the slap swarm algorithm to classify brain tumors

from brain MRI. To enhance the accuracy of classification, an

efficient feature selection technique—the slap swarm algorithm was

introduced. This technique helps to identify key features that

significantly influence the classification results while excluding
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those with minor contributions, thereby ensuring that the

classification model achieves optimal accuracy.

It is noteworthy that Transformer models have also been

employed in brain tumor classification tasks. Sudhakar Tummala

et al. (41) investigated the capability of pretrained and fine-tuned

Vision Transformer (ViT) models for brain tumor classification

using MRI images. GAZI JANNATUL FERDOUS et al. (42)

proposed a novel Linear Complexity Data-efficient Image

Transformer (LCDEiT). The LCDEiT adopts a teacher-student

strategy, where the teacher model is a customized gated pooling

convolutional neural network (CNN) responsible for transferring

knowledge to the transformer-based student model. The student

model achieves linear computational complexity through an

external attention mechanism. Asiri et al. (43) employed Swin

Transformer for multi-class brain tumor classification. Tapas

Kumar Dutta et al. (44) developed GT-Net for brain tumor

classification tasks. The core component of this model is the

Global Transformation Module (GTM), which contains multiple

Generalized Self-Attention Blocks (GSB) designed to explore long-

range global feature relationships between lesion regions.

These studies, whether based on traditional ML methods, deep

learning approaches, or hybrid methodologies, have achieved

notable success in brain tumor classification. Many deep learning

models (e.g., CNNs) automatically extract features but typically

focus on local or global information rather than both. For instance,

architectures like Inception-v3, ResNet, and DenseNet demonstrate

strong performance yet generally emphasize localized details or

global context without comprehensive integration. Hybrid

approaches combining traditional machine learning and deep

learning techniques may still fail to fully exploit multi-scale

feature fusion or advanced attention mechanisms. While some

models employ attention mechanisms, they often prioritize either

channel-wise or spatial attention. This paper proposes a novel

model named EnSLDe (Enhanced Short- and Long-range

Dependency Extractor), designed to strengthen both short-term

and long-range dependencies while preserving essential local

information. EnSLDe uniquely integrates short- and long-range
Frontiers in Oncology 04
dependencies through its FExM and FEnM. This dual processing

proves critical for concurrently capturing localized tumor details

and global contextual patterns in brain MRI images.
3 Proposed method

This section introduces our proposed brain tumor classification

framework, which is shown in Figure 1. The training and testing

phase of the proposed system works as follows:
1. The brain MRI dataset is divided into two disjoint sets: a

training set and a test set.

2. Data augmentation techniques such as random rotation,

random horizontal and vertical flipping are applied to the

training dataset to mitigate overfitting issues.

3. The proposed network is trained by selecting appropriate

hyperparameters and specifying the cross-entropy

loss function.

4. Once training is completed, the trained model is saved.

5. The model is validated on a randomly partitioned test

dataset, and the performance of the model is evaluated.
3.1 Proposed brain tumor classification
model

The EnSLDe consists of three main modules, namely feature

extraction module, feature enhancement module and classification

module, which is shown in Figure 2. Since both local and long-range

dependent features play a crucial role in effectively classifying brain

tumors fromMRI images, the EnSLDe employs FExM and FEnM to

extract and enhance these features. The classification module

comprises two fully connected layers integrated with Dropout

regularization, which enhances the model’s generalization ability.

Moreover, the stacked utilization of two fully connected layers can
FIGURE 1

The proposed framework for brain tumor classification system.
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amalgamate and transform features, thereby capturing more

information and optimizing the representation capabilities of

features to enhance model performance.

3.1.1 The feature extraction module
The feature extraction module consists of layer1, layer2, layer3-

1, layer3-2, layer3-3, layer4-1, layer4-2, and layer4-3, and is used to

extract multiple depth-level features from brain tumor images. The

Feature Extraction Module (FExM) was designed to extract features

from multiple intermediate layers to simultaneously capture short-

range and long-range dependencies. This multi-scale parallel sub-

network fuses shallow features (which retain fine-grained details)

with deep features (encoding abstract, high-level contextual

information). The selection of feature extraction layers was guided

by empirical validation through ablation studies, which

demonstrated that combining multiple layers achieved higher

classification accuracy compared to those obtained using a single

layer of features. Inspired by the C3 module in YOLOv5 and

integrating the Effective Multi-scale Attention (EMA) proposed

by (Ouyang et al. (45), we have developed a novel Conv and

Depthwise_conv with EMA (CDE) module, as illustrated in

Figure 3. The CDE module consists of a residual network and

EMA. The structure of the residual network involves adding skip

connections on top of the serial connection of two convolutional

layers and a depthwise separable convolutional layer. This allows for

the direct addition of input and output. Subsequently, the output

features of the entire residual network are processed by EMA.

Incorporating the residual network into the CDE module effectively

alleviates the issues of gradient explosion or vanishing, making the

model training process more stable and easier to optimize.

Additionally, depthwise separable convolution is used by CDE

module, which significantly reduces computational costs while
Frontiers in Oncology 05
maintaining powerful feature extraction capabilities, thus

achieving a good balance between efficiency and performance.

The inclusion of EMA allows the CDE module to form multi-

scale parallel subnetwork while extracting features, which fuses

shallow and deep features. This further enhances feature extraction

and strengthens short-range and long-range dependencies.

Moreover, it reshapes part of the channel dimensions into batch

dimensions, effectively avoiding potential information loss caused

by dimensionality reduction through conventional convolution.

This improvement not only reduces computational overhead but

also allows the model to focus more on extracting key features while

retaining information from each channel. Layer1 consists of two

convolutional layers and is mainly used to extract shallow image

features. Layer2 consists of the residual network in the CDE

module. layer3-1, layer3-2, and layer3-3 are all composed of CDE

modules. Layer4-1, layer4-2, and layer4-3 are all composed of

convolutional layers with a convolution kernel size of 1×1, which

are used for channel dimensionality reduction after feature fusion.

The EMA divides the channel dimension of input feature maps

into multiple sub-features and redistributes spatial-semantic

features within each feature group. Specifically, EMA avoids

traditional channel dimensionality reduction operations by

reshaping the channel dimension into the batch dimension. This

design enables EMA to model inter-channel dependencies through

standard convolution operations without losing channel

information. The EMA employs three parallel branches to extract

attention weights:
1. 1×1 Branch: Encodes channel attention along horizontal and

vertical directions using two 1D global average pooling

operations, thereby capturing long-range spatial dependencies

while preserving precise positional information.
FIGURE 2

The proposed model.
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2. 3×3 Branch: Captures multi-scale feature representations

through a 3×3 convolution kernel to expand the

feature space.

3. Cross-Space Interaction: Fuses output feature maps from

the two parallel branches via matrix dot product operations

to capture pixel-level pairwise relationships and highlight

global contextual information.
For an input featureX∈RC××H×W, it is first partitioned into G

sub-features, each with a shape of (C/G) × H×W. In the 1×1 branch,

two 1D feature vectors ZH and ZW are obtained by encoding

channel attention through 1D global average pooling along

horizontal and vertical directions, respectively. ZH and ZW can be

calculated by Equation 1:
tiers in Oncology 06
ZH =o
H

j=1
cc,j (1)

ZW =o
H

j=1
cc,j

where, xc,i and xc,j denote the eigenvalues of the c channel in the

horizontal and vertical directions, respectively. The vectors ZH and

ZW are processed through 1×1 convolutions and the Sigmoid

function to generate the channel attention maps AH and AW, can

be calculated by Equation 2:

AH = s (conv(ZW)) (2)

AW = s (conv(ZW))

Where, s denotes the Sigmoid function. In the 3×3 branch,

multi-scale feature representation F3×3 is captured by the 3×3

convolution operation as shown in Equation 3:

F3�3 = Conv3�3(X) (3)

The final output feature map Y is obtained by fusing AH and AW

matrix dot product is performed by F3×3, and the calculation

formula is shown in Equation 4:

Y = s (AH · AW · F3�3) (4)
3.1.2 The feature enhancement module
The Explicit Visual Center (EVC) method (46) is used to

enhance the features extracted by the model. The EVC can

effectively extract global long-range dependencies from images

while preserving crucial local information. The EVC combines a

Multi-Layer Perceptron (MLP) based on top-level features with a

Learnable Visual Center (LVC) mechanism, both of which operate

in parallel to complement each other. The MLP is responsible for

capturing the global long-range dependencies of the image,

effectively addressing complex long-range dependency issues, and

enhancing the model’s perception of global information.

Meanwhile, the LVC operates along the path of the MLP,

focusing on preserving the crucial local information of the image

to ensure that the model does not lose important local details while

attending to the global context. For input Fin, the equation is

calculated as follows (Equation 5):

F = Cat(MLP(Fin), LVC(Fin)) (5)

in the LVC model, the input (X) is mapped to a set of (C)-

dimensional features, ({Xin = x1, x2, …, xn}), where (N=H×W)

represents the total number of input features. Subsequently, LVC

computes an intrinsic codebook (B = {b1, b2, …, bk}), which

includes (K) codewords (or visual centers) along with a set of

smoothing factors (S = {s1, s2, …, sk}). The feature encoding is

achieved through a series of convolutional layers. The encoded

features are then matched against each codeword in the codebook.

The discrepancies between the features and the codewords are

computed, and learnable weights are derived from these
FIGURE 3

The structural diagram of the CDE module.
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differences. The ultimate output is a (C)-dimensional vector (e)

(Equation 6).

ek =o
n

i=1

e−Sk xi−bkk k2

oK
j=1e

−Sk xi−bkk k2 (xi − bk) (6)

The output of LVC is obtained by summing the features vector

(Xin) and the local features (Z) for each channel, as shown in

Equation 7.

Xout = Xin ⊕ Z (7)

here, the local feature (Z) is derived by applying a Fully

Connected (FC) layer that maps the feature (e) to an influence

factor of dimensions C×1×1. Subsequently, a channel-wise

multiplication operation is conducted with (Xin). The output

following the Feature Enhancement Module is then obtained as

follows (Equation 8):

F = Cat(XEVC ,Xd) (8)

where, F represents the fusion feature, XEVC denotes the feature

output from the EVC, and Xd signifies the depth feature derived

from various levels.
3.2 Loss function

The loss function we used during model training is the cross-

entropy loss function (47). One can assume there are n classes, where

the true label is represented by a K-dimensional vector y (with only one

element being 1 and others being 0), and the model output probability

is represented by a K-dimensional vector y’ (with each element ranging

from 0 to 1 and summing up to 1). The formula for multi-class cross-

entropy loss function is defined as shown in Equation 9.

Loss = −o
n

i=1
yi log yi

0 (9)

where, n is the number of categories, yi is the i-th element of the

true label vector y, and yi’ is the i-th element of the model output

probability vector yi.

The cross-entropy loss function is an efficient loss function in

classification problems as it accurately measures the similarity

between the true label distribution and the model’s predicted
Frontiers in Oncology 07
label distribution. Specifically, a smaller cross-entropy value

indicates a closer resemblance between these two probability

distributions, implying more accurate predictions by the model.

When there is a significant disparity between the true and predicted

distributions, the cross-entropy loss function yields a large loss

value. This characteristic enables the model to update parameters

more quickly during training, thus accelerating the learning process.

The amplifying effect of the cross-entropy loss function makes the

model more sensitive to prediction errors during training,

facilitating more effective adjustment of model parameters and

reducing the likelihood of erroneous predictions. Therefore, the

cross-entropy loss function is well-suited as a loss function for

classification models, particularly excelling in handling multi-class

classification problems.
4 Results and discussion

This study was conducted on a computer equipped with

RTX3080 graphics card of 10 GB video memory and 64 GB

of RAM.
4.1 Brain tumor dataset and preprocessing

In this paper, two publicly available brain tumor MRI datasets are

applied for the brain tumor multi-classification task. Details of these

two datasets are provided in Table 1. Both Cheng dataset and BT-

large-4c dataset contain different views of brain anatomy: axial,

coronal and sagittal views. Additionally, both datasets contain

different numbers of brain tumor categories obtained from different

patients with differences in tumor grade, race, and age. The Cheng

dataset contains 3 types of brain tumors, namely glioma, meningioma

and pituitary tumor. Among them, there are 1426 glioma images, 708

meningioma images and 930 pituitary tumor images, for a total of

3064 grayscale brainMagnetic Resonance (MR) images (48). The BT-

large-4c dataset consists of 3264 brain MR images, including 926

glioma, 940 meningioma and 901 pituitary tumor images, and the

remaining 497 normal images (49). These two datasets are split into

80% for training and 20% for testing.

During the dataset preprocessing phase, we implemented an

efficient and streamlined data preprocessing protocol. To ensure
TABLE 1 Details of the datasets used in this study.

NO. Dataset name Classes Number of Each class Total number of images

1 Cheng

Glioma 1426

3064Meningioma 708

Pituitary 930

2 BT-large-4c

Glioma 926

3264
Meningioma 940

Pituitary 901

No tumor 497
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image content integrity and feature stability in experimental

settings, all images were uniformly resized to dimensions of

224×224×3 pixels. This standardized resizing not only preserves

the spatial structure and informational completeness of images but

also significantly reduces computational overhead during network

training, thereby enhancing training efficiency. Additionally, a

standardization procedure was applied—a conventional

preprocessing technique in deep learning—to mitigate variations

in illumination, contrast, and other attributes across images,

enabling the model to focus on learning intrinsic features.

Considering that deep neural networks typically require large-

scale datasets for training while our study employed a relatively

limited dataset, data augmentation strategies were systematically

deployed to alleviate overfitting. Specifically, techniques including

random rotation, cropping, and horizontal flipping were

implemented. These operations effectively enhanced dataset

diversity without introducing additional noise, thereby

strengthening the model’s generalization capabilities.
4.2 System implementation and evaluation
metrics

During the model training process, we will fine-tune

hyperparameters such as batch size, optimizer type, learning rate,

epochs, and loss function based on experience and actual

requirements. The objective of this process is to identify the

optimal combination of hyperparameters to enhance the model’s

performance and achieve the desired training outcomes. In this

model, we employ the Adam optimizer with an initial learning rate

of 0.001, 150 epochs, and a mini-batch size of 16 samples.

In this study, the performance of the proposed method is given

by accuracy, recall, precision, and F1 -score (Cohen’s) were used for

evaluation Kappa(k), Matthews Correlation Coefficient (MCC) are

given by this is given by Equations 10–15 (50):

Accuracy =
TP + TN

TP + TN + FP + FN
(10)
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Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 − score =
2� Precision� Recall
Precision + Recall

(13)

k =
po − pe
1 − pe

(14)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (15)

where, True Positives (TP) are the number of actual and

predicted positives. True Negatives (TN) are the number of

negatives that are both actual and predicted. False Positives (FP)

are the number of actual negatives that are predicted to be positive.

False Negatives (FN) are the number of actual positives that are

predicted to be negative. po is the proportion of inter-observers who

actually agree. pe is the proportion of agreement expected based on a

random assignment.
4.3 Experimental results

The proposed method is applied to the Cheng dataset and the

BT-large-4c dataset for classification, and the corresponding

confusion matrix is generated, as shown in Figures 4A, B. In

these matrices, the label “G” represents glioma, “M” represents

meningioma, “P” represents pituitary tumor, and “N” represents no

tumor. The confusion matrices vividly illustrate the classification

performance of the model for each category. Additionally, the

detailed values of model metrics obtained on the Cheng and BT-

large-4c datasets are shown in Table 2. These metrics offer a

quantitative basis for comparison, facilitating the evaluation of

the model’s performance and comparison with other methods. It

is noteworthy that on the Cheng dataset, our model demonstrated
FIGURE 4

Confusion matrix of the proposed model (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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exceptionally high classification performance, achieving an

accuracy of 98.69%. Similarly, on the BT-large-4c dataset, the

model achieved a classification accuracy of 97.10%. The total

number of parameters in the EnSLDe model is 87 million (87M).

The total memory size required for the model during operation

(including training and inference) is 2792.73MB. The memory size

required for one forward and backward propagation process in the

model is 2459.25MB.

The Receiver Operating Characteristic (ROC) curve is a graphical

tool used to represent the performance of a classification model. It

effectively evaluates the performance of the model under different

classification thresholds by taking the False Positive Rate (FPR) and

True Positive Rate (TPR) as the horizontal and vertical coordinates.
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The Area Under the Curve (AUC) quantitatively assesses the quality

of the classification model. Higher AUC values indicate better model

performance, with values closer to 1 indicating more ideal

classification performance. Specifically, the ROC curves of our

proposed model on the Cheng dataset and BT-large-4c dataset are

depicted in Figures 5A, B, respectively. On the Cheng dataset, the

AUC values for glioma, meningioma, and pituitary tumor in our

proposed model are 0.9982, 0.9991, and 1.0000, respectively. On the

BT-large-4c dataset, the AUC values for glioma, meningioma,

pituitary tumor, and no tumor in our proposed model are 0.9941,

0.9921, 0.9999, and 0.9967, respectively. These results indicate that

our proposed model exhibits excellent classification performance on

both the Cheng dataset and BT-large-4c dataset.
FIGURE 5

ROC curve for EnSLDe (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
TABLE 2 Detailed metric values of the proposed model on Cheng and BT-large-4c datasets.

Dataset Tumor type Precision Recall F1-score Accuracy k Mcc

Cheng

Glioma 0.9894 0.9860 0.9877

0.9869 0.9795 0.9795
Meningioma 0.9718 0.9787 0.9753

Pituitary 0.9946 0.9946 0.9946

Average 0.9853 0.9864 0.9859

BT-large-4c

Glioma 0.9626 0.9677 0.9651

0.9710 0.9607 0.9607

Meningioma 0.9572 0.9521 0.9547

No tumor 0.9700 0.9700 0.9700

Pituitary 0.9945 0.9945 0.9945

Average 0.9711 0.9711 0.9711
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4.4 Ablation experiment

This ablation experiment aims to comprehensively evaluate the

impact of attention module, FEnM and data enhancement on

model performance. The following three subsections will

demonstrate in detail the contribution and importance of these

three key components to model performance.

4.4.1 The impact of the attention module on the
model

In this section, the influence of various attention modules on

our proposed model is investigated. The new models reconstructed

from these attention modules and our proposed model include:

Squeeze-and-Excitation(SE) (51) instead of EMA in EnSLDe named

as EnSLDe-SE, Coordinate Attention (CA) (52) instead of EMA in

EnSLDe named as EnSLDe-CA, Convolutional Block Attention

Module (CBAM) (53) instead of EMA in EnSLDe named as

EnSLDe-CBAM and the one removing EMA from EnSLDe

named as EnSLDe-NoEMA. These models are used for

classification prediction on the Cheng dataset, and the results are

shown in Figure 6.

From Figure 6, it is evident that the EnSLDe-SE does not

perform well in these models, with an accuracy of only 96.41%.

Conversely, the EnSLDe exhibits exceptional performance in these

models, achieving an accuracy of 98.69% and demonstrating

excellent performance across other evaluation metrics.
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Specifically, the EnSLDe attains 98.53%, 98.64%, and 98.59% in

precision, recall, and F1-score parameters, respectively. Moreover,

when the EMA module is removed, the model’s accuracy

significantly drops to 97.06%. This comparison underscores the

crucial role of the EMA module in enhancing the performance of

the proposed model. The inclusion of the EMA module not only

boosts the classification accuracy of the model but also achieves

balanced optimization across multiple evaluation metrics, thereby

enabling the model to maintain high performance levels.

4.4.2 The impact of the FExM on the model
FExM is the cornerstone of the EnSLDe architecture, designed

to hierarchically extract multi-scale contextual features through the

combination of convolutional layers, residual connections, and the

EMA mechanism. To rigorously evaluate its contribution, we

conducted a comparative analysis of the model’s performance

with and without the FExM module. When the FExM was not

used, the model’s performance metrics—Precision, Recall, F1-score,

and Accuracy—were 0.9656, 0.9722, 0.9683, and 0.9706,

respectively, which were consistently lower than those of the

model with FExM. It is worth noting that the precision dropped

by 1.63%, highlighting the crucial importance of FExM to the

overall model performance. Furthermore, in the ablation study,

the p-value for the paired t-test of accuracy was 0.0013 (below the

significance level, a = 0.05), with a confidence interval ranging from

[0.0442, 0.1815].
FIGURE 6

Impact of each attention module.
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4.4.3 The impact of the FEnM on the model
This section primarily examines the impact of the FEnM on the

proposed model, with specific results depicted in Figure 7. The

figure clearly illustrates that introducing FEnM significantly

enhances the classification performance of the model on the

Cheng dataset. Specifically, the accuracy, precision, recall, and F1-

score of the model have increased by 2.12%, 2.66%, 1.76%, and

2.27%, respectively. The p-value of the paired t-test for accuracy

with and without FEnM was 0.0094 (which is below the significance

level, a = 0.05), and the confidence interval range was [0.0228,

0.1595]. The notable performance improvement can be attributed

to the effective role of the FEnM. The FEnM not only substantially

enhances the extracted features but also excels in capturing

important long-range dependencies. Moreover, the FEnM can

integrate the retained local key information with different levels

of deep features, thereby enriching the expressive capabilities of

features. Through this feature enhancement method, the model can

more accurately identify brain tumors in classification tasks.

4.4.4 The impact of data augmentation on
models

This experiment utilizes two datasets: the Cheng dataset and the

BT-large-4c dataset. Through the application of data augmentation

techniques, the classification performance of the proposed model

on these datasets is significantly enhanced. The impact of data

augmentation on the model is illustrated in Figure 8. Specifically, for

the Cheng dataset, the accuracy is improved by 3.92%, and for the
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BT-large-4c dataset, the accuracy is improved by 3.51%. These

results highlight the crucial role of data augmentation techniques in

enhancing model performance. In particular, by incorporating data

augmentation with random horizontal or vertical flipping of

images, the model becomes adept at learning tumor

characteristics from various orientations and locations. This

implies that the model can effectively identify and classify tumors

even when their orientation or location varies in real-

world applications.

4.4.5 Ablation studies on layer selection
To further validate the selection of feature extraction layers, we

conducted an ablation study, the results of which are summarized in

Table 3. When features were extracted from a single layer (shallow

or deep), classification accuracy was consistently lower than that

achieved via a multilayer fusion approach. To assess whether the

observed differences in performance were statistically significant,

paired t-tests were conducted. The tests compared classification

accuracies of deep layers (which demonstrated superior

performance to shallow layers) and multilayer fusion, positing the

null hypothesis that there was no significant difference in

performance. The paired t-test produced a p-value of 0.03 (below

the significance level, a = 0.05), indicating a statistically significant

difference in performance. By combining features from shallow and

deep layers, the model captured a more holistic representation of

the input data. The confidence interval for the difference in accuracy

(which ranged from [-0.013, -0.0019]) excluded zero, confirming
FIGURE 7

Impact of FEnM.
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that the multilayer fusion approach surpassed single-layer

extraction. The shallow layer provided detailed local information,

whereas the deep layer captured global contextual features. This

combination enhanced the model’s ability to discern complex

patterns in brain tumor images.

4.4.6 Impact of hyperparameter selection on
model performance

Hyperparameters are an important aspect that affects model

performance, and different hyperparameters can lead to different

experimental results. In this section, the impact of the

hyperparameters batch size, lr, and optimizer on model

performance will be verified. Table 4 presents the experimental

results. By comparing Tables 2, 4, it can be found that the

hyperparameter values selected in this paper are quite good.
4.5 Cross-dataset validation

To comprehensively validate the model, cross-validation was

employed. The BT-large-4c dataset, comprising glioma, pituitary

tumor, and meningioma data, was used to evaluate the model

trained on the Cheng dataset. The cross-validation results for

accuracy, precision, recall, and F1-score were 92.98%, 93.2%,

93.02%, and 93.01%, respectively. These outcomes indicate that

the proposed model exhibits significant robustness.
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4.6 Discussion

To further quantify the performance of the proposed model.

The classification results obtained by our proposed model are

compared with those obtained by previous state-of-the-art models

using the same dataset, as shown in Table 5. Noreen et al. (54)

proposed a method integrating deep learning with machine learning

models, employing deep learning for feature extraction, including

the Inception-v3 and Xception models. Additionally, the

classification of brain tumors through deep learning and machine

learning algorithms such as softmax, RF, SVM, KNN, and ensemble

techniques were explored. Bodapati et al. (55) developed a dual-

channel deep neural network architecture for brain tumor

classification using pre-trained InceptionResNetV2 and Xception

models, incorporating attention mechanisms to enhance accuracy

and generalization capabilities in brain tumor recognition. Shaik

and Cherukuri (56) designed and implemented a multi-level

attention network (MANet). The proposed MANet includes

spatial and channel-wise attention mechanisms, prioritizing

tumor regions while maintaining the inter-channel temporal

dependencies in the semantic feature sequences obtained from the

abnormal areas. Öksüz et al. (57) utilized pre-trained AlexNet,

ResNet-18, GoogLeNet, and ShuffleNet networks to extract deep

features from images, and designed a shallow network for extracting

shallow features, fusing these features and classifying them with

SVM and KNN. Jaspin and Selvan (58) proposed a multi-class
TABLE 3 Layer selection of experimental results in dataset Chen.

Method Precision Recall F1-score Accuracy

Shallow layer 0.9554 0.9539 0.9546 0.9592

Deep layer 0.9683 0.9645 0.9664 0.9690

Multilayer fusion (ours) 0.9853 0.9864 0.9859 0.9869
FIGURE 8

Impact of Data Augmentation (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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convolutional neural network (MCCNN) model for identifying

tumors in brain MRI images. This network, consisting of an 11-

layer structure including three convolutional layers, three max-

pooling layers, one flattening layer followed by three dense layers,

and an output layer, achieved classification performance on par

with pre-trained models. Md. S. I. Khan et al. (59) designed a 23-

layer convolutional neural network for brain tumor classification.

Satyanarayana et al. (60) introduced a density convolutional neural

network model based on mass correlation mapping (DCNN-MCM)

for brain tumor classification. This model leverages the average

mass elimination algorithm (AMEA) and mass correlation analysis

(MCA) for the extraction and training of significant features of

brain tumors, using a CNN model for efficient classification.

Kibriya et al. (61) developed a 13-layer CNN specifically for brain

tumor classification. Dutta et al. (62) introduced an attention-based

residual multi-scale CNN, termed ARM-Net. This model includes a

lightweight residual multi-scale CNN architecture known as RM-

Net and introduces a lightweight global attention module (LGAM)

to selectively learn more discriminative features. S. U. R. Khan et al.

(63) employed the DenseNet169 model for feature extraction and

fed the extracted features into three multi-class machine learning

classifiers: RF, SVM, and gradient-boosting decision trees
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(XGBoost). Brain tumor classification was performed through the

integration of these classifiers using a majority voting strategy.

Demir and Akbulut (64) used a new multi-level feature selection

algorithm to select the 100 deep features with the highest

significance and adopted the SVM algorithm with Gaussian

kernel for classification and achieved better performance. Senan

et al. (65) employed both AlexNet and ResNet18 in conjunction

with SVM for brain tumor classification and diagnosis. Initially,

deep learning techniques were used to extract robust and significant

deep features through deep convolutional layers, followed by

classification using SVM. Ravinder et al. (66) proposed a graph

convolutional neural network (GCN) model. This model integrates

graph neural networks (GNN) with traditional CNNs. Our EnSLDe

achieves superior performance compared to other methods. This

depends on its ability to enhance short-range and long-range

dependencies. EnSLDe yields experimental results for the Chen

dataset. On the BT-large-4c dataset, EnSLDe underperforms

AlexNet+SVM by a margin of 0.0139 in terms of precision.

Nonetheless, it excels in other performance indicators. The

EnSLDe model demonstrates exceptional performance on the

Cheng and BT-large-4c datasets, achieving high accuracy rates of

98.69% and 97.10%, respectively. These results highlight the
TABLE 5 Comparison of our proposed model with previous models.

Reference Dataset Method Precision Recall F1-score Accuracy

Noreen et al. (54)

Cheng

Inception-v3+Ensemble – – – 0.9434

Bodapati et al. (55) Two-Channel DNN – – 0.9779 0.9523

Shaik and Cherukuri (56) MANet 0.9614 0.9599 0.9603 0.9651

Öksüz et al. (57) ResNet18+ShallowNet+SVM 0.9525 0.9527 0.9526 0.9725

Jaspin and Selvan (58) MCCNN 0.95 0.95 0.96 0.9517

Md. S. I. Khan et al. (59) 23-layer CNN 0.965 0.964 0.964 0.978

Satyanarayana et al. (60) DCNN-MCN – – – 0.94

Kibriya et al. (61) 13-layer CNN 0.97 0.96 0.965 0.972

Dutta et al. (62) ARM-Net 0.9646 0.9609 0.9620 0.9664

S. U. R. Khan et al. (63) Hybrid-NET 0.95 0.94 0.94 0.951

Dutta et al. (44) GT−Net – – 96.39 97.11

The Proposed Method EnSLDe 0.9853 0.9864 0.9859 0.9869

Demir and Akbulut (64)

BT-large-4c

R-CNN+SVM 0.964 0.9645 0.964 0.966

Senan et al. (65) AlexNet+SVM 0.985 – – 0.951

Ravinder et al. (66) GCNN 0.9525 0.965 0.9587 0.9501

The Proposed Method EnSLDe 0.9711 0.9711 0.9711 0.971
TABLE 4 Experimental results for different hyper-paramete.

Hyper-parameter Value Precision Recall F1-score Accuracy

Batch 8 0.9739 0.9770 0.9754 0.9771

Lr 0.0001 0.9835 0.9811 0.9823 0.9837

Optimizer SGD 0.9800 0.9757 0.9778 0.9804
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model’s ability to effectively capture both short-range and long-

range dependencies in brain tumor images, leading to improved

classification accuracy. And multi-scale parallel subnetworks fuse

shallow and deep features to capture comprehensive information.

However, it is important to note that the performance of any model,

including EnSLDe, can vary depending on the specific

characteristics of the data it is applied to. While EnSLDe

outperforms several state-of-the-art models on these datasets, its

genera l i z ab i l i t y to rea l -wor ld app l i ca t ions requ i res

further validation.

In order to more intuitively display the effect of our proposed

method, we used the t-SNE (67) algorithm to reduce the

dimensionality of high-dimensional feature data and drew a

scatter plot on a 2-dimensional plane. Figures 9A–C depict scatter

plots obtained by removing FEnM, EMA, and Data Augmentation,

respectively. There are instances where the glioma class and the

meningioma class are interconnected and nested. However, in

Figure 9D, obtained by EnSLDe, the sample points of each class

are closely clustered together, with clear separation between

different categories. This intuitively underscores the significance
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of FEnM, EMA, and Data Augmentation for the model. The ability

of the model to distinguish features effectively is enhanced by them.

As shown in Figure 4 and Table 2, the EnSLDe model achieves

superior classification performance for pituitary tumors (precision:

0.9946, recall: 0.9946) compared to gliomas (precision: 0.9894,

recall: 0.9946) and meningiomas (precision: 0.9718, recall:

0.9787), the latter of which exhibits the lowest performance

metrics. A comparison of Figures 9A–D illustrates that EnSLDe

employs effective strategies to differentiate gliomas from

meningiomas. However, persistent feature overlap hinders the

model’s ability to achieve optimal classification accuracy.

The EnSLDe model is designed to capture both short- and long-

range dependencies within images, demonstrating considerable

potential for generalization beyond the classification of brain

tumors. Its architecture, which incorporates a multi-scale parallel

subnetwork and feature enhancement modules, is well-suited for a

wide range of medical imaging tasks. Additionally, the model is

adaptable to the classification of tumors in various organs, such as

lung, breast, and liver tumors. The model’s ability to effectively

capture contextual information makes it suitable for the
FIGURE 9

2-dimensional scatter plots of deep feature sets (A) EnSLDe without FEnM, (B) EnSLDe without EMA, (C) EnSLDe without Data Augmentation,
(D) EnSLDe.
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identification of different lesion types and the detection of

abnormalities across a diverse array of medical conditions.

Adapting the EnSLDe model to a new task necessitates several

adjustments. First, the model requires retraining on a task-specific

dataset, including modifying the number of output categories and

fine-tuning the classification module. Furthermore, the feature

extraction module may require modification to account for

variations in imaging characteristics, such as resolution and

contrast. Despite its design efficiency, the EnSLDe model exhibits

limited scalability, particularly in resource-constrained

environments. Training the model demands substantial

computational resources, particularly for large-scale datasets.

However, incorporating efficient convolutional layers and

depthwise separable convolutions mitigates these computational

demands. To address scalability challenges, several strategies may

be implemented. For instance, model compression techniques (e.g.,

pruning and quantization) can substantially reduce computational

complexity while maintaining competitive performance.

To further understand the decision-making process of the

proposed EnSLDe model and validate its ability to focus on

relevant regions in brain tumor classification, we visualized the

feature maps using the Grad-CAM++ method. The results are

shown in Figure 10. Grad-CAM++ is a widely used technique for

visualizing the regions of interest in image classification tasks,

providing insights into the model’s attention mechanism. As

shown in Figure 10, the feature maps generated by the EnSLDe

model effectively highlight brain tumor regions, demonstrating the

model’s ability to distinguish between brain tumor and non-tumor

regions. This visualization confirms that the model focuses on

tumor regions, which is critical for accurate classification.

However, it is also clear that the model focused on other non-

tumor regions. This observation suggests that the model effectively

captures key brain tumor features while incorporating additional

contextual information from surrounding brain regions, which may
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contribute to its high classification accuracy. While the EnSLDe

model demonstrated strong performance in focusing on relevant

regions, the visualization results also highlighted areas for potential

improvement. Specifically, the model’s focus on non-tumor regions

suggests that there may be opportunities to refine the feature

extraction and enhancement modules to emphasize the most

critical features further. Future work could explore advanced

attention mechanisms or additional regularization techniques to

ensure that the model focuses more precisely on tumor regions,

potentially leading to higher classification accuracy.
5 Conclusion

A new multi-class brain tumor classification model, named

EnSLDe, has been proposed. This model is primarily composed of

three modules: FExM (Feature Extraction Module), FEnM (Feature

Enhancement Module), and the classification module. FExM

efficiently extracts features using convolutional layers and residual

networks and combines EMA (Efficient Multi-Attention) to

simultaneously focus on both channel and spatial information of

the features. This effectively preserves the information of each

channel, preventing the loss of important features during the

compression of the channel dimension. The design of FEnM aims

to deeply integrate shallow and deep features, facilitating a more

comprehensive understanding of the features and the extraction of

advanced and important features. Additionally, the model’s ability

to capture short-range and long-range dependencies has been

enhanced. The feature enhancement module further strengthens

the features by effectively capturing important dependencies over a

large sequence range while preserving local key information. The

double-layer fully connected structure is adopted as the core of the

classification module and combined with dropout regularization

technology, which further improves the model classification
FIGURE 10

Heat map visualization of the model (A) Original image (B) Heat map.
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performance. Experimental evaluations conducted on the

challenging Cheng dataset and BT-large-4c dataset demonstrate

the excellent performance of our model in brain tumor classification

tasks. On the Cheng dataset, the model achieves accuracy, recall,

precision, and F1-score of 98.69%, 98.53%, 98.64%, and 98.59%,

respectively. Similarly, on the BT-large-4c dataset, the model attains

accuracy, recall, precision, and F1-score of 97.10%, 97.11%, 97.11%,

and 97.11%, respectively. Indeed, the differentiation between glioma

and meningioma remains suboptimal. Further refinement is

required to enhance the model’s ability to distinguish accurately

between these two tumor types. Future studies should augment the

dataset to include a broader range of brain disorders, thereby

enriching the model’s training corpus and enhancing its capacity

to differentiate among diverse neurological pathologies.

Additionally, strategic modifications to the model’s architecture,

training protocols, and loss functions could be implemented to

optimize its discriminative performance in distinguishing gliomas

from meningiomas. And the model was deployed, and the clinical

capabilities of the model were verified by combining the doctors

commanded by experience.
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