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Objectives: To construct a multiphase contrast-enhanced CT-based radiomics

nomogram that combines traditional CT features and radiomics signature for

predicting the invasiveness of pancreatic solid pseudopapillary neoplasm (PSPN).

Methods: A total of 114 patients with surgical pathologic diagnoses of PSPNwere

retrospectively included and classified into training (n = 79) and validation sets

(n = 35). Univariate and multivariate analyses were adopted for screening

traditional CT features significantly associated with the invasiveness of PSPN as

independent predictors, and a traditional CT model was established. Radiomics

features were extracted from the contrast-enhanced CT images, and logistic

regression analysis was employed to establish a machine learning model,

including an unenhanced model (model U), an arterial phase model (model A),

a venous phase model (model V), and a combined radiomics model (model U+A

+V). A radiomics nomogram was subsequently constructed and visualized by

combining traditional CT independent predictors and radiomics signature. Model

performance was assessed through Delong’s test and receiver operating

characteristic (ROC) curve analysis. Decision curve analysis (DCA) was applied

to assess the model’s clinical utility.

Results: Multivariate analysis suggested that solid tumors (OR = 6.565, 95% CI:

1.238–34.816, P = 0.027) and ill-defined tumor margins (OR = 2.442, 95% CI:

1.038–5.741, P = 0.041) were independent predictors of the invasiveness of

PSPN. The areas under the curve (AUCs) of the traditional CT model in the

training and validation sets were 0.653 and 0.797, respectively. Among the four

radiomics models, the model U+A+V exhibited the best diagnostic performance,

with AUCs of 0.857 and 0.839 in the training and validation sets, respectively. In

addition, the AUCs of the nomogram in the training and validation sets were 0.87

and 0.867, respectively, which were better than those of the radiomics model

and the traditional CT model. The DCA results indicated that with the threshold
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probability being within the relevant range, the radiomics nomogram offered an

increased net benefit to clinical decision making.

Conclusion: Multiphase contrast-enhanced CT radiomics can noninvasively

predict the invasiveness of PSPN. In addition, the radiomics nomogram

combining radiomics signature and traditional CT signs can further improve

classification ability.
KEYWORDS

contrast-enhanced computed tomography (CECT), radiomics, nomogram, pancreatic
solid pseudopapillary neoplasm (PSPN), invasiveness
1 Introduction

Pancreatic solid pseudopapillary neoplasm (PSPN) is a rare,

low-grade malignant tumor accounting for 0.9% – 2.7% of all

pancreatic tumors. Previous studies have shown that PSPN is

more common in women under 40 years of age, whereas in men,

the incidence of PSPN is lower, the age of onset is much older, and

the malignant grade is higher (1–5). PSPN is a heterogeneous

tumor, with a minor subset potentially exhibiting invasive

characteristics, which significantly influence patient prognosis.

Invasive behavior may involve perineural invasion, infiltration of

adjacent organs and blood vessels, invasion into the pancreas and

surrounding adipose tissue, as well as distant metastasis and

regional lymph node involvement (6, 7). Currently, surgical

resection is considered the preferred and most effective treatment

for PSPN, and radical surgery is associated with a favorable

prognosis, achieving a postoperative survival rate of 80% – 90%

(8–10). In recent years, conservative surgical methods, such as

tumor exenteration or laparoscopic surgery, have often been used

for noninvasive PSPN patients, whereas for invasive PSPN patients,

extended radical resection is needed to ensure a satisfactory long-

term prognosis, and incomplete resection or positive resection

margins may increase the risk of recurrence (11–13). Compared

with conservative surgical methods, a wide range of pancreatic

resections may lead to postoperative complications and pancreatic

endocrine and exocrine dysfunction. Consequently, the

preoperative differentiation of invasive and noninvasive PSPN is

highly important for selecting appropriate surgical methods in the

clinic and avoiding unnecessary resection (14, 15). However,

obtaining preoperative pathological results is often challenging.

The accuracy of pathological diagnosis from needle biopsy is

restricted by the sample quality and quantity, which may not

adequately reflect tumor heterogeneity. Additionally, needle

biopsy carries the risk of tumor cell dissemination along the

needle tract. Consequently, this complicates and raises

controversy regarding the selection of the appropriate surgical

approach for surgeons (16, 17).
02
CT is the first choice for the examination of pancreatic lesions,

and enhanced CT can display invasive signs well, which is highly

valuable for the preoperative evaluation of invasive and noninvasive

PSPN (2). Nevertheless, image interpretation is limited by the

subjectivity of radiologists; thus, finding a quantitative and

objective method to evaluate invasive and noninvasive PSPN is

highly important. Radiomics uses high-throughput extraction of

implicit quantitative features (texture, shape, wavelet transform

parameters, etc.) in images, combined with machine learning

algorithms to mine tumor heterogeneity information, providing a

new idea for non-invasive prediction of PSPN invasiveness.

Previous studies have shown that radiomics has great potential in

the diagnosis, assessment of invasiveness, biochemical recurrence

prediction, and metastasis of pancreatic tumors (18–21). Tobaly

et al. (18) found that radiomics features extracted from CT images

can distinguish low-risk and high-risk Intraductal papillary

mucinous neoplasms and guide surgical decision-making. Shi

et al. (20) extracted radiomics features based on MR images and

constructed a model combining clinical information to differentiate

PSPN and pancreatic neuroendocrine tumor. The study results

showed that the accuracy of the radiomics model was 92.42%, which

was significantly higher than that of subjective diagnosis.

However, previous studies have focused on differentiating PSPN

from other pancreatic tumors. Few studies have employed contrast-

enhanced CT (CECT) radiomics to predict the invasiveness of PSPN.

The purpose of this study was to developed and demonstrated a

radiomics nomogram based on radiomics and traditional CT signs to

predict the invasiveness of PSPN and provide clinicians with

treatment decisions, especially the choice of surgical approach.

2 Materials and methods

2.1 Participants

This study was approved by the Ethics Committee of Taizhou

central hospital (Approval Number: 2024L-07-20) and Ningbo

medica l centra l L ihui l i hospita l (Approval Number :
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KY2024SL370-01), and the requirement of informed consent was

waived due to the retrospective nature of this two-center study.

Patients with a pathological diagnosis of PSPN were retrospectively

collected between June 2015 and July 2023 according to the

following inclusion criteria: (I) without a history of additional

tumor types; (II) underwent CECT before surgery (including

unenhanced scanning, arterial phase, and venous phase enhanced

scanning); and (III) underwent surgery within 30 days after CECT

examination. The exclusion criteria were as follows: (I) the patient

had undergone puncture or treatment before CECT examination;

(II) poor image quality; and (III) incomplete pathological/clinical

data. The patient recruitment process is shown in Figure 1. A total

of 114 PSNP cases were included in the present study, 42 of whom

were from Taizhou central hospital and the remaining were from

Ningbo medical central Lihuili hospital.
2.2 CT examination protocol

Patients were scanned using 64-row CT (Discovery CT 750 HD,

GE Healthcare, Waukesha, WI, United States). Unenhanced

scanning and dual-phase enhanced scanning were performed

while the patients were in the supine position with their breath

held. For contrast-enhanced examination, iohexol (Omnipaque,

350 mgI/mL, GE Healthcare) was injected via the superior cubital

vein at a rate of 2.5 – 3.0 mL/s and a dose of 1.5 – 2.0 mL/kg. In

addition, arterial and venous phase enhanced images were acquired
Frontiers in Oncology 03
at about 25–30 s and 50–60 s post-injection respectively. The CT

parameters of the two medical centers are detailed in Table 1.
2.3 Analysis of images

The CT images were analyzed by 2 radiologists with more than

10 years of experience in abdominal diagnosis, and when there was

disagreement, it was negotiated.

A qualitative evaluation revealed the following: tumor location

(pancreatic head, neck, body and tail), tumor shape (round,

irregular), tumor margin (well-defined, ill-defined), the presence

of calcification, pancreatic atrophy, and pancreatic duct dilatation.

Quantitative evaluation: Manual measurements were

performed 3 times, and the average value was calculated as

follows: (I) the maximum diameter of the tumor; (II) tumor

texture: a cystic area less than 30% was defined as a solid lesion, a

cystic area greater than 70% was defined as a cystic lesion, and the

remaining proportion was defined as a mixed cystic-solid lesion.

The cystic components were defined as those with CT attenuation <

20 Hounsfeld Units on unenhanced images.
2.4 Pathology analysis

All pathological results were derived from postoperative

biopsies and subsequently re-evaluated by a pathologist with 15
FIGURE 1

Study flow chart. PSPN, pancreatic solid pseudopapillary neoplasm; CECT, contrast-enhanced computed tomography; LR, logistic regression; Model
U, model based on unenhanced CT; Model A, model based on arterial phase CT; Model V, model based on venous phase CT.
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years of experience. Invasive characteristics of PSPN encompass

infiltration into peripancreatic fat, pancreatic parenchyma,

peripheral nerves, and vascular walls, as well as metastasis to

adjacent organs, lymph nodes, and distant sites. In the absence of

these features, the PSPN was classified as noninvasive.
2.5 Lesion segmentation and feature
extraction

All CT images of the largest section of the lesion were imported

into ITK-SNAP (https://www.nitrc.org/projects/itk-snap/) in
Frontiers in Oncology 04
Dicom format. All the images were preprocessed before the

region of interest (ROI) was delineated to reduce differences in

the images collected by different scanners. The CT images were

resampled to a voxel size of 1 × 1 × 1 mm3 to normalize the voxel

spacing and underwent gray-level discretization. Without

knowledge of the patient’s clinical information and pathological

results, a radiologist with 10 years of experience in abdominal

diagnostic radiology manually delineated the ROI (Figure 2). The

Pyradiomics package (https://github.com/radiomics/pyradiomics)

in Python was utilized for extracting radiomics features, including

(I) first-order features; (II) shape features; (III) second-order

features originating from the gray-level run-length matrix

(GLRLM), gray-level cooccurrence matrix (GLCM), gray-level

dependence matrix (GLDM), neighborhood gray-tone difference

matrix (NGTDM), and gray-level size zone matrix (GLSZM). (IV)

High-order statistical features obtained via the wavelet transform of

the original image.

To assess the reproducibility radiomics features, 30 patients

were randomly chosen, and intra- and interobserver consistency

was assessed by radiologist A (with 10 years of experience) and

radiologist B (with 5 years of experience), both blinded to patient

information. Radiologist A employed the same method to perform

two separate ROI delineations and radiomics feature extractions for

the same patient within one week. Radiologist B independently

delineated the ROI and extracted features, which were then

compared with the features obtained by radiologist A during the

initial assessment. The intra- and interobserver reproducibility of
FIGURE 2

ROI segmentation and pathological section of invasive and non-invasive PSPN. (A–C) are the images of unenhanced phase (A), arterial phase (B) and
venous phase (C) of a case of non-invasive PSPN. (D) showed that the tumor was arranged in lamellar pattern and pseudopapillary structures
(arrow). Tumor cells are composed of round or oval cells with uniform chromatin, inconspicuous or small nucleoli, cytoplasm eosinophilic, and
occasional vacuolization (HE × 10). (E–G) are the images of unenhanced phase (D), arterial phase (E) and venous phase (F) of a case of invasive
PSPN. (H) showed that the shows tumor cells surrounding the nerve (arrow), indicating nerve invasion (HE × 10). ROI, region of interest. PSPN,
pancreatic solid pseudopapillary neoplasm.
TABLE 1 CT parameters of the two medical centers.

Parameter Medical center A Medical center B

No. of rows 64 64

Tube voltage (kV) 120 120

Tube current (mA) 300 250

Slice thickness (mm) 1 1

Slice interval (mm) 1 1

Detector collimation
(mm)

0.75 0.625

Rotation time (s) 0.5 0.5

Matrix 512 × 512 512 × 512
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radiomics feature extraction was assessed with the interclass

correlation coefficient (ICC). An ICC ≥ 0.75 was considered to

indicate high agreement between the ROIs delineated by

radiologists A and B.
2.6 Radiomics feature selection and model
construction

All invasive and noninvasive PSPN patients were randomized

into training (70%) and validation (30%) sets. Radiomics features

with high reproducibility were screened out with the interclass

correlation coefficient. To ensure the uniformity of the feature scale,

all radiomics features were standardized with z-score

normalization. The remaining features were assessed using

constant term elimination and Spearman’s correlation analysis,

applying a threshold of r ≥ 0.8 to exclude features exhibiting high

covariance. The least absolute shrinkage and selection operator

(LASSO) method was then employed to reduce the dimensionality

of the remaining features. A 5-fold cross-validation technique was

utilized to select the tuning parameter (l) in the LASSO model

within the training set. The l value was optimized to minimize

binomial deviance, allowing for the selection of the most effective

features. Finally, the radiomics score (Rad-score) was calculated by

a linear combination of selected features, and the calculation

formula of the Rad-score is presented in Supplementary Figure S1.

Univariate and multivariate analyses were adopted for

screening traditional CT features significantly associated with the

invasiveness of PSPN as independent predictors, and a traditional

CT model was established. Four radiomics models were constructed

on the basis of the Rad-score with logistic regression: an

unenhanced model (model U), an arterial phase model (model

A), a venous phase model (model V), and a radiomics combined

model (model U+A+V). Finally, a radiomics nomogram was

constructed by combining traditional independent CT predictors

and the Rad-score of the combined radiomics model.
2.7 Statistical analysis

SPSS (https://www.ibm.com/products/spssstatistics, version 25)

and R software (https://www.r-project.org/, version 4.0.4) were used

for the statistical analysis. Continuous variables are presented as the

means ± standard deviations (SD), and categorical variables are

presented as frequencies and percentages. The normality of

continuous variables was tested using the Kolmogorov-Smirnov

test. Normally distributed continuous variables were explored using

t-test, whereas the Mann-Whitney U test was used to compare

nonnormally distributed variables. Categorical variables were tested

using Fisher’s exact test or chi-square test. The calibration curve and

Hosmer-Lemeshow test were employed to evaluate the calibration

and goodness of fit of the nomogram. Model diagnostic efficacy was

evaluated through receiver operating characteristic (ROC) curves.

Delong’s test was applied to evaluate significant differences between

AUCs. Finally, decision curve analysis (DCA) was performed to
Frontiers in Oncology 05
assess the model’s clinical utility. P < 0.05 represented

statistical significance.
3 Results

3.1 Demographic and traditional CT feature
analysis

All patients were randomized into training (n = 79) and

validation (n = 35) sets. Among them, 36.0% of patients were

classified as invasive PSPN (n = 41), and 64.0% of patients were

classified as noninvasive PSPN (n = 73). All 114 patients underwent

surgical resection, and the following instances of invasion were

observed: the pancreas (n = 11), neural bundle (n = 11),

surrounding fat (n = 4), blood vessels (n = 1), spleen (n = 2),

common bile duct (n = 1), and multiple sites (n = 11). Tumor

texture and margins were significantly different between invasive

and noninvasive PSPN patients (P < 0.05), whereas location,

diameter, shape, margins, presence of calcification, pancreatic

atrophy, and pancreatic duct dilation were not significantly

different (P > 0.05). Complete clinical and imaging information is

detailed in Table 2. There was no significant difference between the

clinical information and the traditional CT features in the training

set (P > 0.05), whereas the tumor diameter and texture were

significantly different in the validation set (P < 0.05), as displayed

in Table 3.
3.2 Traditional CT model construction

Univariate logistic regression analysis revealed that a solid

tumor (OR = 0.850, 95% CI: 1.646–43.897, P = 0.011) and an ill-

defined tumor margin (OR = 2.845, 95% CI: 1.254–6.455, P = 0.012)

were significantly related to the invasion of PSPN, whereas other

traditional CT features were not statistically significant. Subsequent

multivariate analysis revealed that solid tumors (OR = 6.565, 95%

CI: 1.238–34.816, P = 0.027) and ill-defined tumor margins (OR =

2.442, 95% CI: 1.038–5.741, P = 0.041) were independent predictors

of the invasiveness of PSPN, as detailed in Table 4. The traditional

CT model was constructed with solid tumors and ill-defined tumor

margins as independent predictors, and its AUCs in the training

and validation sets were 0.653 and 0.797, respectively (Table 5).
3.3 Feature selection and radiomics model
construction

In total, 1374 feature parameters were extracted from each ROI.

The feature parameters extracted from the unenhanced phase,

arterial phase, venous phase, and unenhanced + arterial + venous

phase in the training group were processed by LASSO to screen out

features with high generalizability. Finally, 7, 6, 7, and 8 optimal

radiomics features were retained in Model U, Model A, Model V,

and Model U+A+V, respectively (Figure 3). After excluding the
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repeated features, 14 radiomics features were extracted from the

four radiomics models, which included one shape feature, one first-

order statistical features, one GLDM feature, one NGTDM feature,

and 10 high-order statistical features obtained via wavelet

transform, as detailed in Supplementary Figure S2.

The Rad-score of each radiomics model was significantly

different between the invasive and noninvasive PSPN groups, as

displayed in Table 3. Among the three single-phase models (Model

U, Model A, and Model V), Model A exhibited the best diagnostic

performance, with AUCs of 0.777 and 0.769 in the training and

validation sets, respectively. In addition, the radiomics combined

model (model U+A+V) had AUCs of 0.857 and 0.839 in the

training and validation sets, respectively. The detailed AUC

results are shown in Table 5.
3.4 Performance analysis of the radiomics
nomogram

A radiomics nomogram was constructed and calibrated on the

basis of the tumor texture, margin, and Rad-score (Figure 4). The
Frontiers in Oncology 06
calibration curve and Hosmer-Lemeshow test indicated that the

training (P = 0.281) and validation sets (P = 0.057) were well

calibrated (Figure 5). The AUCs of the nomogram in the training

and validation sets were 0.874 and 0.867, respectively (Table 5), which

were better than those of the radiomics model and the traditional CT

model (Figure 6). According to Delong’s tests, in the training set, the

AUC of the radiomics nomogram was significantly different from

those of Model U (P = 0.003), Model V (P = 0.018), and the

traditional CT model (P < 0.001), but not significantly different

from those of Model A (P = 0.103) or Model U+A+V (P = 0.399). As

shown in the validation set, there was no statistically significant

difference between the radiomics nomogram and Model U (P =

0.069), Model A (P = 0.318), Model V (P = 0.273), Model U+A+V (P

= 0.234), or the traditional CT model (P = 0.322). According to the

DCA results, the radiomics nomogram provided increased net benefit

for clinical decision-making when the threshold probability was

within the relevant range (Figure 7). We built a dynamic

nomogram using the R Shiny framework that allows physicians to

input radiomic features and traditional CT parameters in real time

and dynamically display personalized predictions. The website is:

https://weiyuguo.shinyapps.io/nomogram_shinyapp/.
TABLE 2 Clinical information and traditional CT features of 114 PSPN.

Features Total (n=114) Invasive PSPN (n=41) Non-invasive PSPN (n=73) P value

Sex

Male 27 (23.7) 11 (26.8) 16 (21.9)
0.647

Female 87 (76.3) 30 (73.2) 57 (78.1)

Age 36.55 ± 12.71 37.34 ± 14.43 36.11 ± 11.72 0.622

Location

Head/Neck 50 (43.9) 16 (39.0) 34 (46.6)
0.711

Body/Tail 64 (56.1) 25 (61.0) 39 (53.4)

Shape

Round 89 (78.1) 33 (80.5) 56 (76.7)
0.814

Irregular 25 (21.9) 8 (19.5) 17 (23.3)

Diameter 4.66 ± 2.55 4.93 ± 2.70 4.051 ± 2.48 0.502

Texture

Solid 31 (27.2) 17 (41.4) 14 (19.2)

0.011*Cystic 16 (14.0) 2 (4.9) 14 (19.2)

Mixed cystic-solid 67 (58.8) 22 (53.7) 45 (61.6)

Calcification 53 (46.5) 19 (46.3) 34 (46.6) 1.000

Margin

Well-defined 78 (68.4) 22 (53.7) 56 (76.7)
0.013*

Ill-defined 36 (31.6) 19 (46.3) 17 (23.3)

Dilation of pancreatic duct 3 (2.6) 0 3 (4.1) 0.480

Pancreatic atrophy 17 (14.9) 5 (12.2) 12 (16.4) 0.597
Categorical variables shown with frequency and percentage; continuous variables shown with mean ± standard deviation (SD); PSPN, pancreatic solid pseudopapillary neoplasm; *P<0.05.
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The nomo-score was calculated via the following formula:

Nomo − score = 1:9647� Rad − score + 0:5262�Marign +

0:8523� Texture − 1:2467.
4 Discussion

In this study, predictive models incorporating radiomics and

traditional CT indicators were developed to differentiate between

invasive and non-invasive PSPN. Among all the models, the

radiomics nomogram integrating traditional CT signs with

radiomics signature demonstrated the highest diagnostic
Frontiers in Oncology 07
performance, with AUCs of 0.874 and 0.867 in the training and

validation sets, respectively. This performance surpassed that of

both the traditional CT model and the radiomics models. These

findings suggest that the combined use of radiomics and traditional

CT signs enhances classification accuracy, potentially aiding in

clinical treatment decision-making.

Previous studies (22, 23) have shown that sex, age, tumor shape

calcification, pancreatic atrophy, and pancreatic duct dilation are

not significantly different between invasive and noninvasive PSPN

patients, and similar results were obtained in our study. Liang et al.

(24) indicated that the location of the tumor varied significantly

between invasive and noninvasive PSPN, with invasive PSPN more
TABLE 3 Traditional CT features and Rad-score of models in training and validation sets.

Variables

Training set (n=79) Validation set (n=35)

Non-innasive
(n=51)

Innasive
(n=28)

t/Z/c2 P
value

Non-innasive
(n=22)

Innasive
(n=13)

t/Z/c2 P
value

Sex

male 10 (19.6) 9 (32.1)
1.555 0.273

6 (27.3) 2 (15.4)
- 0.680

female 41 (80.4) 19 (67.9) 16 (72.7) 11 (84.6)

Age 35.7 ± 10.65 36.89 ± 14.21 -0.303 0.766 36.91 ± 14.12 38.31 ± 15.41 -0.154 0.886

Location

head/neck 23 (45.1) 14 (50.0)
0.174 0.814

11 (50.0) 2 (15.4)
- 0.070

body/tail 28 (54.9) 14 (50.0) 11 (50.0) 11 (84.6)

Shape

round 38 (74.5) 23 (82.1)
0.599 0.578

18 (81.8) 10 (76.9)
- 1.000

irregular 13 (25.5) 5 (17.9) 4 (18.2) 3 (23.1)

Diameter 4.91 ± 2.68 4.82 ± 2.98 -0.580 0.566 3.591 ± 1.62 5.15 ± 2.03 -2.241 0.024*

Texture

solid 12 (23.5) 11 (39.3)

3.061 0.212

2 (9.1) 6 (46.2)

- 0.016*cystic 9 (17.7) 2 (7.1) 5 (22.7) 0

cystic-solid 30 (58.8) 15 (53.6) 15 (68.2) 7 (53.8)

Calcification 25 (49.0) 16 (57.1) 0.478 0.638 9 (40.9) 3 (23.1) 0.463

Margin

well-defined 38 (74.5) 16 (57.1)
2.520 0.134

18 (81.8) 6 (46.2)
- 0.057

ill-defined 13 (25.5) 12 (42.9) 4 (18.2) 7 (53.8)

Dilation of
pancreatic duct

2 (3.9) 0 1.127 0.537 1 (4.5) 0 - 1.000

Pancreatic atrophy 8 (15.7) 4 (14.3) 0.028 1.000 4 (18.2) 1 (7.6) - 0.630

Rad-score

Rad-score_U -0.23 ± 1.04 0.43 ± 1.07 -2.675 0.007* 0.05 ± 1.55 1.13 ± 1.10 -2.255 0.031*

Rad-score_A -0.24 ± 0.92 0.67 ± 0.78 -4.059 0.001* -0.07 ± 1.39 1.07 ± 1.15 -2.629 0.007*

Rad-score_V -0.12 ± 0.62 0.43 ± 0.53 -3.639 0.001* -0.38 ± 0.77 0.26 ± 0.64 -2.356 0.017*

Rad-score_U+A+V -0.96 ± 0.93 0.32 ± 0.77 -5.227 0.001* 0.01 ± 1.38 1.72 ± 1.14 -3.312 0.001*
fron
Categorical variables shown with frequency and percentage; continuous variables shown with mean ± standard deviation (SD); Rad-score, radiomics score; U, unenhanced CT; A, arterial phase
CT; V, venous phase CT. *P<0.05.
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frequently found in the pancreatic tail. However, the present study

showed no statistically significant difference in tumor location. The

discrepancy may be attributed to the different grouping methods

used; in this study, the pancreas was divided into two groups, with

the head and neck classified together and the body and tail grouped

separately, which differs from the classification used in previous
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research. Wang et al. (8) reported that tumor size is an independent

predictor of invasiveness in PSPN patients. Kim et al. (25) reported

that when the tumor diameter was greater than 5 cm, the

probability of presenting with invasive PSPN significantly

increased (P = 0.022). However, to date, there is no consensus on

the ability of tumor size to predict invasive PSPN. In our study,
TABLE 4 Univariate and multivariate analysis of clinical information and traditional CT features.

Variables
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Sex 1.306 (0.539–3.168) 0.554

Age 1.008 (0.978–1.039) 0.618

Diameter 1.065 (0.919–1.235) 0.403

Shape 0.799 (0.311–2.053) 0.641

Location 1.362 (0.626–2.966) 0.436

Texture - 0.018 - 0.036

cystic-solid 3.422 (0.714–16.398) 0.124 2.640 (0.535–13.033) 0.234

solid 8.500 (1.646–43.897) 0.011 6.565 (1.238–34.816) 0.027

Calcification 0.991 (0.460–2.133) 0.981

Margin 2.845 (1.254–6.455) 0.012 2.442 (1.038–5.741) 0.041

Dilation of pancreatic duct - 0.999

Pancreatic atrophy 0.706 (0.230–2.167) 0.543
OR, odds ratio; CI, confidence interval.
TABLE 5 Diagnostic efficacy of all models in training and validation sets.

Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training set

Single-phase radiomics model

Model U 0.683 (0.575–0.791) 0.696 0.500 0.804 0.583 0.745

Model A 0.777 (0.683–0.862) 0.759 0.571 0.863 0.696 0.786

Model V 0.749 (0.649–0.836) 0.722 0.679 0.745 0.594 0.809

Radiomics combined model (model U+A+V) 0.857 (0.778–0.925) 0.797 0.786 0.804 0.668 0.872

Traditional CT model 0.653 (0.553–0.749) 0.633 0.679 0.608 0.487 0.775

Radiomics nomogram 0.874 (0.804–0.933) 0.823 0.714 0.882 0.769 0.849

Validation set

Single-phase radiomics model

Model U 0.699 (0.543–0.852) 0.571 0.692 0.500 0.450 0.733

Model A 0.769 (0.625–0.905) 0.686 0.692 0.682 0.562 0.789

Model V 0.741 (0.584–0.892) 0.771 0.538 0.909 0.778 0.769

Radiomics combined model (model U+A+V) 0.839 (0.716–0.944) 0.629 1.000 0.409 0.500 1.000

Traditional CT model 0.797 (0.674–0.910) 0.771 0.769 0.773 0.667 0.850

Radiomics nomogram 0.867 (0.759–0.959) 0.829 0.923 0.773 0.706 0.944
AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; Model U, model based on unenhanced CT; Model A, model based on arterial phase
CT; Model V, model based on venous phase CT.
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tumor size was statistically significant only in the validation set but

not in the total sample, and there may be bias due to the small

sample size in the validation set. Further large sample studies are

needed for verification in the future. Wang et al. (8) and Rastogi

et al. (26) reported no significant differences in the solid component

between invasive and noninvasive PSPN, whereas in our study,

invasive PSPN predominantly presented as solid or mixed solid-

cystic tumors, and the solid component was significantly different

(P<0.05). This finding suggests that tumor invasive behavior may be

related to the extent of solid components, possibly because

increased vascularity within the tumor leads to invasive growth.

Moreover, the difference in tumor margins between invasive PSPN
Frontiers in Oncology 09
and noninvasive PSPN was statistically significant, possibly because

PSPN has a richer blood supply and is more likely to have external

growth, resulting in focal discontinuity of the capsule and invasion

of the pancreas and surrounding adipose tissue, which results in

unclear tumor boundaries.

Radiomics is an emerging discipline of high-throughput extraction

of quantitative features from medical images and the use of these

features to build models for clinical decision-making with the goal of

improving diagnostic accuracy (27–29). In recent years, radiomics has

shown good advantages in the field of medicine (30–32). However,

there has been limited research utilizing multiphase CT radiomics to

predict the invasiveness of PSPN; only Huang et al. (33) used dual-
FIGURE 3

The selected radiomics features from LASSO regression. Based on minimum criteria, LASSO regression selected 7, 6, 7 and 8 radiomics features from
the (A) unenhanced phase, (D) arterial phase, (G) venous phase, and (J) Triphasic (unenhanced + arterial + venous phase) CT images. The coefficient
profile plots of the identified non-zero coefficients for (B) unenhanced phase, (E) arterial phase, (H) venous phase, and (K) Triphasic radiomics
features were generated against the selected log l values. The names and corresponding weighting coefficients of the selected (C) unenhanced
phase, (F) arterial phase, (I) venous phase, and (L) Triphasic radiomics features. LASSO, least absolute shrinkage and selection operator.
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phase contrast-enhanced imaging to predict the invasiveness of PSPN.

However, fewer cases were included in Huang’s study than in our

study, and the study lacked further verification and did not explore the

significance of unenhanced phases and traditional CT signs. In this

study, the combination of radiomics and traditional CT signs to

construct a radiomics nomogram may fill this gap.

In our study, 14 valuable radiomics features were extracted from

the four radiomics models, most of which were first-order and texture

features from wavelet-transformed images. The optimal features of

the four models all included Wavelet_LLL_NGTDM_Busyness

features. The high Busyness values in NGTDM features reflects the

heterogeneity between the lesion pixel local grayscale and adjacent

pixel heterogeneity. Invasive PSPN has a higher Busyness value than

non-invasive PSPN. The invasive PSPN may have a more complex

texture due to necrosis, neovascularization or uneven cell density,

which is manifested as a higher Busyness value. The Dependence
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Variance of GLDM is an important feature for quantifying the

heterogeneity of local gray-scale dependency in images. It is jointly

influenced by cell density, interstitial proportion and vascular

distribution. The variation of Dependence Variance value may be

used to quantify the complex microenvironment within invasive

PSPN. The size zone non-uniformity values in GLSZM features is

positively correlated with the invasiveness of PSPN. High size zone

non-uniformity value indicates represent a non-uniform texture, that

is, high heterogeneity, and can be used as a powerful indicator to

predict the invasiveness of PSPN. In addition, the skewness and

kurtosis values extracted from wavelet transform images have

significant weights and higher values in invasive PSPN, reflecting

the complexity and heterogeneity of the cell density distribution in

invasive PSPN, possibly due to rich abnormal vascular formation,

changes in cell permeability, and necrosis, resulting in mixed internal

tumor components and complex grayscale distributions. These
FIGURE 4

Developed radiomics nomogram for predicting invasive pancreatic solid pseudopapillary neoplasm. Dynamic nomogram for radiomics and
traditional CT features: https://weiyuguo.shinyapps.io/nomogram_shinyapp/.
FIGURE 5

Calibration curves of the radiomics nomogram. (A) Calibration curves of the training set. (B) Calibration curves of the validation set.
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findings suggest that the internal structure and heterogeneity of

tumors are closely related to invasiveness. The above results

indicate that radiomics features are potential noninvasive

biomarkers for predicting the aggressiveness of PSPN.
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Wang et al. (8) reported that CT imaging findings may help

distinguish invasive PSPN from noninvasive PSPN, and the AUCwas

0.77. In the current work, the diagnostic efficacy of the radiomics

model was better than that ofWang’s study, indicating that radiomics
FIGURE 6

ROC curves of all models. (A) ROC curves of the training set. (B) ROC curves of the validation set. ROC, Receiver operating characteristic; AUC, area
under curve.
FIGURE 7

DCA of the all models. (A) DCA curves of the training set. (B) DCA curves of the validation set. X-axis represents threshold probability; Y-axis
represents net benefit. All line indicates that all patients are invasive PSPN; None line indicates that all patients were non-invasive PSPN. The closer
the decision curves to the black and gray curves, the lower the clinical decision net benefit of the model. DCA, decision curve analyses; PSPN,
pancreatic solid pseudopapillary neoplasm.
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contributes greatly to diagnosis. In a study by Rastogi et al. (26) in

which CECT was used to predict PSPN invasiveness, invasive PSPN

showed a greater degree of enhancement than noninvasive PSPN did

in the delayed phase, whereas the arterial and venous phases were not

significantly different. In this study, all three single-phase models

were capable of predicting PSPN invasiveness, with the arterial-phase

model exhibiting the highest performance. This may be attributed to

the fact that the increased blood supply in invasive PSPNs is more

effectively captured in arterial-phase images. Furthermore, invasive

PSPNs are more prone to vascular invasion, resulting in

compensatory increases in peripheral blood supply, which enhances

the visibility in arterial-phase imaging. Additionally, due to the

presence of mixed substances such as hyaluronic acid and collagen

in the intercellular stroma, enhancement of the interstitial

component may be observed during the venous phase due to

contrast agent inflow, while vascular enhancement may be less

pronounced. In contrast, arterial-phase images primarily show

enhancement of tumor blood vessels, without significant

enhancement of the interstitial component (33). These findings

may indicate the predictive ability of radiomics features on the

basis of the arterial phase in predicting tumor invasiveness. We

subsequently combined the three phases to obtain a combined model,

which significantly improved the predictive ability for PSPN

invasiveness compared with single-phase models.

Radiomics is not the only determinant of diagnosis, and when

radiomics is combined with other relevant data, more reliable and

accurate results can be produced (34). Song et al. (35) constructed a

nomogram combining age and MRI radiomics features, which was

used to differentiate hypovascular nonfunctional pancreatic

neuroendocrine tumors from PSPN. The AUC of the nomogram in

the validation set was 0.920, which was greater than that of the

radiomics model (AUC = 0.907). Gu et al. (36) demonstrated that

combining clinical information with radiomics improved the

differentiation of PSPN from three other conditions, namely

adenocarcinoma, neuroendocrine tumors, and pancreatic

cystadenomas (AUC = 0.962). Liang et al. (24) utilized radiomics

features derived from T1-weighted imaging, T2-weighted imaging,

diffusion-weighted imaging, and contrast-enhanced T1WI sequences,

integrating them with clinical data to develop a radiomics nomogram

for distinguishing between invasive and noninvasive PSPN, and the

radiomics nomogram showed the best diagnostic performance (AUC

= 0.808). In the present study, traditional CT indicators were combined

with radiomics features to establish a radiomics nomogram, achieving

an AUC of 0.867 in the validation set, surpassing both the traditional

CT and radiomics models. When compared with Liang et al. (24), the

proposed model showed enhanced predictive performance, suggesting

that CECT may be more effective than MRI in assessing PSPN

invasiveness. To validate the clinical applicability of the nomogram

model, DCA was performed, indicating that within the specified

threshold probability range, this model provided greater net benefit

for clinical decision-making.

The primary objective of radiomics is to facilitate classification

and prediction. Diagnostic and classification models in radiomics

research predominantly rely on machine learning (ML) techniques,

such as logistic regression analysis, random forests, support vector
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machines, LASSO, and linear discriminant analysis, with logistic

regression being the most widely used. In this study, only the

logistic regression model was employed to assess PSPN

invasiveness, and the efficacy of other algorithms in similar ML

tasks remains uncertain and warrants further exploration.

This study has several limitations. First, the retrospective nature

of the analysis, conducted across multiple centers, may introduce

selection bias in patient cohorts. Second, manual delineation of

ROIs by different readers could lead to bias, potentially impacting

the reliability of radiomics features. Although features with ICC >

0.75 were selected to mitigate this issue, there is a critical need for

automated and accurate tumor segmentation techniques. Thirdly,

This study only used 2D ROI analysis, which may ignore the spatial

heterogeneity of lesions, while 3D ROI retains the three-

dimensional spatial information of lesions and can extract more

abundant radiomics features. In the future, we will further expand

the data and discuss the advantages and disadvantages of 2D ROI

and 3D ROI. Finally, due to the lack of external validation, we

cannot ensure that our model has the same diagnostic performance

when dealing with external datasets.
5 Conclusion

In conclusion, Our study shows that combining traditional CT

signs with radiomics and constructing a radiomics nomogram

based on multi-phase contrast-enhanced CT can effectively

predict the invasiveness of PSPN, which may aid in clinical

decision-making for treatment strategies.
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