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Introduction: The outcomes for patients with intracranial germ cell tumors

(GCT) has improved over the past few decades. However, there remains a lack

of a consensus on a standard diagnostic and treatment approach of these

tumors. The diagnostic work-up of intracranial GCT remains variable, and the

treatment for patients with recurrent disease remains challenging.

Methods: We review the current approach in the diagnosis and treatment of

intracranial GCT. Given the heterogeneity of these tumors, we highlight the

challenges and controversy with these conventional approaches.

Results: We discuss the advancements in the understanding of the underlying

genetic changes in intracranial GCT and the utility of novel molecular techniques

in the diagnosis and classification of intracranial germ cell tumors as well as

development of potential novel therapeutics.

Discussion: Development of liquid biopsy platforms for diagnosis and

management of malignancies is a rapidly growing field. Current approach

utilizing traditional tumor markers have significant limitations. In this review, we

will discuss profiling of intracranial GCTs for genetic and epigenetic signatures,

which are emerging as promising biomarkers to assist in the diagnosis and

management of intracranial GCTs. Various studies have shown that activating

mutations in MAPK pathway are common alterations in intracranial GCTs, with

KIT expression seen in most germinomas. Development of targeted therapeutics

against KIT has led to the prospect of targeted therapy in germinoma. Other

treatment modalities being considered for clinical development include

immunotherapy and the use of immune checkpoint inhibitors, especially in

NGGCT. In this review, we will discuss the potential novel therapeutics and the

clinical trials that are currently under development.
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Introduction

Intracranial germ cell tumors (GCT) are a rare group of

malignant tumors, most commonly arising in the second decade

of life (1). Intracranial GCTs share histological, diagnostic, and

therapeutic similarities with non-central nervous system (CNS)

GCT, owing to their common cell of origin (2, 3). In the United

States, intracranial GCTs represent 3-5% of all primary CNS tumors

in pediatrics. The incidence is higher in East Asian countries such as

Japan, with reported incidence of over 10%. As a whole, intracranial

GCTs are significantly more common in males.

Intracranial GCTs are clinically divided into germinoma and

non-germinomatous germ cell tumors (NGGCT). Germinomas are

more common, accounting for approximately 2/3 of all intracranial

GCTs. NGGCT are a heterogeneous group of tumors, including

endodermal sinus (yolk sac) tumor, choriocarcinoma, embryonal

carcinoma, teratoma (mature and immature) and mixed GCT

(which can include components of germinoma). Intracranial

GCTs most commonly arise in the midline structures of the CNS,

primarily in the pineal and suprasellar regions (4). Rarely, these

tumors can originate in other locations such as basal ganglia/

thalamus, ventricles, and cerebral/cerebellar cortex.

Over the past few decades, clinical outcomes for patients with

intracranial GCTs have improved, in part through collaborative

clinical trials that have evaluated various diagnostic and therapeutic

regimens. Despite these successes, there remains a lack of a universally

accepted consensus on the diagnostic work-up and management for

these tumors. In this review, we discuss the advancement inmolecular

genetics, the development of and the potential utility of innovative

techniques in the diagnosis of intracranial GCT, as well as several

novel therapeutic strategies that are currently being considered for

clinical trial development for these tumors.
Diagnosis

Current approach

At present, the clinical diagnosis of intracranial GCTs relies on a

combination of imaging characteristics and the presence of tumor

markers, namely alpha-fetoprotein (AFP) and beta subunit of

human chorionic gonadotropin (b-HCG), in the serum and/or

cerebrospinal fluid (CSF). For cases where tumor markers are

negative, surgical biopsy is recommended for histopathological

confirmation (5). In addition to the characteristic morphological

appearance on histology, common immunohistochemical (IHC)

analysis used for the diagnostic work-up for GCT include CD117/

KIT (germinoma), POU5F1/OCT4 (germinoma), Placental alkaline

phosphate (PLAP) (germinoma), AFP (yolk sac tumor), CD30

(embryonal carcinoma), and HCG (choriocarcinoma or

syncytiotrophoblast in germinoma).

Although these measures have been the standard of diagnostics

for decades, they are imperfect. For instance, conventional tumor

markers have low sensitivity and specificity, with some studies

reporting only one-third of patients with intracranial GCT being
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tumor marker positive (6, 7). This low frequency is in part related to

the predominance of germinomas within intracranial GCTs, where

the majority of germinomas do not secrete tumor markers. For the

minority of germinomas that do secrete b-HCG, they generally have

low-level marker elevation and is likely related to the presence of

syncytiotrophoblastic elements. Importantly, while b-HCG

secreting germinomas is a widely accepted entity, there remains a

lack of consensus on the cut-off level of b-HCG for the diagnosis of

germinoma versus NGGCT.

For example, in Children’s Oncology Group (COG) trials, b-
HCG cut-offs of up to ≤ 100 IU/L have been used to indicate pure

germinoma histology, however, European SIOP trials have used a

more conservative cut-off of ≤ 50 IU/L (8, 9). In Japan, a

histopathologic-based diagnosis is generally preferred and used in

their clinical trials, except for extreme instances such as b-HCG

levels of >2,000 IU/L, which would indicate NGGCT, such as

choriocarcinoma (10). Similarly, there are different consensus cut-

off for AFP levels. AFP > 10ng/ml (or > upper limit of normal) is

used in COG trials, whereas in European trials a level >25 ng/ml has

been used as an indicator of a NGGCT (8, 9). Like germinomas,

teratomas are often tumor marker negative; while this holds true for

pure mature teratomas (MT), immature teratomas (IT) may secrete

AFP. The AFP level that indicates an IT has not been well

established, with examples of extracranial pure ITs having mean

AFP levels of approximately 30-80 ng/ml (11).

Importantly, even in instances where histopathologic diagnosis is

obtained through tissue biopsy, sampling error remains a significant

concern. This is particularly challenging, especially with the known

predilection of these tumors to have mixed histology. For instance, a

marker negative tumor is often a mixed tumor containing numerous

distinct components. However, a biopsy may capture only the

germinoma component, leading to inadequate treatment. This is of

critical clinical significance, as the treatment regimens for germinoma

and NGGCT vary significantly, and with differing survival outcomes.

Finally, other non-Intracranial GCT entities can mimic marker

negative intracranial GCTs, such as Langerhans Cell Histiocytosis

(LCH) and lymphocytic hypophysitis. Given these imperfect means

of diagnosing these tumors, efforts to enhance accuracy of diagnosis,

identify potential biomarkers that are predictive and prognostic,

are imperative.
Treatment

Current approach

Despite considerable variation in treatment regimens

commonly used in North America, Europe, and Asia, the general

strategy for intracranial GCT involves surgery for diagnosis and/or

CSF diversion, and the combination of chemotherapy and

radiation therapy.

Germinoma
Through a series of clinical trials (International CNS Germ Cell

Tumor Studies), chemotherapy-alone approaches were previously
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shown to be insufficient for the treatment of germinoma.

Chemotherapy-alone approaches were associated with a

temporary response with high rates of recurrence, resulting in a

cure rate of less than 50% (12, 13). In contrast, high-dose

craniospinal irradiation (CSI) alone has been shown to achieve

durable remission and high rates of cures in germinomas, regardless

of metastatic status (14).

In the last few decades, the focus of many clinical trials has

revolved around reduction of radiation therapy and minimizing

long-term treatment-related toxicity. As a result, neoadjuvant

chemotherapy has been incorporated into the treatment regimens

for germinoma prior to radiation therapy, an approach which has

been successful in reducing the dose and/or field of radiation

therapy needed to maintain the excellent cure rates (15, 16).

Non-germinomatous germ cell tumor
In contrast, NGGCTs are relatively more resistant to treatment

and associated with a poorer prognosis. Previous efforts to evaluate

treatment with either chemotherapy-only or CSI-only approaches

were similarly inadequate, with unacceptably high rates of disease

recurrences (12, 17–19). It is now clear that the combination of

chemotherapy followed by radiation therapy is essential to

improving outcome for these patients (8, 9, 20). The optimal

chemotherapy regimen and radiation therapy plan, however,

remains unclear (21). This is especially true for patients with

localized disease, where the optimal radiation therapy plan

remains undetermined. The current COG trial, ACNS2021, aims

to determine if the addition of spinal canal irradiation to whole

ventricular irradiation (after induction chemotherapy), will

decrease the number of spinal relapses that was seen in prior

studies (NCT04684368).

Recurrent intracranial GCT
Despite overall improving outcomes with combinatorial therapy

approaches, a proportion of patients with intracranial GCT suffer

from relapse or refractory disease. Treatment options for these

patients are less unified and curative options are more limited. For

those with recurrent intracranial germinoma, they are more likely to

respond to additional chemotherapy and achieve durable remission

with re-irradiation therapy (22). In contrast, those with recurrent or

refractory NGGCT have more aggressive disease and significantly

worse outcomes. Several chemotherapy regimens have been evaluated

as salvage therapy for these patients, with variable response. Most

recently, a phase 2 trial of GemPOx (Gemcitabine, Paclitaxel,

Oxaliplatin) demonstrated that this combination was an active

salvage therapy, effective in facilitating stem cell mobilization and

enabling high-dose chemotherapy with autologous stem cell rescue as

well as re-irradiation therapy in a significant proportion of patients

(23). However, despite initial responses, majority of patients

ultimately died from recurrent/refractory disease. The result of this

trial is similar to other publications that show that despite aggressive

salvage therapies, prognosis of recurrent/refractory intracranial GCT

remains poor, and novel therapeutic approaches for these patients are

needed (24, 25).
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Discussion

Emerging technologies and biomarkers

In recent years, there have been substantial advancement in the

understanding of the molecular basis of intracranial GCTs.

However, due to the rarity of these tumors and lack of adequate

tissue samples, molecular profiling has been challenging. In recent

years, utilizing blood and/or CSF as an alternative has been

evaluated by various groups. Given that CSF collection is a

standard component of the diagnostic workup and evaluation of

response to therapy, several groups have sought to evaluate CSF for

novel biomarkers of intracranial GCTs.

One such example is with MicroRNAs (miRNAs), which has

been emerging as a novel biomarker for several malignancies,

including GCTs. MiRNAs have been studied extensively in

extracranial GCTs, particularly in testicular GCTs (26–28). In

extracranial GCTs, the miRNA clusters (miR-371-373 and miR-

302/367) have been identified as biomarkers of malignant GCTs,

but are notably not expressed in benign teratomas (26, 29).

Specifically, miR-371a-3p has emerged as a highly sensitive and

specific marker of malignant testicular GCTs (30). In patients with

intracranial GCTs, two small case series have recently demonstrated

the feasibility of detecting these two miRNA clusters (31, 32).

Despite promise, larger validation studies will be needed to

demonstrate reproducibility of this methodology, as well as

evaluate the sensitivity and specificity of these miRNA clusters in

the setting of intracranial GCTs. If miRNAs prove to be a sensitive

diagnostic tool for detecting intracranial GCTs, this could

potentially be beneficial to the group of patients who present with

neuroendocrine dysfunction and slowly growing suprasellar lesions,

who often have a delay in diagnosis due to negative tumor markers

and insufficient mass for biopsy (33, 34).

In addition to miRNA, circulating tumor DNA (ctDNA) is

another evolving field in oncology that holds immense promise.

Particularly in CNS tumors, various researchers have looked at the

utility of CSF to identify recurrent molecular alteration, both at

diagnosis and for disease monitoring (35–37). Recurrent somatic

mutations in the KIT/RAS/MAPK pathways and AKT/mTOR

pathways have been well documented in intracranial GCTs, with

KIT/KRAS/MAPK alterations known to be enriched in germinomas.

Takayasu et al., analyzed 8 germinomas and 4 NGGCTs for the

presence of ctDNA in CSF of patients, utilizing a next generation

sequencing (NGS) panel that covered 52-genes. In this cohort, they

identified five genetic alterations, including two KIT mutations, two

NRAS and one MAPK2K1 mutation (38). Recently, Zhang et al.

published a cohort of 17 NGGCT patients, where they were able to

detect ctDNA in the CSF of 13 of the 17 patients at initial diagnosis.

Importantly in this study, the investigators found that presence of

ctDNA in the CSF after chemotherapy treatment to be prognostic.

The NGS panel used to assess for ctDNA in this study covered 86

genes, and all CSF ctDNA found were copy number alterations in

genes such as AKT2 and MAPK1, among others (39). These studies

show proof-of-concept and the feasibility of evaluating CSF for
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ctDNA. However, larger cohorts (ideally with paired tissue) will be

needed to determine the true frequency and reliability of capturing

genomic alterations by ctDNA in CSF.

Recurrent chromosomal alterations, such as copy number gains,

losses, and structural variants are the most common somatic

alterations identified in GCTs. In a recent study, tumor analysis

of intracranial GCTs showed that gain of 12p (a common alteration

in testicular GCTs) is enriched in NGGCTs. Additionally,

investigators from this study reported that the presence of 12p

gain is associated with worse progression-free survival (PFS) and

overall survival (OS), making this a potentially useful prognostic

biomarker (40). Additionally, a gain of 3p25.3 has recently been

reported as an independent poor prognostic factor for some

extracranial and intracranial GCTs (41, 42). Given the potential

prognostic value of these two chromosomal gains, one could

consider ctDNA analysis for the presence of these alterations as a

component for risk stratification.

Lastly, DNA methylation profiling is rapidly emerging as a

valuable tool for the diagnosis of pediatric brain tumors. Currently,

tissue samples have been utilized to create classifiers to diagnosis

brain tumors, down to the level of genetic alteration subclassifications

(43). Lack of robust intracranial GCT tissue samples representing all

the various histology subtypes has made classifier challenging for this

tumor type, but the German Cancer Research Center (DKZF)

(https://www.molecularneuropathology.org) has incorporated some

intracranial GCT histologic types, including germinoma, yolk sac

and teratoma. Classification of the other NGGCT histologies has yet

to be developed, and therefore the ability to classify mixed NGGCTs

is still to be determined. Although further refinement is needed for

intracranial GCT classification, differentiating germinoma from

NGGCT can be distinguished by assessing the global DNA

methylation patterns. Broadly, DNA methylation profiling of
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intracranial GCT tissue samples has shown that germinomas have

global hypomethylat ion, while NGGCTs are global ly

hypermethylated (44).

As with other emerging molecular technologies, profiling

intracranial GCTs has been hindered by the paucity of sufficient

tissue samples for analysis. As the availability of tissue for patients can

vary, the development of a liquid biopsy platform with ctDNA would

be of great interest. Of note, the DKFZ methylation platform was

developed based off the Illumina Infinium MethylationEPIC array

platform, which calls for 250 ng of DNA input. The feasibility of

obtaining 250 ng of ctDNA from CSF is unclear, as this would require

large quantities of CSF. As such, other methylation sequencing

platforms such as methylation DNA immunoprecipitation

sequencing (MeDIP-seq) and enzymatic methyl sequencing (EM-

seq) are being explored for DNA methylation profiling of lower

inputs of DNA, such as cfDNA from CSF or plasma (45, 46). These

technologies hold potential promise for developing cfDNA

methylation profiling of CSF.

Taking all these emerging technologies and biomarkers into

consideration, we are moving towards better means of diagnosing

and stratifying IGCTs, which would be immensely helpful for

treatment planning, risk stratification and in clinical trial design.

These emerging technologies and biomarkers are summarized

in Table 1.
Novel therapeutics and future trials

The advancement in our understanding of the molecular drivers

of cancer has led to the development of biologic agents and targeted

therapy for various malignancies. For intracranial GCTs, activating

alterations in the MAPK pathway, including KIT, RAS, and PI3K/
TABLE 1 Emerging technologies and biomarkers.

Technique:
Liquid
Biopsy
Platforms

Biomarker Methods Benefits/Uses Limitations Other Notes

Small-
noncoding
RNAs:
microRNAs

microRNAs-
miR-371-373,
miR-302/367

qPCR,
ddPCR

Highly sensitive and specific biomarker
in extracranial GCTs

Larger numbers of CNS GCT samples need to
be evaluated to validate sensitivity
and specificity

miR-371a-3p most
sensitive/specific in
extracranial GCT

ctDNA:
somatic
mutations

KIT/KRAS/
MAPK and
AKT/
mTOR
alterations

NGS

CSF can be utilized to evaluate
alterations in these pathways regardless
of biopsy.
Potentially identifying prognostic
biomarkers (12p or 3p25.3 gain) or
therapeutic targets.

Paired comparison of tissue and CSF needs to
be performed to evaluate the frequency and
reliability of capturing mutations.

NGS can capture
point mutations,
indels, CNVs, etc.

ctDNA:
DNA
methylation

Global DNA
methylation,
DKFZ Classifier

EM-seq,
MeDIP-seq

Differential global methylation between
germinoma vs. NGGCT can assist
diagnosis without tissue biopsy.

DNA methylation classifier currently identifies
germinoma, teratoma and yolk sac tumor but
not other
tumor types.
Needs further validation in CSF samples.

Data can be used to
evaluate for CNVs
as well.
qPCR, quantitative (real-time) PCR; ddPCR, droplet digital PCR; CNS, central nervous system; GCT, germ cell tumor; ctDNA, circulating tumor DNA; NGS, next-generation sequencing; CSF,
cerebrospinal fluid; CNV, copy number variation; DKFZ, German Cancer Research Center; EM-seq, enzymatic methyl sequencing; MeDIP-seq, methylation DNA immunoprecipitation
sequencing; NGGCT, non-germinomatous germ cell tumor.
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mTOR pathway, are known to be commonly seen in intracranial

GCT (47, 48). KIT expression is of particular interest, as it is seen in

the majority of pure germinoma and not seen among NGGCT

without germinomatous component. In recent years, various

inhibitors of KIT have been developed, with several gaining FDA

approval for gastrointestinal stromal tumor (GIST) (49). With the

success of targeted therapy in other pediatric indications, KIT

inhibition has recently emerged as an intriguing potential

treatment approach for CNS germinoma. Several trials have been

proposed, both for recurrence disease as well as for upfront

treatment (to potentially decrease the dose of chemotherapy

needed for cure). These trials are actively under development.

Immunotherapy has also emerged as an effective treatment

modality for a variety of cancers. Various immune checkpoint

inhibitors have been approved for many malignancies, especially

in adults. The role of immune checkpoint inhibitors in primary

pediatric CNS malignancies, however, is unclear. One exception is

for patients with constitutional mismatch repair deficiency

syndrome (cMMRD) and high tumor mutational burden, where

there is a clear indication and improved outcomes with immune

checkpoint inhibition (50). In GCTs, there have been several case

reports suggesting that this treatment modality may be of

therapeutic potential in these tumors. This is evidenced by the

durable responses reported in these cases with multiply recurrent/

refractory disease (51–53). This includes a case of a multiply

recurrent and refractory CNS NGGCT, who was treated with

nivolumab and ipilimumab, resulting in a complete response and

durable remission for over five years (51). Additionally, several

recent studies have also demonstrated robust presence of tumor

infiltrating lymphocytes and/or expression of immune checkpoint

markers in both CNS germinoma and a subset of CNS NGGCT,

further supporting the potential of this treatment modality in this

patient population (54, 55).

For patients with recurrent CNS GCTs, trials with these

innovative approaches are critically important to potentially

expand therapeutic options and possibly augment the

contemporary treatment paradigm, especially for recurrent

disease. Additionally, if deemed effective, these treatments could

be incorporated into the upfront treatment regimens, potentially

decreasing the need for/dose of cytotoxic chemotherapy and
Frontiers in Oncology 05
radiation therapy, thereby reducing treatment related short- and

long-term side effects.
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