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ITGA4 as a potential prognostic
and immunotherapeutic
biomarker in human cancer
and its clinical significance in
gastric cancer: an integrated
analysis and validation
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Song Wang1* and Yumin Li1,2*

1The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China, 2Digestive
System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center
of Lanzhou University, Lanzhou University, Lanzhou, China, 3School of Basic Medical Sciences of
Lanzhou University, Lanzhou University, Lanzhou, China, 4Ecosystem Change and Population Health
Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, QLD, Australia
Background: Integrin Subunit Alpha 4 (ITGA4), a member of the integrin protein

family, is involved in the progression of malignant tumors. However, its role

across different cancer types is not well understood.

Methods: Utilizing multi-omics data, we comprehensively evaluated ITGA4’s

expression, clinical relevance, diagnostic and prognostic value, functions,

mutations, and methylation status, along with its impact on immunity,

mismatch repair (MMR), heterogeneity, stemness, immunotherapy

responsiveness, and drug resistance in pan-cancer, with partial validation in

gastric cancer (GC) using transcriptomic analysis, single-cell data, western blot

(WB), wound-healing assay, flow cytometry and immunohistochemistry (IHC).

We further investigated its correlation with clinicopathology and serological

markers on tissues from 80 GC patients.

Results: ITGA4 expression was generally low in normal tissues but varied

significantly across tumor types, with higher levels in advanced stages and

grades. It demonstrated diagnostic value in 20 cancer types and effectively

predicted 1-, 3-, and 5-year survival rates as part of a prognostic model. ITGA4

played roles in cell adhesion, migration, immune regulation, and pathways like

PI3K-Akt and TSC-mTOR. It showed alterations in 22 cancer types, with

methylation at 9 sites inhibiting its expression. ITGA4 positively correlated with

immune cell infiltration, immune regulatory genes, chemokines, and might

reduce microsatellite instability (MSI) and tumor mutation burden (TMB) by

promoting MMR gene expression. It could also predict immunotherapy

efficacy and chemotherapy sensitivity. In GC, high ITGA4 expression was

related to poor prognosis, promoted tumor proliferation and migration, and

enhanced immune cell infiltration. ITGA4 expression was higher in GC cells and

tissues than normal ones. Its downregulation inhibited GC cell migration and

promoted apoptosis. Moreover, ITGA4 was correlated with N stage, pathological
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stage, neural and vascular invasion, serum levels of Ki-67, immune cells, CRP

and CA125.

Conclusion: ITGA4 is a potential biomarker and therapeutic target to enhance

cancer treatment and improve patient outcomes.
KEYWORDS
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1 Introduction

Cancer significantly impacts public health and contributes to

the global disease burden (1). According to WHO’s 2020 data,

cancer is among the top causes of death before the age of 70 in most

countries, with both incidence and mortality rates on the rise (2, 3).

The Global Cancer Observatory (GLOBOCAN) notes that cancer

causes nearly 10 million deaths each year (2). As global populations

age, the mortality from cancer is expected to increase further (4).

Cancer’s complexity arises from genetic and epigenetic changes in

cells, enabling them to adapt and gain traits that enhance survival

and proliferation, making treatment development more challenging

(5). Traditional cancer treatments such as surgery, radiotherapy,

and hormonal therapy are being complemented by innovative

approaches like immunotherapy, gene therapy, and targeted

molecular therapy (5). Additionally, advances in high-throughput

sequencing and accessible public databases are enabling detailed

studies of gene involvement in tumor progression and immunity,

paving the way for new biomarkers to improve diagnostics and

treatment efficacy and safety (6, 7).

Integrins, which include 18 a and 8 b subunits forming 24

different heterodimeric transmembrane receptors, are crucial in the

regulation of cellular signaling and various biological functions such

as growth, survival, differentiation, migration, and apoptosis (8).

The elevated expression of specific integrins, including avb3, avb5,
a5b1, a6b4, a4b1, and avb6, has been linked to the progression of

various cancers (9). Therapeutic agents targeting integrins, critical

in cancer, are currently undergoing clinical evaluations (9, 10).

However, despite the promising antitumor effects, integrin

inhibitors fail to significantly improve 5-year survival rates,

highlighting the urgent need to explore the detailed molecular

mechanisms of integrins and develop new, effective, low-toxicity

inhibitors (11).

ITGA4 is one of the less studied integrin family members (12),

playing a crucial role in mediating cell-cell adhesions that are vital

for immune functionality (13). ITGA4 forms two key integrin

complexes by pairing with b1 (CD29) to create a4b1 (very late

antigen-4, VLA-4) and with b7 to form a4b7 (lymphocyte Peyer

patch adhesion molecule). These complexes play roles in immune

surveillance, inflammation, and the pathogenesis of cardiovascular

disorders (14). ITGA4 is targeted in therapies for multiple sclerosis
02
(MS), Crohn’s disease, and inflammatory bowel disease (IBD) (15).

Moreover, it is considered a potential therapeutic target in cancer

treatments, affecting tumor development (16, 17). However,

ITGA4’s specific functions in cancer progression and the tumor

microenvironment (TME) remain elusive. Current research is often

limited to single cancer types, potentially missing broader insights.

To address this gap, our study conducted a comprehensive pan-

cancer analysis using multi-omics data to evaluate ITGA4’s

diagnostic and prognostic capabilities, with a nomogram based on

ITGA4 expression was developed to assist. We also performed

functional enrichment analysis to uncover molecular mechanisms

involving ITGA4. Additionally, we investigated ITGA4’s influence

on tumor immunity, heterogeneity, stemness, drug sensitivity.

Validation of our findings involved analyzing single-cell and

transcriptome sequencing data of GC, accompanied by in vitro

experiments and clinical data analysis. These efforts demonstrate

ITGA4’s potential as a significant biomarker in oncology,

highlighting its potential role in tumor immunotherapy.
2 Materials and methods

2.1 Analysis of ITGA4 expression in pan-
cancer and subgroups

We investigated ITGA4 expression at the single-cell

transcriptomic level in healthy infants and adults using the

Human Transcriptome Cell Atlas (HTCA) database (https://

www.htcatlas.org/) (18). For examining the expression differences

of ITGA4 between pan-cancer and normal tissues, we obtained pan-

cancer datasets from the Xena database (https://xenabrowser.net/)

(19), which include transcriptome sequencing data (TPM format)

and clinical information from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) and the Gene Type-Tissue

Expression (GTEx, https://www.gtexportal.org/) (20) projects.

Cancer types with fewer than three samples were excluded, and

gene expression data were standardized using log2(x + 0.001). Data

processing and visualization were performed using R packages

“AnnotationDbi”, “org.Hs.eg.db”, “stringr”, “stringi”, “ggplot2”,

and “RColorBrewer”. Additionally, the “CPTAC” section of the

UALCAN database (https://ualcan.path.uab.edu/index.html) (21)
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was employed to analyze the ITGA4 protein levels. The correlation

between ITGA4 expression and tumor grade and stage was analyzed

using the “limma” and “stringr” packages. Finally, the TISIDB

database (http://cis.hku.hk/TISIDB/) (22) was used to analyze

ITGA4 expression patterns across different molecular and

immune subtypes.
2.2 Evaluation of the diagnostic and
prognostic value of ITGA4

To assess ITGA4’s diagnostic value, we utilized the R package

“pROC” to plot receiver operating characteristic (ROC) curves. An

area under the curve (AUC) above 0.7 indicated diagnostic value,

above 0.8 indicated good accuracy, and above 0.9 indicated excellent

diagnostic value. Subsequently, the “survival” and “forestplot”

packages were used to generate forest plots for Cox proportional

hazards regression models (23). Kaplan-Meier (KM) curves for

overall survival (OS), disease-specific survival (DSS), disease-free

interval (DFI), and progression-free interval (PFI) were plotted

using the “survminer” and “ggplot2” packages. High and low

ITGA4 expression groups were determined based on the median

ITGA4 expression value. We then used the “timeROC” and

“ggplot2” packages to create time-dependent ROC curves,

evaluating ITGA4’s ability to predict 1-, 3-, and 5-year survival

rates. We randomly selected 70% of the TCGA pan-cancer samples

as a training set (6830/9784) and used the “rms” and “survival”

packages to construct a nomogram model for predicting patient

prognosis. Model accuracy was verified with calibration plots.

Finally, we evaluated the model’s clinical decision-making value

and predictive accuracy for 1-, 3-, and 5-year survival rates using

time-dependent ROC curves with the “timeROC” package and

decision curve analysis (DCA) with the “ggDCA” package for

both the training set and validation set (2954/9784).
2.3 Analysis of ITGA4 interaction proteins
and functional enrichment

We constructed protein-protein interaction (PPI) networks for

ITGA4 using the GeneMANIA (http://www.genemania.org) (24),

STRING (https://cn.string-db.org/) (25), and Cytoscape software.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses for these

proteins were performed and visualized using the R packages

“clusterProfiler”, “org.Hs.eg.db”, “tidyr”, “ggplot2”, and cnetplot

function (26). Additionally, we explored the potential functions of

ITGA4 at the single-cell level using the CancerSEA database (http://

biocc.hrbmu.edu.cn/CancerSEA/) (27). We identified hub proteins

by intersecting the top 70 ITGA4-associated proteins from both

databases. The results were visualized with Venn diagrams using

“VennDiagram” and “ggplot2” packages and a correlation heatmap

of ITGA4 and hub gene expression was created using

“ComplexHeatmap” package (28). Functional enrichment analysis

of the hub genes was subsequently performed using the GSCA

database (https://guolab.wchscu.cn/GSCA/#/) (29).
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2.4 Correlation analysis of ITGA4 and
cancer immunity

We analyzed the Spearman correlation between ITGA4 and three

TME scores (StromalScore, ImmuneScore, and ESTIMATEScore)

using the R package “ESTIMATE”. Spearman correlation analysis

between ITGA4 expression and immune cell infiltration was assessed

using five algorithms—CIBERSORT, xCELL, TIMER, EPIC, and

MCPCounter—via the “IOBR” and “psych” package. Correlation

heatmaps were generated using “ggplot2” to visualize these results.

We also used the TISIDB database (http://cis.hku.hk/TISIDB/

index.php) (30) to examine the relationships between ITGA4 and

various tumor-infiltrating lymphocytes (TILs), immunoregulatory

genes (immunostimulators, immunoinhibitors, and major

histocompatibility complex (MHC) genes), chemokines, and

chemokine receptors across cancers (31, 32).
2.5 Correlation analysis of ITGA4 with
MMR, tumor heterogeneity, stemness, and
immunotherapy responsiveness

We visualized the correlation between ITGA4 and four key MMR

genes (MLH1, MSH2, MSH6, and PMS2) using heatmaps generated

with the “ggplot2” package. Utilizing the “TMB” and

“inferHeterogeneity” functions in the “maftools” package, and

referencing previous studies (33, 34), we obtained various tumor

heterogeneity parameters, including TMB, mutational and clonal

intratumoral heterogeneity (MATH), MSI, neoantigen load (NEO),

tumor purity, ploidy, homologous recombination deficiency (HRD),

and loss of heterozygosity (LOH). Additionally, we sourced tumor

stemness scores such as RNAss, EREG.EXPss, DNAss, DMPss,

ENHss, and EREG-METHss from existing research (35). “ggplot2”

was used to create correlation heatmaps. Furthermore, lollipop plots

illustrating TMB and MSI’s correlations with ITGA4 were generated

with “ggplot2” package. To further explore the predictive role of ITGA4

and other biomarkers on immune checkpoint blockade (ICB) therapy

responsiveness, we employed the “Biomarker Evaluation” and

“Regulator Prioritization” modules of the Tumor Immune

Dysfunction and Exclusion (TIDE) database (http:/ /

tide.dfci.harvard.edu). We also analyzed ITGA4 expression in

various immunosuppressive datasets. Finally, we assessed ITGA4

expression changes pre- and post-ICB therapy in tumor models and

pre- and post-cytokine therapy in tumor cell lines using the TIMSO

database (http://tismo.cistrome.org/) (36).
2.6 Mutation and methylation analysis of
ITGA4 in pan-cancer

We used the cBioPortal database (https://www.cbioportal.org/)

(37) to investigate ITGA4 mutation frequency, types, distribution,

specific sites, and the relationship between ITGA4 expression and

copy number alterations (CNA). We then examined the top ten

genes most likely to mutate in the ITGA4-mutant group compared

to the non-mutant group. The SMART database (http://
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www.bioinfo-zs.com/smartapp/) (38) was used to analysis ITGA4

methylation levels and its 18 specific methylation sites, as well as the

correlations between them in cancer and normal tissues.
2.7 ITGA4 expression and drug sensitivity
correlation analysis

We obtained therapeutic sensitivity data for anti-cancer drugs

from CellMiner (https://discover.nci.nih.gov/cellminer/) (39).

Using the R packages “impute,” “limma,” “ggplot2,” and

“ggpubr,” we analyzed and plotted the correlation between drug

sensitivity and ITGA4 expression levels. The 3D structures of the

ITGA4 protein and chemotherapeutic drugs were downloaded from

the AlphaFold Prote in Structure Database (ht tps : / /

www.alphafold.ebi.ac.uk/) (40, 41) and the PubChem platform

(https://pubchem.ncbi.nlm.nih.gov/), respectively. Molecular

docking and visualization of the results were performed using

AutoDockTool (version 1.5.7) and the Pamon (version 3.0.3).
2.8 Prognostic impact, functions, immune
correlation, and single-cell analysis of
ITGA4 in GC

Transcriptome data (TPM format) and prognostic information for

the TCGA-STAD cohort were obtained from the Xena database. KM

curves were plotted to compare the OS differences between patients with

the highest 20% and lowest 20% ITGA4 expression levels, following the

method outlined in the above sections. Patients were divided into high

and low ITGA4 expression groups based on the median expression

level. Differentially expressed genes (DEGs) between these groups were

identified using “DESeq2,” “edgeR,” and “ggplot2” packages (|log2FC| >

1, adjusted P < 0.05) and visualized with a volcano plot (42, 43). GO and

KEGG enrichment analyses of these DEGs were also performed using

the method described in the above sections. Cancer reference gene sets

(c2.cp.kegg.v2022.1.Hs.symbols.gmt) were obtained from the Molecular

Signatures Database (MsigDB, http://www.gsea-msigdb.org/gsea/).

After ID conversion using the “org.Hs.eg.db” package, DEGs were

ranked by log2FC, and Gene Set Enrichment Analysis (GSEA) (44)

was conducted using the “clusterProfiler” package, with results

visualized by “ggplot2.” We also analyzed the correlation between

ITGA4 expression and three TME scores, as well as immune cell

infiltration in GC, following the method from the “Correlation

analysis of ITGA4 and cancer immunity” section. The single-cell

RNA sequencing data and annotation files from the GSE134520 and

GSE167297 datasets were obtained from the Tumor Immune

Single-cell Hub (TISCH, http://tisch.comp-genomics.org/home/)

(45) and were analyzed using the “MAESTRO” and “Seurat”

packages with t-SNE for cell clustering.
2.9 Cell culture

Human GC cell lines MKN45, HGC27, AGS, KATO III, N87,

and gastric mucosal epithelial cell line GES-1, authenticated by
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short tandem repeat (STR) analysis, were obtained from the

Digestive System Tumor Prevention and Treatment and

Translational Medicine Engineering lnnovation Center of

Lanzhou University. The cells were cultured in RPMI-1640

medium (Cat: 11875101, Gibco) containing 10% fetal bovine

serum (FBS, Cat: G8002, Servicebio) and 1% penicillin/

streptomycin (Cat:C0222, Beyotime) at 37°C in a humidified

incubator (POG-150, BOLV INSTRUMENT) with 5% CO2.
2.10 Western blot

Protein levels of ITGA4 were analyzed in six pairs of GC and

adjacent tissues collected from gastrectomy patients at the Second

Hospital of Lanzhou University (January-December 2023, with

ethical approval from the Ethics Committee of the Second

Hospital of Lanzhou University and informed consent from

patients), and in the six cell lines mentioned earlier. The staging

of all six GC clinical samples was classified as stage III. Tissues and

cells were lysed on ice using a lysis buffer with a PSMF (Cat: P0100,

Solarbio):RIPA (Cat: P0013B, Beyotime) ratio of 1:100 to extract

proteins. Equal amounts of protein samples were separated using

10% SDS-PAGE gels and transferred to PVDF membranes (Cat:

IPVH00010, Millipore). Membranes were blocked with 5% skim

milk (Cat: D8340, Solarbio) for 1 hour, then incubated overnight at

4°C with primary antibodies against ITGA4 (1:1000, Cat: 19676-1-

AP, Proteintech) and GAPDH (1:10000, Cat: 60004-1-Ig,

Proteintech). Afterward, membranes were incubated with HRP-

conjugated secondary antibodies (1:10000, Cat: SA00001-2,

Proteintech) for 1 hour at room temperature. Protein bands were

visualized using an enhanced chemiluminescence (ECL) imaging

system (JP-600Plus, JIAPENG) and quantification was performed

using ImageJ software.
2.11 siRNA transfection

Cells were seeded into a six-well plate (2×105 cells/well). After

attachment, cells were transfected with siRNA (20 mM) and

Lipo6000 (Cat: C0526-0.5ml, Beyotime) fol lowing the

manufacturer’s protocol (GENERAL BIO). Specifically, 3 mL
siRNA and 5 mL Lipo6000 were diluted in 250 mL Opti-MEM

(Cat: 31985062, Thermo) each, mixed, and added to 1500 mL 1640

complete medium. The transfection mixture was applied to the cells

and incubated at 37°C with 5% CO2 for 6 hours before replacing

with fresh 1640 medium. ITGA4 expression was analyzed byWB 48

hours post-transfection. The siRNA primer sequences for ITGA4

(human) were: 5’-CGAACAGAACUGAGUAAAA(dT)(dT)-3’ and

5’-CCUACAACGUGGACACUGA(dT)(dT)-3’.
2.12 Wound-healing assay

Cells were cultured in 6-well plates with RPMI-1640 medium

(10% FBS) until confluent. A sterile scraper created a scratch,

washed with PBS (Cat: F211131, BasalMedia), and incubated at
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37°C, 5% CO2. Scratch width was imaged at 0 and 24 hours and

analyzed with ImageJ.
2.13 Flow cytometry analysis

Cells were washed with cold PBS 3 times, resuspended in 100 µL

binding buffer, and incubated with 5 µL AV/APC or 7-AAD

solution for 15 minutes in the dark (Cat: AP105, Multi Sciences).

After adding 400 µL binding buffer, apoptosis rate was assessed by

flow cytometry (BD Biosciences).
2.14 ITGA4 association with
clinicopathological features and serum
markers in GC patients
via immunohistochemistry

With approval from the Ethics Committee of the Second Hospital

of Lanzhou University, we collected 80 pairs of paraffin-embedded GC

and adjacent tissue samples from June 2020 to December 2023. After

sectioning, samples were deparaffinized, rehydrated, and immersed in

antigen retrieval solution (Cat: 005000, Thermo) under high pressure

(150-200 kPa) for 10 minutes. The sections were then incubated with

3% hydrogen peroxide (Cat: 88597, Merck) for 20 minutes, followed

with 10% BSA (Cat: 37520, Thermo) at room temperature for 60

minutes. Next, the sections were incubated with primary anti-ITGA4

antibody (1:100, Cat: 19676-1-AP, Proteintech) overnight at 4°C, then

with secondary antibody (1:2000, Cat: A-11008, Thermo) for 1 hour.

Thereafter, DAB staining (Cat: PR30010, Proteintech) and hematoxylin

counterstaining (Cat: PR30004, Proteintech) were performed. ITGA4

expression was quantified using a digital imaging system

(3DHISTECH, Hungary). Staining intensity was scored from 0 to 3

(0 for no staining, 1 for pale yellow, 2 for light brown, and 3 for dark

brown), and the percentage of positive cells was divided into four equal

grades from 0-100%, corresponding to scores from 1 to 4 in ascending

order. The final score was the product of the intensity and positive

area scores.

We analyzed the correlation between ITGA4 expression and

various clinicopathological features, as well as serum tumor and

immune markers, in the previously mentioned 80 GC cases. These

entries included prognostic and diagnostic value, gender, age, TNM

stage, pathological stage, perineural invasion, vascular invasion,

gastric mucosal ulceration/bleeding, and serum tumor markers

and immune cell levels (detailed in the “Results” section).
2.15 Statistical methods

Statistical analysis and visualization were conducted using R

software (version 4.2.3). Spearman correlation analysis was utilized

to evaluate correlations. Results were based in triplicate experiments

and were presented as means ± standard deviation (SD). Statistical

significance was assessed using log-rank test, student’s t-test,

Mann–Whitney test, Welch’s t test, Wilcoxon test, Chisq test,
Frontiers in Oncology 05
Yates’ correction and two-way ANOVA. P-values less than 0.05

considered statistically significant.
3 Results

3.1 ITGA4 expression in pan-
cancer contexts

We first examined the expression of ITGA4 in normal tissues.

HTCA database analysis showed low ITGA4 expression in most adult

and infant tissues (Supplementary Figure S1A), indicating its potential

as a therapeutic target with low tissue toxicity. We then analyzed

ITGA4 mRNA levels using the TCGA database, observing significant

expression differences in most cancer types (18 of 24) (Figure 1A).

Further analysis combining TCGA and GTEx databases confirmed

these variations in 29 of 34 cancer types (Figure 1B). Notably, cancers

like GBM, BRCA, ESCA, STES, KIPAN, STAD, HNSC, KIRC, and

CHOL consistently showed higher ITGA4 expression in individual and

combined databases, while LUAD, KIRP, LUSC, BLCA, READ, and

KICH consistently exhibited lower expression. Additionally, analysis

from the CPTAC database revealed that ITGA4 protein expression was

higher in tumor tissues compared to normal tissues in COAD, OV,

KIRC, PAAD, HNSC, and GBM, while it was lower in LIHC, LUAD,

and BRCA (Figure 1C).

Our results further demonstrated that ITGA4 levels were elevated

in higher stages compared to lower stages in ACC, BLCA, KICH,

KIRP, READ, and STAD, whereas a reverse trend was observed in

SKCM and THCA (Figures 1D–K). Moreover, higher grades of

BLCA, HNSC, LGG, and STAD displayed increased ITGA4

expression compared to their lower counterparts, with notable

elevations in both higher grades and stages for STAD and BLCA

(Figures 1L–O). Using the TISIDB database, we explored potential

correlations between ITGA4 expression and the molecular and

immune subtypes of various cancers, noting variable ITGA4

expression in molecular subtypes within BRCA, HNSC, KIRP,

LGG, LIHC, OV, PCPG, STAD, and UCEC—for example, elevated

expression levels in STAD’s EBV subtype and HNSC’s Mesenchymal

subtype (Supplementary Figure S1B). Concurrently, ITGA4

expression varied across different immune subtypes in 23 cancer

types (Supplementary Figure S1C). These observations underscore

the complex expression patterns of ITGA4 in tumors, suggesting its

significant role in tumor progression and potential utility in tailoring

clinical strategies for different cancer subtypes.
3.2 Diagnostic and prognostic efficacy of
ITGA4 in pan-cancer

We evaluated the diagnostic value of ITGA4 in distinguishing

tumor from normal tissues using ROC curves. ITGA4

demonstrated diagnostic potential in 20 cancer types (AUC>0.7).

Specifically, PAAD, SARC, and TGCT showed AUC values

exceeding 0.9, with LAML, whose AUC is 1, demonstrating

perfect diagnostic accuracy (Supplementary Figures S2A–C).
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FIGURE 1

Expression and clinical relevance of ITGA4 in pan-cancer. (A, B) Expression of ITGA4 in tumor and normal tissues from the TCGA database and the
TCGA+GTEX database, respectively. (C) Protein levels of ITGA4 between cancerous and normal tissues from the CPTAC database. (D–K) ITGA4
expression across different tumor stages in ACC, BLCA, KICH, KIRP, READ, SKCM, STAD, and THCA. (L–O) ITGA4 expression across different tumor
grades in BLCA, HNSC, LGG, and STAD. (-/ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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Subsequently, using univariate Cox regression forest plots and KM

survival curves, we assessed the prognostic implications of ITGA4

expression across different cancers. Forest plots for OS revealed that

ITGA4 is a risk factor in KIRP, LGG, and UVM, but acts as a protective

factor in KIRC, LAML, LUAD, SKCM, and THYM (Figure 2A). These

results were validated by KM survival curves, which demonstrated that

high ITGA4 expression was associated with lower OS in LGG and

UVM, while it correlated with higher survival probabilities in KIRC,

LUAD, SKCM, and HNSC (Supplementary Figure S3A). Further

exploration showed that elevated ITGA4 expression could negatively

influence DSS in KIRP, LGG, SARC, and UVM, but it lowered the risk

of adverse DSS outcomes in KIRC, LUAD, and THYM (Figure 2B).

KM curves for DSS in KIRC, UVM, LGG, and LUAD corroborate

these findings, and high ITGA4 expression also correlated with poorer

DSS in KICH and UCEC, whereas it prolonged DSS in HNSC

(Supplementary Figure S3B). In terms of DFI, high ITGA4
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expression significantly correlated with shorter DFI in ESCA and

KIRP (Figure 2C). KM analysis further indicated that ITGA4 might

serve as a prolonging factor for DFI in CHOL (Supplementary Figure

S3C). PFI analysis showed that ITGA4 as a protective factor in CHOL,

KIRC, and UCEC, but demonstrated an adverse effect in LGG and

UVM (Figure 2D), a finding supported by KM analysis

(Supplementary Figure S3D).

To evaluate ITGA4’s predictive value for 1-, 3-, and 5-year

survival, we produced time-dependent ROC curves. ITGA4

demonstrated strong predictive capabilities, such as an AUC of

0.784 for 5-year DLBC survival, 0.966 for 1-year KICH survival, and

over 0.7 for both 3-year and 5-year TGCT survival (Figures 3A–E).

We then developed a nomogram using TCGA data based on ITGA4

expression, patient age, and cancer type to predict survival

probabilities (Figure 3F), which showed strong predictive

performance in both training and validation datasets with AUC
FIGURE 2

Univariate COX regression analysis of ITGA4 in pan-cancer for OS (A), DSS (B), DFI (C), and PFI (D).
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exceeding 0.7 for 1-, 3-, and 5-year survival (Figures 3G, J),

validated by accurate calibration curves (Figures 3H, K). DCA on

both training and testing datasets showed that models like All-1825

and All-1095 provided higher net benefits at low to medium

thresholds, demonstrating their predictive value. Conversely, the

All-365 model displayed limited utility at higher thresholds

(Figures 3I, L). These findings emphasize the importance of

ITGA4 expression-model selection based on clinical context to
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optimize patient outcomes, underscoring the value of tailored

clinical decision-making.
3.3 Functional analysis of ITGA4 in cancer

We used STRING and geneMANIA databases to identify the

top 20 and 50 proteins associated with ITGA4 respectively, with PPI
FIGURE 3

Predictive and clinical decision-making value of ITGA4. (A–E) Time-dependent ROCs for 1-, 3-, and 5-year survival predictions of DLBC, GBM, KICH,
TGCT, and UVM. (F) Nomogram predicting 1-, 3-, and 5-year survival rates for various cancer patients, established based on age, ITGA4 expression,
and tumor type. (G–I) Time-dependent ROC, calibration curves, and DCA of the predictive model in the training set (6830/9784). (J–L) Time-
dependent ROC, calibration curves, and DCA of the predictive model in the validation set (2954/9784).
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networks constructed (Figures 4A, B). The intersection of these

datasets revealed nine hub genes, with a pan-cancer heatmap

confirming their positive correlation with ITGA4 (Figures 4C, D).

Functional enrichment analysis of these 70 genes identified KEGG

categories like ECM-receptor interaction, the PI3K-Akt signaling

pathway, cell adhesion molecules, leukocyte transendothelial

migration, and the Rap1 signaling pathway (Figure 4E).

Correspondingly, GO enrichment analysis highlighted the

involvement of ITGA4 in cell-substrate adhesion, integrin-

mediated cell adhesion, extracellular matrix binding, leukocyte

migration, and cellular extravasation (Figures 4F, G). Data from
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the CancerSEA database showed at the single-cell level that ITGA4

may impact cellular quiescence, differentiation, apoptosis, and

processes related to cancer metastasis, invasion, and angiogenesis

(Supplementary Figures S4A–F). To augment our comprehension

of ITGA4’s roles in tumor progression, analyses of the

aforementioned nine hub genes via the GSCA database indicated

their potential roles in regulating apoptosis, the cell cycle, DNA

damage repair, epithelial-mesenchymal transition (EMT), and key

oncogenic signaling pathways including PI3K-AKT, RAS-MAPK,

RTK, and TSC-mTOR pathways (Figure 4H). These analyses

deepen our understanding of ITGA4’s role in tumor biology and
FIGURE 4

Functional enrichment analysis of ITGA4. (A) PPI network of ITGA4 and its 50 most related genes from the STRING database. (B) PPI network of
ITGA4 and its 20 most related genes from the geneMANIA database. (C) Venn diagram identifying nine hub genes. (D) Heatmap depicting the
correlation between ITGA4 and the nine hub genes. (E) KEGG pathway enrichment analysis. (F) GO enrichment analysis. (G) Visualization of GO
enrichment analysis results using the cnetplot function. (H) Heatmap of functional enrichment analysis of ITGA4 and the nine hub genes based on
the GSCA database. (*P < 0.05; **P < 0.01; ***P < 0.001).
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microenvironments, offering crucial insights for developing

targeted therapies and predicting tumor behaviors.
3.4 ITGA4’s role in TME, immune
infiltration and immunomodulators

As TME has an important impact on tumor activity and response

to treatment (46), we analyzed the correlation between ITGA4
Frontiers in Oncology 10
expression and TME scores, revealing significant positive correlations

with StromalScore, ImmuneScore, and ESTIMATEScore (Figures 5A–

C). These findings suggest that tumors with high ITGA4 expression

may have a rich stromal component, extensive immune cell infiltration,

and high tumor purity. This indicates a potential pivotal role of ITGA4

in modulating the TME, particularly in the interactions between tumor

cells and the surrounding stroma and immune cells.

We then conducted a detailed analysis using five distinct

algorithms to elucidate the relationship between ITGA4 expression
FIGURE 5

Tumor Immunology correlation of ITGA4. Radar plots illustrating the correlation of ITGA4 with StromalScore (A), ImmuneScore (B), and
ESTIMATEScore (C) across various cancers. Heatmaps depicting the correlation between ITGA4 and tumor immune cell infiltration based on five
different algorithms: CIBERSORT (D), xCELL (E), EPIC (F), MCPCounter (G), and TIMER (H). (*P < 0.05; **P < 0.01; ***P < 0.001).
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and immune cell infiltration across various cancer types. Overall,

except for UCS, ITGA4 expression showed significant correlations

with the infiltration of multiple immune cell types, especially

macrophages, CD8+ T cells, and CD4+ T cells, in most cancers

(Figures 5D–H). Specifically, results from the CIBERSORT algorithm

revealed significant positive correlations between ITGA4 and both M1

and M2 macrophage types, which are antagonistic. Notably, the

association with M2 macrophages generally exceeded that with M1

macrophages. This pattern could potentially be explained by the

significant negative correlation of CD4+ Th1 cells with ITGA4 across

multiple cancers using the XCELL algorithm (whereas Th2 cells, which

are antagonistic to Th1 cells, showed significant positive correlations

with ITGA4), since a decrease in Th1 cell infiltration could diminish

the activation of M1 macrophages through reduced interferon-gamma

(IFN-g) secretion. We hypothesize that abnormal ITGA4 expression

may foster an adverse inflammatory environment in tumors, leading to

decreased M1 macrophage activation while facilitating their

polarization towards the tumor-promoting M2 phenotype. The

recruitment of CD4+ and CD8+ T cells to tumor sites is likely

influenced by this inflammatory milieu and regulated by ITGA4.

Furthermore, regulatory T cells (Tregs), cancer-associated fibroblasts

(CAFs), and endothelial cells, also demonstrated significant positive

correlations with ITGA4 in multiple cancers. We further analyzed the

association of ITGA4 with TILs, immunoregulators, chemokines, and

their receptors using the TISIDB database. Consistent with prior

results, ITGA4 significantly correlated with many immune cells

across different tumors (Supplementary Figure S5A). Moreover,

ITGA4 exhibited significant associations with a broad range of

Immune regulatory genes, including immunostimulators,

immunoinhibitors, and MHC molecules (Supplementary Figure

S5B–D). Additionally, ITGA4 showed substantial positive

correlations with several chemokines and their receptors, notably

including multiple members of the CCL, CXCL, CCR, and CXCR

gene families (Supplementary Figure S5E, F). It’s worth noting that

TME score, immune cell infiltration, and immune regulation all

showed weak or inconsistent correlations with ITGA4 expression in

LAML and UCS, warranting further investigation. The above findings

underscore the complex role and potential importance of ITGA4 in

regulating the tumor immune microenvironment, providing a

theoretical foundation for future therapies targeting ITGA4.
3.5 Correlations between ITGA4 and MMR,
tumor heterogeneity, stemness and
immunotherapy response

Given the significant impact of tumor cell heterogeneity and

stemness on malignancy and immunotherapy sensitivity, we

explored the relationship between ITGA4 and related indices

across multiple cancers. We initially investigated the association

between ITGA4 and four key MMR genes (MLH1, MSH2, MSH6,

PMS2) and found a significant positive correlation in 30 cancer

types, excluding ACC, ESCA, and LUSC (Figure 6A). Further

analysis revealed that ITGA4 was significantly negatively

correlated with MSI in seven cancer types and with TMB in ten

types (Figures 6B, C). This suggests that elevated ITGA4 expression
Frontiers in Oncology 11
could decrease MSI and TMB mediated by MMR, potentially

complicating tumor responsiveness to immunotherapy.

Intriguingly, in GBMLGG, LGG, and OV, a positive correlation

between ITGA4 and TMB was observed, likely due to unintended

mutations in MMR genes. Significant correlations were also noted

between ITGA4 and other tumor heterogeneity markers such as

HRD, LOH, MATH, NEO, ploidy, and tumor purity across multiple

cancer types (Supplementary Figure S6A). Moreover, ITGA4

showed a consistent negative correlation with RNAss in most

cancers, and its relationship with other stemness scores

(EREG.EXPss, DNAss, DMPss, ENHss, EREG-METHss) varied in

direction and degree (Supplementary Figure S6B), potentially

affecting tumor cell drug resistance.

We subsequently evaluated the predictive efficacy of ITGA4

for immunotherapy outcomes in cancer patient cohorts treated

with ICB. ITGA4 achieved an AUC over 0.5 in 13 cohorts,

comparable to MSI.Score, and outperformed in predicting NSCLC

(Ruppin2021_PD1_NSCLC) and melanoma (Riaz2017_PD1_

Melanoma_Ipi.Prog, Gide2019_PD1_Melanoma) immunotherapy

outcomes (Figure 6D). Additionally, ITGA4 expression varied among

multiple Immunosuppressive datasets, showing high levels in

METABRIC, TCGA Melanoma, ICB_Nathanson2017_CTLA4, and

ICB_VanAllen2015_CTLA4 cohorts, but low in GSE12417_GPL570,

Patel2017 1, and Shifrut 2018 pilot Average cohorts (Figure 6E).

Furthermore, analysis using the TIMSO database revealed that

ITGA4 could predict immunotherapy response in eight in vivo

tumor killing assays (primarily involving anti-PD1, anti-CTLA4, and

their combination, as well as anti-PDL1 and anti-PDL2) and three in

vitro cytokine (primarily IFNg) killing assays (Figures 6F, G). These

findings underscore the potential role and impact of ITGA4 in

modulating cancer responses to immunotherapy.
3.6 ITGA4 mutations and methylation in
pan-cancer

Analysis based on the cBioPortal database revealed ITGA4

alterations in 22 cancer types, with mutations most common,

especially in melanoma (Figure 7A). Of the 303 somatic mutation

sites identified in ITGA4, 266 were missense mutations (Figure 7B).

Supplementary Figure S7A further illustrates the distribution of

ITGA4 mutation types across different cancers. Additionally, pan-

cancer analysis showed a low correlation between CNAs and ITGA4

expression levels, with no significant differences across CNA types,

suggesting minimal impact of CNA on ITGA4 expression in cancer

(Figures 7C, D). Figure 7E displays the top ten genes more prone to

mutations in the ITGA4 altered group compared to the non-altered

group within the pan-cancer cohort, including TTN, TP53,

MUC16, CSMD3, LRP1B, and SOCS2, all known to play roles in

tumor progression (47–52).

Methylation plays a critical role in cancer progression (53).

Analysis from the SMART database revealed elevated ITGA4

methylation levels in BLCA, BRCA, CHOL, COAD, ESCA,

HNSC, LUAD, PAAD, PRAD, READ, STAD, and THCA, but

lower levels in LIHC compared to normal tissues (Figure 7F).

Among the 18 ITGA4 methylation sites analyzed, except for
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cg05246303 and cg25515269, the remaining 16 sites showed

significant variations in over ten types of cancer (Supplementary

Figure S7B). Furthermore, methylation at cg04531425, cg11947981,

cg16057262, cg25024074, cg21995919, cg10965575, cg17265419,

cg25515269, and cg05246303 were found to inhibit ITGA4

expression in various cancers. Meanwhile, methylation levels was

negatively correlated with ITGA4 expression in CESC, CHOL,

ESCA, GBM, MESO, TGCT, THCA, and UVM, and positively

correlated in LAML, LIHC, and PCPG (Figure 7G). These findings

emphasize the potential impact of ITGA4 methylation status on its

expression across different cancers, providing insights for new

cancer diagnostic or therapeutic strategies.
3.7 ITGA4 and drug sensitivity

Figures 8A–P presents the top 16 drugs from the CellMiner

database whose IC50 values are most significantly correlated with

ITGA4 expression. Specifically, Fluorouracil and t-dcyd exhibit
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negative correlations with ITGA4 expression levels, with protein

docking free energies of -4.53 kcal/mol and -5.47 kcal/mol

respectively (Figures 8Q, R), indicating that cancers with higher

ITGA4 may respond better to these drugs. Conversely, the IC50

values of the other 14 drugs are positively correlated with ITGA4

expression, suggesting potential resistance in tumors with elevated

ITGA4 levels. These results underscore ITGA4’s potential impact

on drug sensitivity in cancer, proposing it as a viable target for

therapeutic intervention.
3.8 Validation of pan-cancer insights in
GC analysis

To validate the pan-cancer findings of ITGA4, we investigated its

role in GC using the TCGA-STAD cohort. We observed a poorer

prognosis in patients with top 20% ITGA4 expression compared to

those with the bottom 20% (Figure 9A), correlating with findings

from pan-cancer studies linking higher ITGA4 expression to
FIGURE 6

Correlation of ITGA4 with MMR, MSI, TMB, and immune therapy response. (A) Heatmap of the correlation between ITGA4 and four key MMR genes.
Lollipop plots depicting the correlation of ITGA4 with MSI (B) and TMB (C). (D) The predictive value of ITGA4 and other biomarkers for ICB therapy
responsiveness. (E) Expression of ITGA4 in immunosuppressive and immunotherapy cohorts. (F) Correlation of ITGA4 with in vivo tumor model response
to immunotherapy. (G) Relationship between ITGA4 and in vitro cell line response to cytokine therapy. (*P < 0.05; **P < 0.01; ***P < 0.001).
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advanced GC stages and grades. Further, DEGs between high and low

ITGA4 expression groups were used for enrichment analysis

(Supplementary Figure S8A). GO results indicated that ITGA4

primarily contributes to cell adhesion, immune infiltration, and

immune regulation in GC, involving processes such as immune

response-activating signal transduction, protein complexes involved

in cell adhesion, chemokine binding, and MHC protein complex

binding (Figure 9B). Meanwhile, KEGG and GSEA analyses

suggested that ITGA4 might regulate crucial physiological

processes beyond the TME of GC, such as ECM receptor

interaction, cell adhesion, apoptosis, antigen processing and

presentation, and oxidative phosphorylation. Moreover, ITGA4

impacts several classic cancer-related signaling pathways including

PI3K-Akt, JAK-STAT, NF-kappa B, and Toll-like receptor pathways

(Figure 9C, D). Additionally, our investigation into ITGA4’s

immunological relevance in GC revealed significant positive

correlations between its expression and three TME scores

(Figure 9E). Also, three different algorithms showed significantly

higher immune cell infiltration, such as macrophages, CD4+ and

CD8+ T cells, in the high ITGA4 expression group compared to the

low expression group (Figures 9F, G; Supplementary Figures S8B–E).

ITGA4 were also noted primarily expressed in CD8+ T cells, DC cells,

and plasma cells in two GC single-cell sequencing cohorts

(GSE134520 and GSE167297) (Figure 9H; Supplementary Figures
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S8F, G), suggesting the expression of ITGA4 in these cells may

potentially regulate the TME. These findings are generally consistent

with the results from pan-cancer analyses and highlight a unique

strong immunological correlation associated with ITGA4 in GC.
3.9 Validation of ITGA4 expression,
function, and clinical relevance in GC

WB analysis revealed that ITGA4 expression was significantly

higher in GC cell lines AGS, MKN45, and HGC27 compared to the

normal GES-1 cell line (Figures 10A, B). Similarly, ITGA4 protein

levels were elevated in GC tissues relative to adjacent normal tissues

(Figures 10C, D). IHC analysis of 80 GC cases confirmed these

results (Figures 10E, F) and showed that ITGA4 protein expression

was higher in the low stage GC than in the high stage

(Supplementary Figures S9A, B). Knockdown of ITGA4

attenuated the GC cell line MKN45 migration and enhanced its

apoptosis (Supplementary Figures S9C–H). Additionally, ITGA4

expression demonstrated strong diagnostic value for these GC cases

(AUC = 0.808), and cases with high ITGA4 expression were

associated with poorer OS (Figures 10G, H). Furthermore,

patients with high ITGA4 expression exhibited more advanced N

and pathological stages, increased perineural and vascular invasion
FIGURE 7

ITGA4 mutation and methylation analysis in pan-cancer. (A) The alteration frequency of ITGA4 across various cancer types. (B) Mutation sites of
ITGA4. (C) ITGA4 expression in different CNA categories. (D) Scatter plot of the correlation between ITGA4 expression and its copy number values.
(E) Top ten genes most frequently mutated in the ITGA4 altered group compared to the unaltered group. (F) Methylation levels of ITGA4 in pan-
cancer versus normal tissues. (G) Heatmap depicting the correlation between ITGA4 and its 18 methylation sites. (ns, no significance; *P < 0.05; **P
< 0.01; ***P < 0.001).
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(Table 1), along with elevated Ki-67 expression (Supplementary

Table S1). ITGA4 expression was also correlated with blood levels of

neutrophils, lymphocytes, and basophils (Supplementary Table S2).

Moreover, there was a positive correlation between ITGA4

expression and serum levels of C-reactive protein (CRP) and

carbohydrate antigen 125 (CA125) (Figures 10I, J).
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4 Discussion

Integrins represent attractive targets for the prevention and

treatment of malignancies. Given the diverse roles of integrin family

members in various cancers (54), developing suitable integrin

targets is essential for personalized cancer treatment. Although
FIGURE 8

(A–P) Top 16 drugs with IC50 values most correlated with ITGA4 expression in the CellMiner database. Molecular docking of t-dcyd (Q) and
Fluorouracil (R) with ITGA4 protein.
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ITGA4 impacts proliferation, invasion, metastasis, and lymphocyte

recruitment of some tumors (16, 17), its specific role in the TME is

unclear. Due to the current lack of systematic understanding of

ITGA4, we conducted a comprehensive pan-cancer analysis. Our

study found that ITGA4 expressed low in most normal tissues,

highlighting its potential as a low-toxicity therapeutic target. In

contrast to normal tissues, ITGA4 expression significantly differed

across various cancer types and different molecular and immune

subtypes, suggesting its functional diversity throughout cancers.

Besides, higher ITGA4 expression was linked to advanced tumor

grades and stages, indicating its role in malignant progression.

Additionally, ITGA4 showed good diagnostic potential in 20 cancer

types. Prognostic analysis demonstrated that its expression levels

correlated with OS, DSS, PFI, and DFI in various cancers, acting as a

risk or protective factor, emphasizing the complex role of ITGA4 in

cancer prognosis. Predictive nomogram model further validated the

clinical decision-making value of ITGA4, showcasing its excellent
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potential as a tumor biomarker and therapeutic target. As integrin

family members play diverse roles in cellular signaling and

biological processes, ITGA4 may act as an oncogene in some

cancers, promoting tumor cell adhesion, migration, invasion,

angiogenesis, and metastasis, or as a tumor suppressor, impacting

cell survival, proliferation, and drug response (55). For example,

ITGA4 overexpression in chronic lymphocytic leukemia (CLL)

correlates with disease progression and high-risk biomarkers (56),

while its low expression in colorectal cancer is linked to poor

prognosis (57). These expression patterns align with the findings

in this study for hematologic malignancies and COADREAD. Based

on prior studies, we hypothesize that the differential expression of

ITGA4 between may be influenced by: interactions with other

molecules or signaling pathways (58); the high heterogeneity of

tumors and subtypes (55); mutations in oncogenes and tumor

suppressor genes, epigenetic modifications (such as DNA

methylation), and transcriptional regulation (59, 60); and changes
FIGURE 9

Prognostic value, functional analysis, and immune correlation of ITGA4 in GC. (A) K-M survival curves of GC patients. (B) GO enrichment analysis of
ITGA4 in GC. (C) KEGG pathway analysis of ITGA4 in GC. (D) GSEA of ITGA4 in GC. (E) Correlation analysis of ITGA4 with three TME scores in GC. (F)
Heatmap of the correlation between ITGA4 and immune cell infiltration based on the xCELL algorithm. (G) Immune cell infiltration abundance plot
based on the xCELL algorithm. (H) Single-cell clustering plot, distribution map of ITGA4 expression in different cells, and abundance plot of ITGA4
expression in different cells, based on the STAD-GSE134520 dataset. (*P < 0.05; **P < 0.01; ***P < 0.001).
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in the TME (61, 62). To explore the mechanism and clinical

significance of ITGA4 in cancer, we conducted a series of

subsequent analyses.

Functional enrichment analysis revealed that ITGA4 was involved

in cell-substrate adhesion, integrin-mediated cell adhesion, ECM

binding, EMT, leukocyte migration, cellular extravasation, cellular
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quiescence, the cell cycle, DNA damage repair, differentiation,

apoptosis, and cancer metastasis, invasion, and angiogenesis.

Additionally, ITGA4 regulated multiple canonical cancer signaling

pathways, such as PI3K-AKT, RAS-MAPK, RTK, and TSC-mTOR

pathways. These results were validated by transcriptome sequencing of

GC. Wound-healing assay and flow cytometry also confirmed that
FIGURE 10

ITGA4 expression, prognostic and diagnostic value, and its correlation with serum biomarkers in GC. (A, B) WB analysis of ITGA4 protein expression
in a normal gastric epithelial cell line and five GC cell lines. (C–F) ITGA4 protein expression in GC tissues and adjacent tissues was analysed through
WB (6 pairs) and IHC staining (80 pairs, scale bar, 100 mm and 20 mm). (G, H) Diagnostic and prognostic value. (I, J) Scatter plots of the correlation
between ITGA4 expression and serum CRP and CA125 levels. (ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001). CRP, C-reactive protein;
CA125, carbohydrate antigen 125.
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ITGA4 downregulation inhibits GC cell migration and promotes

apoptosis. Previous study has shown that integrins on the surface of

exosomes from tumor cells affect cell adhesion and migration (63).

Cell adhesion is linked to proliferation pathways like PI3K/AKT and

MEK/ERK pathways, which protect tumor cells from apoptosis (54).

Moreover, integrin a4b1 influence the recruitment of inflammatory

cells (64). Notably, single-cell analysis of GC in this study revealed that

ITGA4 was primarily expressed in CD8+ T cells, DC cells, and plasma

cells, suggesting its potential regulatory role in TME through these cell

types. Therefore, ITGA4 and its mediated signaling pathways play

critical roles in the growth, invasion, migration, and immune evasion
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of malignant tumors. As the role of integrins in the TME is complex

and varies according to tumor heterogeneity (65), further research is

needed to elucidate the signaling mechanisms related to ITGA4.

Aligning with functional enrichment analysis results, we found

that ITGA4 was significantly positively correlated with three TME

indicators, suggesting its crucial impact on tumor cells, stromal

components, and immune cells. Given the TME’s complex role in

tumor malignancy and treatment response (66), targeting ITGA4 to

mitigate TME-induced immunosuppression holds promise for

improving anti-cancer efficacy. We focused on the immune cell

infiltration associated with ITGA4 expression in the overall cancer

context. Five algorithms were used to analyze immune cell infiltration

based on tumor gene expression profiles andminimize potential biases

from individual algorithm. All five algorithms consistently showed

that ITGA4 was markedly associated with immune cell infiltration

across various tumors, particularly with tumor-associated

macrophages (TAMs), M1 and M2 macrophages, and CD4+ and

CD8+ T cells. TAMs can polarize into pro-inflammatory or anti-

inflammatory phenotypes, and promote tumor progression and

recurrence, leading to poor prognosis and therapeutic resistance

(66–69). For instance, M1 macrophages produce pro-inflammatory

factors with anti-tumor effects, but under certain conditions, they

produce excessive NO, worsening inflammation and contributing to

autoimmune diseases like IBD and MS (70, 71). Our findings also

showed that ITGA4 was more positively correlated with M2

macrophage abundance than M1 type and negatively correlated

with Th1 cells. Since PI3Kg-integrin a4b1 pathway can reduce IFN-

g levels (72), which is secreted by Th1 cells and enhances M1

macrophage and CD8+ T cell activity (73), we hypothesize that

ITGA4 could reduce Th1 cells infiltration, leading to the

recruitment of less active M1 macrophages and CD8+ T cells.

Aberrant ITGA4 expression possibly creates an inflammatory

environment that polarizes M1 macrophages to M2 macrophages,

promoting immunosuppression and recruiting other immune cells to

the tumor site (71). Tregs, CAFs, and endothelial cells, which support

tumor growth, metastasis, and immunosuppression (74–76), were also

significantly positively correlated with ITGA4. These findings were

further validated in GC. However, there were some variations in the

correlation between ITGA4 expression and immune cell infiltration

across different cancer types. For example, all algorithms showed weak

or inconsistent correlations in LAML and UCS, contrasting with the

positive immune correlations seen in most other tumors. Besides, in

the xCELL algorithm, macrophage infiltration in THYM negatively

correlated with ITGA4 expression, opposite to the positive correlation

in STAD. These differences may stem from tumor microenvironment

heterogeneity, immune evasion, immunosuppressive cells, gene

regulation, and treatment variations. We further found that ITGA4

was positively correlated with most immune regulatory molecules

across cancers, such as CTLA4, PDCD1, LAG3, which inhibit T cell

activity. It was also correlated with CSF1R, CCL2, and CCR2, which

affect TAM activity (66), indicating ITGA4’s critical role in immune

regulation. Therefore, ITGA4 may influence the TME by modulating

immune cell infiltration and function in various cancers, where these

immune cells have complex roles in promoting or inhibiting tumors,

highlighting ITGA4’s potential as a therapeutic target of controlling

tumor immune suppression.
TABLE 1 Association between ITGA4 and the clinicopathological
characteristics of GC.

Characteristics

ITGA4

High-
expression
(n=56)

Low-
expression
(n=24)

P value

Sex, n (%) 0.504

Male 39 (50%) 18 (23.1%)

Female 16 (20.5%) 5 (6.4%)

Age, mean ± sd 59.091 ± 10.319 61.826 ± 10.765 0.295

T stage, n (%) 0.177

T1+T2 13 (17.6%) 8 (10.8%)

T3+T4 41 (55.4%) 12 (16.2%)

N stage, n (%) 0.012

N0 11 (14.9%) 10 (13.5%)

N1+N2 43 (58.1%) 10 (13.5%)

M stage, n (%) 0.560

M0 51 (68.9%) 20 (27%)

MX 1 (1.4%) 0 (0%)

M1 2 (2.7%) 0 (0%)

Pathological stage, n (%) 0.043

I-II 22 (29.7%) 13 (17.6%)

III-IV 32 (43.2%) 7 (9.5%)

Perineural invasion, n (%) 0.006

+ 34 (54%) 7 (11.1%)

- 11 (17.5%) 11 (17.5%)

Vascular invasion, n (%) 0.006

+ 43 (57.3%) 9 (12%)

- 12 (16%) 11 (14.7%)

Gastric mucosal
hemorrhage/ulcer, n (%)

1.000

+ 24 (58.5%) 10 (24.4%)

- 5 (12.2%) 2 (4.9%)
The bold text represents values with P < 0.05, indicating that the differences are
statistically significant.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1513622
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1513622
The MMR system detects and corrects errors during DNA

replication, repair, and recombination (77). Deficiencies in MMR

(dMMR) cause high microsatellite instability (MSI-H) and subsequent

high tumor mutational burden (TMB-H), resulting in immunogenic

neoantigens that improve immune response and prognosis of

immunotherapy (78–80). Our study showed a significant positive

correlation between ITGA4 and four key MMR components, while

ITGA4 expression negatively correlated with MSI and TMB in

multiple cancers. Therefore, tumors with low ITGA4 expression

may exhibit dMMR, leading to MSI-H and TMB-H phenotypes,

which are more responsive to immunotherapy. Meanwhile, ITGA4

showed good predictive value for efficacy in various immunotherapy

cohorts. These findings suggest that ITGA4 may be a valuable

biomarker for predicting tumor response to immunotherapy,

highlighting the potential advantages of screening patients with

abnormal ITGA4 expression for personalized immune checkpoint

inhibitor (ICI) treatment. Meanwhile, targeting ITGA4 in

combination with ICIs may modulate the TME, reduce

inflammation and immune evasion, and enhance anti-tumor

immune cell infiltration and response. Recent studies suggest that

this combination reduces PD-L1 expression in cancer cells and boosts

T cell cytotoxicity and infiltration (81). Therefore, ITGA4-targeted

drugs combined with immunotherapy may represent an effective

cancer treatment strategy.

Genetic alterations of ITGA4, primarily somatic missense

mutations, were identified in 22 of 30 cancer types, potentially

giving tumors a growth advantage by causing abnormal protein

functions (82). Additionally, among the top ten genes with higher

mutation frequencies in the ITGA4-altered group, TP53, LRP1B,

TTN, MUC16, CSMD3, and SOCS2 have been reported to affect

tumor progression, drug resistance, and immunotherapy response

(47–50, 52), suggesting that ITGA4 may also be involved in these

processes through gene mutation, warranting further research.

The above analysis suggests that ITGA4 may play different roles

in different cancers. Methylation analysis showed elevated ITGA4

methylation in several cancers, with a negative correlation between

methylation and expression in eight cancer types, and a positive

correlation in three. DNA methylation regulates oncogenes and

tumor suppressor genes in malignant progression. Tumor

heterogeneity leads to varying methylation patterns across

cancers, affecting gene expression, classification, treatment

response, and prognosis (83–85). Thus, the differential expression

of ITGA4 across various cancers may be related to its distinct

methylation status in each cancer type. Previous studies support this

conclusion. Hypermethylation of CpG sites 1, 2, and 3 in ITGA4

leads to protein dysregulation in CLL and poor prognosis (86).

Abnormal methylation of the ITGA4 5′-CpG island can cause

expression loss and may predict CHOL metastasis (87).

Additionally, methylation of the ITGA4 promoter can suppress

its expression in certain tumors (88). However, ITGA4 expression

can be enhanced through m6A methylation by METTL3, increasing

the homing ability of AML cells, illustrating the complex impact of

different methylation states (59). A recent meta-analysis showed

that the summary ROC curve’s AUC for ITGA4 methylation across

cancers is 0.94 (89), highlighting its strong potential as a diagnostic

marker. So, ITGA4 methylation is associated with cancer
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development and progression and has potential as a biomarker

for early cancer screening.

ECM can initiate or promote EMT, enhancing the invasion,

metastasis, stemness, and chemoresistance of malignant tumor cells

(90–94). Our study implies that ITGA4 may be involved in ECM

binding and EMT, and is associated with stemness scores and

resistance to various chemotherapeutic agents. Thus, combining

ITGA4 inhibitors with chemotherapy may reduce resistance,

enhance drug penetration, and improve efficacy while reducing

side effects by modulating TME and stemness (81).

We also analyzed the clinical relevance of ITGA4 in 80 GC

patients. Ki-67 is a key marker of tumor cell proliferation and has

been shown to be associated with pathological staging, infiltration,

metastasis, chemotherapy resistance, and prognosis in GC (95, 96).

CA125 is a recognized serum tumor marker and has been reported

to affect the prognosis of GC patients (97). CRP, an acute-phase

protein, reflects the inflammatory response (98). This study

revealed that GC patients with high ITGA4 expression exhibited

advanced N and pathological stages, stronger perineural and

vascular invasion, along with higher Ki-67 expression and poorer

prognosis. Additionally, ITGA4 expression was positively

correlated with serum levels of CA125 and CRP, and related to

blood immune cell abundance. These findings suggest that ITGA4

may promote GC cell proliferation and disease progression, while

also participating in inflammatory responses, ultimately leading to

unfavorable outcomes. Monitoring serum levels of CA125 and CRP

to assess the potential role of ITGA4 in GC may provide new

insights for personalized precision therapies, warranting further

investigation in future studies.

This study systematically analyzed the role of ITGA4 in pan-

cancer and validated some of its functions through experiments.

Some issues should be pointed. InWB experiment, the appearance of

double bands in some samples could be due to several factors: ITGA4

protein may exist in isoforms or undergo post-translational

modifications, the antibody may cross-react with similar proteins,

alternative splicing may produce different isoforms, protein

degradation may lead to smaller products, or antibody specificity

issues may cause non-specific binding. Additionally, future research

should include deeper cell and animal studies to clarify ITGA4

mechanisms in cancer, along with larger-scale data analyses for

cancer types with small sample sizes. Furthermore, we validated

ITGA4 in GC only, emphasizing the need for further research across

other cancer types. Notably, our study identified ITGA4 as a potential

prognostic and immunotherapeutic biomarker, which holds

bidirectional implications, highlighting the importance to consider

its diverse expression and functions across tumor types. Besides,

translating current research into clinical applications faces challenges,

including the complex differences between cell and animal models,

insufficient pharmacokinetic and pharmacodynamic studies,

variability in target expression and function due to tumor

heterogeneity, difficulties in customizing personalized treatment

strategies, challenges in patient recruitment and stratification for

clinical trials, the complexity of selecting clinical endpoints, potential

risks of long-term drug use, and adverse reactions and

management (55). These challenges require comprehensive and

long-term efforts to address.
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5 Conclusion

To sum up, ITGA4 and its associated signaling pathways are

critical in tumor growth, invasion, metastasis, immune regulation,

heterogeneity, stemness, chemoresistance, and immunotherapy

response, making it a promising biomarker and therapeutic

target. Combining ITGA4-targeted therapies with traditional or

immunotherapies may enhance clinical outcomes. Besides, in GC

cases, ITGA4 promotes tumor cell proliferation, invasion and

metastasis, while also contributing to inflammatory responses and

leading to adverse outcomes. Further studies are required to

elucidate more molecular mechanisms of ITGA4 to advance

cancer diagnosis and treatment.
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