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Lobular carcinoma (LC) presents unique diagnostic challenges due to its subtle

imaging characteristics and asymptomatic presentation, often leading to delays

in diagnosis and treatment. This mini-review critically examines both traditional

and advanced imaging modalities used to detect and manage LC, including

mammography, ultrasound, digital breast tomosynthesis (DBT), contrast-

enhanced mammography (CEM), breast magnetic resonance imaging (MRI),

and breast-specific gamma imaging (BSGI). Traditional modalities like

mammography and ultrasound, while widely used, have limitations, particularly

in detecting LC in patients with dense breast tissue. Advanced techniques, such

as MRI and BSGI, offer improved sensitivity and specificity but are limited by cost

and accessibility. Emerging technologies such as artificial intelligence (AI) and

radiomics are reshaping the diagnostic landscape for LC. AI has shown promise in

enhancing diagnostic accuracy, predicting treatment outcomes, and improving

risk stratification by analyzing large datasets from multiple sources, including

imaging, genomic, and clinical data. Radiomics, which extracts quantitative

features from medical images, further complements AI by providing detailed

insights into tumor characteristics, treatment responses, and molecular subtypes

of breast cancer, including LC. Together, AI and radiomics have the potential to

revolutionize the detection, characterization, and monitoring of LC, particularly

by enhancing the accuracy of traditional imaging methods and supporting

personalized treatment strategies. This review also provides actionable

recommendations for clinicians, radiologists, and researchers on the

integration of advanced imaging techniques and AI into clinical workflows.

With continued advancements, AI and radiomics are poised to improve the

early detection and management of LC, ultimately contributing to better

patient outcomes.
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1 Introduction

Invasive lobular carcinoma (ILC) is the second most common

type of breast cancer, accounting for approximately 10%–15% of all

breast cancer cases (1). Unlike its counterpart, invasive ductal

carcinoma (IDC), ILC is often more challenging to detect and

diagnose due to its unique biological characteristics and growth

patterns. ILC tends to infiltrate breast tissue in a diffuse and linear

fashion, lacking the distinct masses or lumps that are typically

associated with IDC. This subtle and diffuse infiltration often results

in delayed diagnosis, making it critical to explore the full spectrum

of diagnostic tools available (2).

Over the years, various imaging and diagnostic techniques have

been employed to improve the detection and characterization of

lobular carcinoma. Traditional methods such as mammography

and ultrasound remain first-line approaches; however, the

limitations of these modalities, particularly in cases of ILC,

necessitate the inclusion of more advanced and specialized

diagnostic tools. Magnetic resonance imaging (MRI), digital

breast tomosynthesis (DBT), and molecular imaging techniques

have emerged as valuable adjuncts in the evaluation of ILC (3).

Additionally, biopsy methods—guided by both imaging and

histopathology—remain essential for definitive diagnosis (1, 2).

This paper aims to provide an overview of the current

diagnostic modalities available for the detection and diagnosis of

invasive lobular carcinoma. By exploring both conventional and

emerging technologies, we hope to elucidate the strengths and

limitations of each modality and propose an integrative approach

to improve the early detection and management of ILC.
2 Traditional imaging techniques

2.1 Mammography

Mammography is the most widely used screening tool (4) for

breast cancer but has notable limitations in detecting LC due to its

indistinct radiographic features, especially in dense breast tissue (5).

Although mammography’s overall sensitivity is approximately 85%,

it drops to 68% in women with dense breasts (6) leading to higher

false negatives (7). Also, in contrast to ductal carcinoma, lobular

carcinoma lacks the calcification that allows the lesion to escape

detection, deserving to be called stealth phenomena (8). Tumor size

is often underestimated in LC, with spiculated masses being the

most common finding, while well-circumscribed masses are rare,

occurring in less than 1% of cases (4).
2.2 Ultrasound

Ultrasound is often used as a supplementary tool to

mammography, particularly in cases of dense breast tissue or

palpable abnormalities (9, 10). While ultrasound is independent of
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breast density and radiation-free, its operator-dependent nature leads

to variability in interpretation (11–13). It is also valuable for guiding

biopsies and evaluating axillary lymph nodes (14, 15), but its

effectiveness is limited by the skill of the operator and in multifocal

lesions (16).
3 Advanced imaging techniques

3.1 Breast MRI

Breast MRI offers exceptional soft tissue contrast and is highly

sensitive in detecting lesions, particularly in patients with dense

breast tissue. MRI is especially useful in identifying single

spiculated masses that correlate well with tumor pathology (4).

However, its high cost, increased false-positive rate, and potential

for overdiagnosis limit its widespread use (17). A study by Lee et al.

(18) found that MRI was significantly more sensitive than

ultrasound in detecting residual lobular carcinoma in situ (LCIS)

after surgical excision, with a sensitivity of 83.3% compared to

58.3%. However, one significant concern is its relatively low

specificity, which can lead to a higher rate of false positives. This

issue is particularly problematic as it may result in unnecessary

biopsies and increased patient anxiety (19). In a study, only 24.8%

of MRI findings that were positive for cancer were confirmed upon

biopsy, indicating a substantial rate of false-positive results (19).

This can complicate the clinical decision-making process and lead

to overtreatment.
3.2 Digital breast tomosynthesis

DBT is an advanced form of mammography that provides

three-dimensional imaging, enhancing detection rates for subtle

lesions such as LC (20). While DBT improves lesion visualization

and offers greater sensitivity than standard mammography (20, 21),

studies indicate that it is more effective in detecting invasive cancers

like invasive lobular carcinoma (22). Despite these advantages, DBT

is expensive and requires specialized equipment (23), additional

radiation exposure (24), and breast compression.
3.3 Contrast-enhanced mammography

Contrast-enhanced mammography (CEM) combines full-field

digital mammography with a dual-energy technique, using

iodinated contrast to improve visualization of breast tissue (25).

CEM has demonstrated higher diagnostic accuracy than traditional

mammography, with faster interpretation times and greater

accessibility compared to MRI (4, 26, 27). While it has been

found to be non-inferior to MRI in some studies (28), MRI

remains the most sensitive modality for detecting occult cancers,

particularly in high-risk populations (29).
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3.4 Breast-specific gamma imaging

Breast-specific gamma imaging (BSGI), also known as

molecular breast imaging (MBI), uses technetium-99m sestamibi

and a high-resolution gamma camera to detect breast malignancies

(6). BSGI has shown a high sensitivity of 93%, detecting lesions that

mammography might miss (30, 31), and has demonstrated higher

specificity (81.44%) than other imaging methods (5). However,

BSGI is less effective than MRI in identifying cancers in the axilla or

chest wall (32), limiting its role as a supplemental tool rather than a

primary screening modality.
4 Comparative insights: Traditional vs.
advanced modalities

A direct comparison of the diagnostic capabilities of traditional

and advanced imaging techniques shows that advanced modalities

offer clear advantages. MRI provides the highest sensitivity among all

modalities (33), especially for dense breast tissue, but its high cost and

overdiagnosis potential remain concerns (17). DBT, though an

improvement over mammography, is not specifically optimized for

LC detection but has shown promise in detecting invasive lesions (22).

CEM and BSGI both improve detection rates over traditional

mammography, but BSGI stands out for its ability to detect lesions

that are otherwise difficult to identify, making it an excellent tool for

supplementary diagnostics. These findings are summarized in Table 1.
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5 Future directions in LC diagnosis: AI
and radiomics applications

The unique biological behavior and clinical characteristics of

ILC present challenges in treatment planning and prognosis.

However, AI and radiomics have shown promise in enhancing

the diagnosis and risk stratification of ILC (40). While both

radiomics and AI use imaging data to extract valuable insights,

their approaches and applications differ. Radiomics involves the

extraction of quantitative features from medical images, such as

texture, shape, and intensity. These features provide detailed

information about tumor characteristics that are not always

visible to the human eye. Radiomics can enhance diagnostic

accuracy, predict treatment responses, and help characterize

tumors (36, 41). In contrast, AI integrates data from multiple

sources—imaging, genomic, and clinical data—to perform

predictive modeling and decision-making. AI uses these

integrated datasets for tasks such as automated lesion detection,

risk stratification, and prognosis, often incorporating radiomic

features in its analysis. While radiomics focuses specifically on

image-based features, AI combines multiple data types for

broader clinical applications, including personalized treatment

planning and long-term patient monitoring (42, 43).

Therefore, while radiomics provides detailed imaging data

focused on tumor characteristics, AI goes further by combining

imaging data with genomic and clinical information to make

predictions and assist in clinical decision-making. AI can
TABLE 1 Comparison of imaging modalities for the diagnosis of lobular carcinoma.

Modality General advantages LC-spe-
cific advantages

General disadvantages LC-specific
disadvantages

Mammography Widely used, low cost (4) Identifies architectural
distortion and asymmetry
associated with ILC (30)

False-negative rates are higher
for ILC (7); sensitivity drops in
dense breast tissue (5, 6)

May not detect ILC due to lack of
desmoplastic response and subtle
growth patterns (8, 30)

Ultrasound Non-invasive, radiation-free, real-time
imaging, useful for guiding biopsies

More sensitive than
mammography in detecting
ILC in dense breast tissue
(9, 10)

Operator-dependent, variability
in accuracy, particularly for
subtle ILC (11–13)

May not visualize the full extent
of ILC, especially
multifocality (16)

Breast MRI Exceptional soft tissue contrast and is
highly sensitive in detecting lesions,
particularly in patients with dense breast
tissue (18)

Useful in identifying single
spiculated masses (4)

High cost; increased false-positive
rate (17, 19)

Potential for overdiagnosis
(17, 18)

Digital breast
tomosynthesis
(DBT)

Provides 3D imaging, reduces
superimposition of tissues, improves
detection of small lesions (20)

Particularly helpful for detecting
the subtle and infiltrative growth
patterns of ILC (20, 21)

Expensive; requires specialized
equipment (23); increased
radiation (24)

Less effective for small, non-
calcified cancers (21); may miss
subtle features of ILC (34)

Contrast
enhanced
mammography
(CEM)

Enhances sensitivity, particularly in dense
breast tissue; faster than MRI; more
accessible (25)

Enhanced detection of subtle
ILC features, improves
differentiation of malignant
lesions (26, 27)

Requires iodinated contrast
(potential for allergic reactions),
higher cost, adds radiation
exposure (35)

May not completely eliminate
mammography’s false-negative
issues for ILC (27)

Breast-specific
gamma
imaging (BSGI)

High sensitivity for detecting breast
cancer; non-compressive imaging (5)

Can detect ILC, particularly in
dense tissue; visualizes subtle
changes in breast tissue (30, 31)

Potential for false positives,
leading to unnecessary
biopsies (32)

Less effective for chest wall or
axillary cancers (32)

AI
and radiomics

Quantitative analysis, non-invasive,
integrates with AI for personalized
treatment strategies

Helps in identifying subtle ILC
features, provides insights into
tumor behavior (36)

Complex data analysis, requires
specialized computational tools,
not widely adopted (37)

Requires rigorous validation for
clinical use (38); may miss
clinical factors important for
diagnosis (39)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1515037
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jabbari et al. 10.3389/fonc.2025.1515037
incorporate radiomic features into its analysis, but radiomics itself is

focused on quantifying image-related tumor characteristics to

inform diagnosis and prognosis.

Most AI-powered systems show promising results in improving

diagnostic accuracy by analyzing large datasets from these imaging

techniques, identifying subtle features in lobular carcinoma that

may be missed by traditional methods (44, 45). A 2020 study by

McKinney et al. evaluated an AI system for breast cancer screening

across multiple international datasets. Their study revealed that the

AI system outperformed human radiologists in identifying breast

cancer, reducing false positives and false negatives, which is

especially important for subtle and diffuse cancers like ILC (44).

Similarly, Frazer et al. (45) evaluated deep learning-based AI

techniques for breast cancer detection in mammograms and

found that AI demonstrated high accuracy in breast cancer

detection, with the potential to serve as a supplementary tool to

radiologists in screening programs (45).

In addition to enhancing diagnostic accuracy, AI’s potential for

improving diagnostic workflows in the context of LC includes

aiding in risk stratification. For instance, AI models trained on

imaging data from mammography, MRI, and ultrasound can

analyze subtle features in lobular carcinoma, such as multifocality

or bilaterality, which are crucial for accurate diagnosis and

treatment planning (46, 47). By integrating AI into the diagnostic

process, clinicians can make more informed decisions on the

likelihood of disease recurrence and metastasis, thus refining risk

stratification specifically for LC patients.

Moreover, AI enhances risk stratification by identifying patients

at higher risk of recurrence or metastasis. Research suggests that

ILC has a propensity for bilaterality and multifocality (43, 46). AI

models can analyze imaging data to detect these features and help in

more accurate risk assessment. For example, AI models trained on

mammographic and MRI images can identify characteristics

associated with a higher risk of contralateral breast cancer (47, 48).

Furthermore, AI can integrate clinical risk factors with

molecular data to create comprehensive risk assessment tools. By

incorporating a broader range of data, such as genetic mutations

(e.g., CDH1 mutations) and hormonal factors, AI can provide more

nuanced risk profiles (47, 48). This leads to more accurate

predictions regarding disease progression and treatment outcomes.

AI’s ability to analyze histopathological data can also provide

insights into tumor behavior and prognosis. For example, certain

histological features, such as E-cadherin expression, are known to

influence the aggressiveness of ILC (49). AI algorithms trained on

histopathological images can identify these features and correlate

them with clinical outcomes, enhancing prognostic accuracy (50).

In addition to AI, radiomics complements existing imaging by

extracting quantitative features from medical images, offering

deeper insights into tumor biology that traditional imaging may

miss. It enhances diagnostic accuracy, improves risk stratification,

and informs treatment decisions. For example, MRI-derived

radiomic features can predict responses to neoadjuvant

chemotherapy in lobular carcinoma patients (51), helping tailor

personalized treatment plans.
Frontiers in Oncology 04
Radiomics also plays a role in identifying breast cancer

subtypes, aiding in the selection of therapeutic strategies (52),

which is particularly useful for managing the subtle imaging

characteristics of lobular carcinoma. Combined with AI,

radiomics further enhances detection and characterization by

analyzing vast datasets, offering improved sensitivity in dense

breast tissue (53).

Moreover, radiomics helps monitor treatment responses and

predict recurrence by tracking changes in tumor features, which is

vital for managing lobular carcinoma’s varied growth patterns and

therapy responses (54). When integrated with traditional imaging

modalities like mammography and ultrasound, radiomics improves

diagnostic workflows, enhancing the accuracy of interpretations

and aiding in the distinction between benign and malignant lesions

(55), leading to earlier detection and better outcomes.
6 Recommendations for clinicians
and radiologists
1. Adopt multimodal imaging: Prioritize combining

modalities such as MRI, DBT, and BSGI, particularly for

high-risk or dense-breast patients, and incorporate this

approach into clinical guidelines.

2. Leverage AI for diagnostic support: Use AI tools to enhance

lesion detection, reduce false positives, and improve risk

stratification. Ensure radiologists receive training to

effectively use AI as a supplement to, not a replacement

for, clinical expertise.

3. Co l l abora t e on da ta in t eg ra t ion : Work wi th

multidisciplinary teams to establish systems that integrate

AI insights across imaging modalities, supported by

standardized data-sharing protocols.
7 Recommendations for researchers
1. Focus on cost-effectiveness: Evaluate the cost-effectiveness of

advanced imaging and AI technologies, particularly in

resource-limited settings, to assess their long-term feasibility.

2. Refine AI algorithms: Continue refining AI algorithms to

improve specificity in detecting lobular carcinoma and

develop AI tools that integrate genomic, clinical, and

imaging data for personalized treatment plans.

3. Address ethical and practical issues: Explore ethical

concerns such as AI overreliance, bias, and data privacy

and address practical barriers like clinician training and

user-friendly AI interfaces.

4. Investigate emerging technologies: Study emerging

technologies like AI-enhanced radiomics, hybrid imaging

systems, and 3D ultrasound, which could improve

diagnostic accuracy and require validation through

clinical trials.
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8 Areas for further research
Fron
• AI and radiomics integration: Research the potential of AI

combined with radiomics to improve imaging accuracy,

treatment response prediction, and prognosis.

• Longitudinal AI studies: Conduct long-term studies to

assess how AI impacts patient outcomes, diagnostic

accuracy, and clinical decision-making in real-

world environments.
9 Conclusions

LC is challenging to diagnose due to its subtle imaging

characteristics, but advancements in imaging modalities hold

promise for improving early detection and outcomes. While

mammography and ultrasound remain important for initial

assessments, advanced techniques like MRI, DBT, CEM, and

BSGI offer higher diagnostic accuracy, particularly in dense breast

tissue and high-risk patients. Integrating these methods, along with

emerging technologies like AI and radiomics, into clinical

workflows has significant potential to improve LC diagnosis.

However, this integration requires careful planning and

collaboration among clinicians, radiologists, and researchers to

optimize diagnostic pathways and enhance patient outcomes.
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