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Classic Hodgkin lymphoma (cHL) exhibits a bimodal age distribution with

incidence peaks in adolescents and young adults (AYAs) aged 15-39 years and

in older adults over 50 years. The unique biology of cHL, characterized by a

tumor microenvironment (TME) composed predominantly of non-malignant

immune and stromal cells, plays a pivotal role in supporting Hodgkin and

Reed-Sternberg (HRS) cells, the malignant cells of cHL. Understanding the role

of the TME in cHL and its age-related differences is crucial for deciphering

differential disease etiologies and developing biomarker-driven targeted

therapies. Recent technical advances in single-cell sequencing and multiplexed

spatial imaging have revealed age-related differences in TME composition and

function, including key cellular interactions, leading to the development of age-

specific prognostic indicators. In addition, advances in our ability to isolate

nucleic acids from HRS cells have accelerated our understanding of the

molecular alterations in cHL, many of which drive interactions within the TME.

Molecular differences in cHL between pediatric/AYA and older adult patients

have also emerged. This review summarizes the unique biology of cHL and its

TME in children, adolescents, and young adults, highlighting recent

breakthroughs in our understanding of cHL biology, differences across the age

spectrum, and advances in biomarker development.
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Introduction

Classic Hodgkin lymphoma (cHL) is an aggressive B-cell

malignancy that primarily affects adolescents and young adults

(AYAs) aged 15-39 years (1). Many patients with cHL can achieve a

cure through multi-agent chemotherapy, radiotherapy, and more

recently, immunotherapies (2–9). Despite recent advances, up to 25%

of patients will experience relapse or progressive disease (1, 10). In

addition, chemotherapy and radiation are associated with an increased

risk for late toxicities and overall morbidity. Understanding the biology

of cHL and its tumor microenvironment (TME) will be key to

developing novel treatment strategies as well as biomarkers to tailor

therapy. cHL is unique in that themajority of the cellular tumormass is

composed of non-neoplastic immune and stromal cells which establish

an extensive supportive network around the rare malignant Hodgkin

and Reed-Sternberg (HRS) cells (11–13). The importance of the TME

in HRS cell survival is evidenced by the success of recent therapies

targeting the TME, including immune checkpoint inhibitors targeting

programmed cell death protein 1 (PD-1) (3, 7, 14). Recent advances in

single cell sequencing and spatial molecular imaging have allowed for

an unprecedented characterization of the cHL TME. In addition,

genomic characterization of cHL, which has been challenging due to

the rarity of the HRS cells within a dense TME, is now possible (15–19).

Collectively, this work has provided insights into the interaction

between HRS cells and the TME as well as increasing evidence that

the biology of cHL in pediatric and AYA patients has distinct features

compared to older adults. This review will focus on the unique biology

of cHL in children, and AYAs including TME and molecular features,

aimed at highlighting recent breakthroughs in cHL biology and the

discovery of potential biomarkers.
Epidemiology of cHL in children and
AYAs

cHL is classified into four histological subtypes based on

morphology and immunophenotype: nodular sclerosis (NS),

mixed cellularity (MC), lymphocyte rich (LR), and lymphocyte

depleted (LD) (20). cHL exhibits a bimodal age distribution, with

peaks in AYAs and older adults (over 50 years). The majority of

cHL cases among AYAs are the NS subtype which is seen in

approximately 76% of cases. The MC subtype is more common in

younger children <10y of age where it represents 22% of cases (vs.

9% in AYAs) (21, 22).

Approximately 30% of cHL is associated with EBV (6). EBV-

associated cHL is more common in patients <10y of age and

those >50y (23). The MC histologic subtype is associated with EBV

independent of age (23, 24). In EBV+ HL the virus exists in a latent

state where it expresses EBV nuclear antigen 1 (EBNA1), latent

membrane protein 1 (LMP1), and LMP2a. LMP1 is considered an

oncogene which can mimic the signaling domain of CD40 and

activate the NF-kB signaling patway (25). In adults age ≥45y EBV+

HL is correlated with inferior outcome compared to EBV- HL (24).

The impact of EBV on outcome in pediatric and AYA HL is less

clear, with some studies finding EBV associated with favorable
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survival, particularly in patients age <15y, some studies finding

EBV associated with inferior outcome in subgroups such as those

with NS histology or advanced stage, and other studies finding

no association (24, 26, 27).
Tumor-microenvironment in cHL

cHL features a quantitatively dominant TME (~99%) composed

of stromal cells and non-malignant immune cells, including T cells,

B cells, eosinophils, and macrophages. Immune cells in the TME are

educated by signals fromHRS cells (20, 28, 29), including cytokines/

chemokines and altered expression of cell surface molecules (30).

These changes are in part linked to genetic alterations that

contribute to the development of lymphoma-specific cellular

ecosystems that allow escape of the malignant cells from the host

immune system. The most abundant cells in the TME of cHL are

CD4+T cells including helper T cells and regulatory T-cells (Tregs),

which form immunosuppressive niches (31). Additionally, unique

tumor-associated macrophage (TAM) subsets are present in the

TME of cHL, and their presence is correlated with outcome in

adults (28, 32–34). Recent studies have uncovered key differences in

the cHL TME across age groups including: 1) an enrichment in M1

macrophages, and cytotoxic T-cells in younger patients age <10y, 2)

increased M2 macrophages and LAG3+ type 1 regulatory T cells

and AYAs age 15-39, and 3) increased FoxP3 regulatory T-cells and

PD-L1+ macrophages among elderly patients (35) (Figure 1).
Epstein-Barr virus (EBV) infection and its
impact on the cHL TME

Key differences exist in the TME of EBV+ vs. EBV- pediatric

cHL, including increased M1 macrophage polarization and a

cytotoxic/Th1 viral response in EBV+ cases (35–37). In addition

there are contrasts between the TME in pediatric and adult EBV+

cHL, suggesting that adults may have reduced anti-cancer

immunity and an “aged” TME, which could explain the inferior

clinical outcome (31, 35, 38). EBV+ cHL in adults is enriched for

FOXP3+ Tregs (37, 39) and immunosuppressive cytokines such as

IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, and TGF-b. In contrast, in EBV+

cHL in children has increased cytotoxic/T-helper cell 1(Th1) CD8+

T-cell infiltration characterized by TIA-1 and T-bet expression (36)

and M1-polarized TAMs which may potentially contribute to the

favorable outcome through effective immune surveillance (31, 34).

The biology underlying differences in EBV+ TME across ages

including the potential role of senescence in older adults remain

unclear, requiring further study across all age groups.
Gene expression profiling of the cHL TME
in children and adults

Gene expression profiling (GEP) of cHL biopsies has expanded

our understanding of the TME and allowed for the development

TME-based biomarkers. Scott et al. developed a 23-gene expression
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prognostic model, HL27 (40), which predicted outcome among

adults with advanced-stage cHL. To evaluate the applicability of this

model in pediatric HL, Johnston et al. performed GEP on cHL

tumors from pediatric patients treated on the Children’s Oncology

Group (COG) trial, AHOD0031 (5) which evaluated a risk adapted-

approach to the treatment of intermediate-risk cHL. HL27 (40) did

not predict outcome in the pediatric cohort, suggesting potential

age-related biological differences in the TME. Indeed, Spearman

correlation analysis of GEP-based TME component scores with age

revealed that eosinophil, B-cell, and mast cell signatures were more

prevalent in younger patients, while macrophage and stromal

signatures were more pronounced in older patients (41). Based on

these observations, Johnston et al. developed a distinct GEP-based

predictive model for pediatric cHL, PHL-9C, which is predictive of

5-yr event-free survival (EFS) among children treated on COG

AHOD0031 (41). This model is composed of: Tregs, mast cells, T

helper 2 (Th2) cells, myeloid-derived suppressor cells, and HRS

cells (41). We are currently investigating the utility of PHL-9C in

brentuximab vedotin-containing treatment (5).
Evaluation of the TME in cHL in adults
using single cell approaches

Recent technical advances in multiparameter imaging (MPI)

have allowed for a more comprehensive characterization of the

TME at single cell resolution (11). These approaches provide details
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on co-expression patterns, cellular composition, and cell-to-cell

spatial interactions, which have allowed for detailed descriptions

of the architecture of the TME in cHL. A series of studies in adult

cHL have utilized MPI to better understand the mechanisms of

response to therapy and identify biomarkers. MPI of cHL tumors

has identified a spatial relationship between TAMs that express PD-

1 ligand (PD-L1) and HRS cells (42). Unexpectedly, the PD-L1+

macrophages outnumbered PD-L1+ HRS cells in the TME of cHL

and co-localized with T-cells, suggesting that this interaction may

be a key target of PD-1 blockade. This may explain the efficacy of

PD-1 therapy in cHL despite frequent loss of B2M leading to

decreased expression of MHC-I (7, 14, 43–46). Further work by

Aoki et al. evaluating the TME in paired diagnostic and relapsed

cHL samples identified a spatial interaction between CXCR5+ HRS

cells and CXCL13+ TAMs (47). Although previous biomarker

studies in cHL had revealed an association between the

abundance of macrophages and clinical outcome in adult cHL

(48–50), the specific cellular interactions and their relevance in

refractory disease were not known. Using spatial TME information,

Aoki et al. developed a model predictive of outcome in the relapsed

setting (51). The model (RHL4S) is composed of spatial scores from

4 variables (51, 52), each of which is independently associated with

failure free survival after autologous stem cell transplant: CXCR5+

HRS cells, PD1+ CD4+ T-cells, CD68+ macrophages, and CXCR5+

non-malignant B-cells.

Single cell suspensions of lymphoma tissue represent another

resource to investigate complex TME ecosystems with high
FIGURE 1

Tumor microenvironment ecosystem of cHL according to age groups. cHL presents a bimodal age distribution, with distinct TME characteristics
across age groups: Left: cHL age in pediatric patients age <10y: The TME is enriched with M1 macrophages, accompanied by a diverse population of
CD4 and CD8 T cells. EBV is more common in this age group and associated with M1 macrophages and cytotoxic T-cells. Center: cHL in AYAs age
15-40y: The TME is associated with M2 macrophages. A subset of AYA HL cases also exhibits LAG3+ type 1 regulatory T cells. Right: cHL in elderly:
EBV positivity in HRS cells is more frequently observed in elderly patients and associated with FoxP3 regulatory T-cells. Additionally, the TME is
characterized by PD-L1+ macrophages, which are often in close proximity to PD1+ CD4 T cells, indicating a potential
immunosuppressive interaction.
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resolution (11). Utilizing time-of-flight cytometry (CyTOF), Cedar

et al. found that cHL has a TME that is enriched for CD4+ T-cells.

Within this population there is an expansion of Th1 polarized CD4

+ T effector cells that express PD-1, and may represent another

relevant target of PD-1 blockade. This work also identified Th1

polarized Tregs which did not express PD-1 (53). More recently,

single cell RNA sequencing (scRNA-seq) has provided an

opportunity to define the phenotypes of individual HRS cells and

immune cells in the cHL TME (51, 54, 55). Aoki et al. integrated

both scRNA-seq and MPI to study cHL in adults. This work has

defined an interaction between HRS cells and type 1 regulatory

(Tr1) T-cells with enhanced expression of the inhibitory receptor

LAG3. LAG3+ T-cells, which are functionally immunosuppressive,

co-localize with HRS cells that do not express MHC class II (54),

providing a potential mechanism for immune evasion in this

cellular subset.
Evaluation of the TME in pediatric cHL
using single cell approaches

To date, single cell level studies in cHL have largely been

restricted to adult cohorts. There is evidence, however, that the

TME at the single cell level may differ across age groups. In a recent

study Stewart et al. performed scRNA-seq and MPI on cHL cases

and integrated their data with an earlier report (56) to include cases

across the age spectrum (6-80y). This work identified an abundance

of mononuclear phagocytes including dendritic cells and monocytes

in the vicinity of HRS cell and found that these cells express

immune checkpoints including PD-L1 and TIM3. The expression

of immune checkpoints in mononuclear phagocyte populations

increased with age (56), indicating the potential for distinct

myeloid cell biology across age groups. Indeed, as opposed to the

strong evidence in adult cHL (50) for a prognostic role of TAMs,

this relationship is not observed in pediatric cHL (31, 35, 57).

Other studies evaluating the TME in pediatric cHL on the single

cell level have been limited to flow cytometry and traditional imaging

techniques. In a study evaluating the TME in pediatric cHL by flow

cytometry, cHL cases were found to have high CD7 expression and

an expansion of CD45RO+ T-cells. Of note, elevated CD7 has also

been described in adult cHL (58, 59). An investigation of LAG3+ T-

cells in pediatric cHL using IHC on patients treated on the COG

AHOD0031 revealed that 73/115 (63%) of the baseline pediatric cHL

tumors demonstrated LAG3+ staining in the TME (60).
Genomic alterations in HRS cells

Genomic characterization of cHL has previously been limited by

the low abundance of HRS cells, often leading to <1% of the nucleic

acids being derived from malignant cells in bulk sequencing assays.

This has been overcome with two complementary approaches: the first

is to purify HRS cells using either laser capture microdissection or

fluorescence activated cell sorting (FACS); the second is to profile the

genomic composition of HRS cells using circulating tumor DNA
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(ctDNA), which is abundant in relatively high quantities in cHL

despite the rarity of HRS cells (8, 61, 62). Collectively these advances

have allowed for whole genome, whole exome, and targeted sequencing

of cHL in large cohorts across the age spectrum (15, 16, 19, 63–66).

This work revealed a genomically complex tumor with high ploidy

including whole genome duplications, complex structural variants, and

a highmutational burden (19). cHL cases harbor frequent alterations in

genes involved in immune evasion and dysregulation of JAK/STAT

and NF-kB signaling. Key differences in the cHLmolecular profile have

emerged across age groups. In the following sections, we will focus on

recently identified genomic alterations in cHL that advance our

understanding of the interaction between HRS cells and the TME as

well as distinct features of the cHL genome in pediatric/AYA patients.
Genomic mechanisms of immune evasion

HRS cells harbor several genomic alterations that enable them

to modulate the TME resulting in immune privilege (Figure 2).

Upregulation of programmed death-ligand 1 (CD274/PD-L1) and 2

(PDCD1LG2/PD-L2) is a hallmark of HRS cells and a key

mechanism of immune evasion (67). Overexpression of PD-L1

and PD-L2 can occur via polyploidy/genome duplication, arm-

level gain of 9p, or focal amplification of 9p24.1, leading to

amplification of both the PD-L1 and PD-L2 gene loci (18, 68).

9p24.1 amplification is detected in approximately 75% of cases (18,

69). Immune evasion by HRS cells is further mediated by alterations

in the MHC class I and II, which decrease the recognition of

malignant cells by cytotoxic CD8+ and CD4+ T cells, respectively.

Genomic sequencing of HRS cells and ctDNA from patients

with cHL have identified loss-of-function alterations in B2M, a

subunit on MHC class I, in 33-70% of cHL cases (15, 18, 19). In

most cases, B2M alterations are biallelic. Ectopic expression of B2M

in a HL cell line with B2M mutation restored MHC I expression,

highlighting the key role of these alterations in loss of MHC I in

cHL (15). In an examination of B2M protein expression in a large

cohort of cHL tumors by immunohistochemistry, it was observed

that B2M loss was more common in younger patients (median age

30 vs. 47, p<0.0001), suggesting that this mutation may be a feature

of cHL in children and AYAs (15). Alterations in other components

of MHC-I have also been described in HRS cells. Truncating and

missense mutations in HLA-B have been identified in 17-20% of

cHL cases (18, 19). Additional structural variants and complex

events involving HLA-B have also been reported (19).

Alterations impacting MHC class II also occur recurrently in

cHL. Structural variants in Class II Major Histocompatibility

Complex Transactivator (CIITA), which regulates transcription of

MHC class II genes, are observed in 9-16% of cases (19, 70, 71).

Structural variants, including balanced translocations, and complex

rearrangements of CIITA downregulate CIITA and are associated

with reduced expression of MHC class II (18, 70, 72).

Gain-of-function mutations in interleukin-4 receptor (IL-4R),

which mediates IL-4 and IL-13 signaling, are present in 5-10% of

cHL cases (19, 63). The majority of these mutations are truncating

and clustered at the cytosolic C terminus of the IL-4R protein,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1515250
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aoki et al. 10.3389/fonc.2025.1515250
leading to disruption of the immunoreceptor tyrosine-based

inhibitory motif (ITIM). In vitro studies have demonstrated that

IL-4R mutations induce downstream expression of STAT6, leading

to increased synthesis of CCL17, a regulatory T cell attractant,

providing another possible mechanism of immune tolerance (63).
Genomic subtypes of cHL and differences
across age groups

As information emerges regarding the genomic landscape of cHL,

key questions that can now be addressed include: 1) can cHL be divided

into clinically relevant molecular subtypes?; 2) is cHL in pediatrics

distinct from that in adults? In a recent report of whole genome

sequencing of HRS cells from pediatric and adult cases, a higher

mutational burden was observed in pediatric and AYA patients

compared to older adults >50y. In addition, an accelerated rate of

the “aging”mutational signatures SBS1 and SBS5 was observed among

pediatric and AYA patients (19). The increased mutational burden was

independent of sequencing coverage and EBV status. This suggests that

pediatric and AYA cases may have a distinctively high mutational

burden which is not observed in older adults.

Molecular subtypes of cHL have been defined from a large

cohort of cases (n=366) that were profiled using ctDNA in a recent
Frontiers in Oncology 05
report by Alig et al (58). In this work, two clusters emerged: the H1

cluster is characterized by younger age (median age = 30y vs. 42y

in the H2 cluster, p=0.02), higher mutational burden, and

mutations in NF-kB, JAK/STAT and PI3K signaling. The H2

cluster had a more even age distribution and was defined by

lower mutational burden, more frequent somatic copy number

alterations, and mutations in TP53 and KMT2D. Patients in the

H2 cluster had an inferior progression free survival. In addition,

an analysis of the transcriptional signature of patients >65y

revealed a distinct signature defined by lower rates of cytokine

response over T-cell activation signatures. Heger et al. also

recently studied a cohort of 243 patients with cHL by both

ctDNA to profile HRS cells and RNAseq to characterize the

TME (73). This work identified three clusters of HL: “oncogene

driven HL”, which resembles the H1 cluster identified by Alig et al.

with high mutational burden, alterations in HL driver genes, and a

cold TME; “inflammatory immune escape HL” characterized by

copy number changes resulting in immune escape; and “virally-

driven HL” which was enriched in cases with EBV and/or human

herpes virus 6. Aoki et al. independently identified 4 molecular

subgroups using DNA of enriched HRS cells, which revealed

cluster correlations with clinical parameters (e.g. EBV status and

age) similar to those described in Alig et al. (H1/H2 clusters) (74,

75). Additionally, each of the four molecular subgroups
FIGURE 2

Molecular alterations in cHL that contribute to TME. HRS cells can modulate the immune microenvironment to evade tumor clearance by immune
cells through several mechanisms: 1) upregulation of PD-L1/L2 leading to inhibition of CD8 T cell activation and proliferation; 2) B2M alterations
resulting in MHC class I complex impairment and subsequent immune evasion by CD8 T cells; 3) CIITA alterations leading to MHC class II complex
downregulation with subsequent immune evasion by CD4 T cells; and 4) IL-4R gain-of-function mutations causing increased downstream synthesis
and release of CCL17, a regulatory T cell attractant.
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demonstrated distinctive TME correlates and unique gene

expression signatures in HRS cells.

Despite differences in methodology used to define molecular

subtypes—including sequencing methods, clustering algorithms, and

the number of genes analyzed—all molecular classifications have

identified certain common subtypes associated with mutational

burden, age, and EBV status. However, the underlying biology of

each molecular subtype and their targetable vulnerabilities remain

unknown. Moving forward, further biological investigations and

methodological optimizations, including the development of publicly

available tools applicable to individual cases such as the LymphGen

system, will be essential to implement the classification system in future

clinical trials and/or routine clinical practice (76).
Conclusion

Recent technological advances have provide us with new

opportunities to study the biology of cHL and its TME at an

unprecedented resolution (77). Although pediatric cases have

been included in some series, additional research specifically

focusing on pediatric cHL is needed. There is increasing evidence

suggesting that the biology of cHL may differ between pediatric/

AYA and older adult patients, in both the TME composition and

the genomic profile of HRS cells. Therefore, further collaborative

efforts between pediatric and adult groups are critical next steps to

understand the disease biology across all age groups. Encouragingly,

recent collaborations between pediatric and adult cooperative

groups have expanded the opportunity to harmonize the

development of clinical trials in cHL across different age groups

(22, 78). These trials will afford us the opportunity to study cHL

biology across the age spectrum in uniformly treated cohorts.

Through these efforts, we aim to further delineate the biology of

cHL across the age spectrum, leading to risk-adapted targeted

treatments that improve treatment outcomes with minimal

toxicity for both children and adults with cHL.
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