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Cardio-oncology is an emerging interdisciplinary field concerned with cancer

treatment-related cardiovascular toxicities (CTR-CVT) and concomitant

cardiovascular diseases (CVD) in patients with cancer. Inflammation and

immune system dysregulation are common features of tumors and

cardiovascular disease (CVD). In addition to the mutual exacerbating effect

through inflammation, tumor treatments, including immunotherapy,

chemotherapy, radiation therapy, and targeted therapy, may induce immune

inflammatory reactions leading to cardiovascular damage. Cancer

immunotherapy is currently a new method of cancer treatment.

Immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs),

chimeric antigen receptor T cell immunotherapy (CAR-T), mRNA vaccines,

etc., can induce anti-tumor effects by enhancing the host immune response to

eliminate tumor cells. They have achieved remarkable therapeutic efficacy in

clinical settings but lead to many immune-related adverse events (irAEs),

especially CTR-CVT. Establishing specific evaluation, diagnostic, and

monitoring criteria (e.g., inflammatory biomarkers) for both immunotherapy

and anti-inflammatory therapy-related cardiovascular toxicity is vital to guide

clinical practice. This article explores the role of immune response and

inflammation in tumor cardiology, unravels the underlying mechanisms, and

provides improved methods for monitoring and treating in CTR-CVT in the field

of cardio-oncology.
KEYWORDS

inflammatory response, cardio-oncology, cardiotoxicity, cardiovascular disease (CVD),
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Highlights
Fron
• CVDs are common complications of antineoplastic therapy,

and they have shared risk factors with tumors.

• Increased inflammatory risk has a significant adverse effect

on oncological cardiology-related markers, such as

CTR-CVT.

• The “immune-inflammatory” mechanisms in CTR-CVT

and tumor-associated cardiovascular complications are

critical for patients’ safety, outcome, and prognosis.

• Inflammatory biomarkers can help assess the severity of

CTR-CVT and reduce CVD incidence in cancer patients.

• Targeted therapy based on immune-inflammatory

mechanisms holds promise for future treatment

approaches in the field of cardio-oncology.
1 Introduction

Malignant tumors and cardiovascular diseases are two diseases

with the highest morbidity and mortality rates, and both share

common risk factors, such as smoking, obesity, diabetes mellitus,

and hyperlipidemia. As healthcare improves and cancer treatment

advances, the survival rate and lifespan of cancer patients increase.

However, cardiovascular toxicities caused by cancer therapies have

gradually emerged in recent years. Among cancer survivors,

cardiovascular diseases are the second leading cause of morbidity

and mortality after recurrent malignancies (1). Cancer therapy-

related cardiovascular toxicities (CTR-CVT) has gained more and

more awareness and attention, and has become the second leading

cause of death among patients with cancer in addition to recurrence

and metastasis. Therefore, an emerging cross-discipline has

emerged, namely cardio-oncology (2). This field encompasses

various research areas, including CTR-CVT, cardiovascular

diseases (CVD) associated with tumors, shared risk factors

between cardiovascular diseases and tumors, intervention

strategies, and benign and malignant cardiac neoplastic lesions (3).

Tumors and CVD often coexist, with immune-inflammatory

mechanisms acting as a link. The current view is that, on the one

hand, activated immune cells secrete large amounts of

inflammatory and other mediators in cancer (e.g., NF-kB, TNF-a,
IL-1b, IL-6, etc.), affecting the function of distant organs, such as the
heart. CVD have become widely recognized as complications of

antitumor treatments, and cardiac cachexia is one of the most

common cardiovascular complications of tumors. For instance,

epidemiological evidence indicates that patients with breast

cancer have a significantly increased risk of mortality from CVD

following chemotherapy, surpassing the risk posed by the primary

disease or recurrence (4). In addition, CVD stand as the primary

cause of death among elderly cancer survivors. On the other hand,

children with cancer and hypertension have a 12-fold higher risk of

developing heart failure (HF) compared to survivors with normal

blood pressure (5). A failing heart releases various factors into the

bloodstream, including serotonin A1/A3 and other yet unidentified

mediators, which can induce carcinogenesis (6). Additionally, an
tiers in Oncology 02
increasing number of studies have shown that increased risk of

inflammation has a significant adverse effect on oncological

cardiology-related markers such as CTR-CVT (7). Pan et al. (8)

showed that atherosclerosis (AS), an underlying cause of CVD, is a

tumor-like disease driven by smooth muscle cells, and ASCVD itself

can be a carcinogenic condition.

In addition to the mutual exacerbating effect through

immune-inflammatory mechanisms, tumor treatments,

including immunotherapy, chemotherapy, radiation therapy,

and targeted therapy, may induce immune inflammatory

reactions leading to cardiovascular damage. Therefore, immune-

inflammatory mechanisms serve as a shared mechanism between

CVD and tumors. Understanding the relevant inflammatory

factors and pathological mechanisms of immune inflammation

in CTR-CVT and tumor-associated CVD is crucial for protecting

patients against secondary complications and improving patient

safety and treatment efficacy. This review focuses on the impact of

‘immune-inflammatory’ mechanisms in the development and

progression of cardio-oncology, with the aim of providing

new insights to guide future research into the pathogenesis of

cardio-oncology and the quest for innovative therapeutic

interventions (Figure 1).
2 Cancer treatment-related
cardiovascular toxicities

In the 2022 ESC guidelines for cardio-oncology, CTR-CVT is

classified as follows: chemotherapy-associated cardiovascular

toxicity, targeted therapy-associated cardiovascular toxicity,

immunotherapy-associated cardiovascular toxicity, endocrine

therapy-associated cardiovascular toxicity, and radiotherapy-

associated cardiovascular toxicity (2) (Table 1). Inflammatory

response triggered by cancer treatments, including chemotherapy,

radiotherapy, targeted therapy, and immunotherapeutic agents,

can contribute to cardiovascular toxicity. These reactions

include the release of inflammatory mediators, the production of

autoantibodies, and the activation of immune cells. Additionally,

individual factors, such as age, pre-existing cardiovascular diseases,

and immune status, may affect the inflammatory response and

cardiovascular toxicity.

However, in addition to the cardiovascular toxicity caused by

anti-cancer treatments, the tumor itself can also lead to

cardiovascular toxicity. The study found that Hodgkin’s

lymphoma survivors with an age of more than 50 had two times

and five times more severe cardiovascular diseases of CTCAE 4.03

grade 3-5 than individuals without cancer and of the same age (9).

Approximately 30% of Hodgkin’s lymphoma survivors over the age

of 60 die from cardiovascular diseases, with cardiovascular

mortality rates 3.8 times higher among the survivors of Hodgkin’s

lymphoma, 2.7 times higher among the survivors of acute myeloid

leukemia, and 1.7 times higher among the survivors of lung cancer

(10). Therefore, understanding the mechanisms and management

strategies for immune-inflammatory reactions and CTR-CVT is

crucial for patient safety and treatment effectiveness.
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2.1 Cardiotoxicity due to
chemotherapeutic agents

Anthracyclines (Adriamycin, etc.): As the drugs of choice for

breast cancer chemotherapy, adriamycin has a strong antitumor

effect. However, anthracyclines can cause myocardial damage

through cumulative and dose-dependent effects (11).

Anthracycline-induced cardiotoxicity (AIC) can manifest as a

range of cardiac symptoms, including congestive heart failure,

arrhythmias, myocardial infarction (MI), and other forms of

cardiovascular diseases (12). Several clinical studies have found

elevated levels of immune and inflammatory markers in patients

with breast cancer who were treated with adriamycin (DOX).

Another study showed that after 2 cycles of treatment with DOX,

the plasma levels of macrophage migration inhibitory factor (MIF),

which maintains cardiac homeostasis, were elevated in patients with

breast cancer (13). Another clinical study on the use of DOX for

treating breast cancer reported that compared to baseline, patients
Frontiers in Oncology 03
suffering from cardiac toxicity had significantly higher levels of IL-

10, IL-1b, and NT-proBNP 7 days after completing treatment (14).

However, there are few studies on the role of the innate immune

system in DOX-induced cardiotoxicity (DIC), such as the cytokine

IFN-g. It can inhibit DIC by targeting the AMPK/ACC axis and

does not affect the anticancer effects of DOX. The activation of

immune cells and neutrophil infiltration increases the risk of

cardiotoxicity. High levels of plasma neutrophil extracellular traps

(NETs) have also been linked to DIC (15). Bhagat et al. (16)found

that DIC is associated with neutrophil infiltration and secretion of

elastase (NE) in the heart, and inhibition of NE can significantly

ameliorate DIC and attenuate cardiac damage. In addition, the

crosstalk between neutrophils and M1 macrophages enhances Dox-

induced inflammatory response and plays a key role in cell death

(16). PI3K phosphatidylinositol 3-kinase g (PI3K-g) can prevent

DOX-mediated cardiac insufficiency in the treatment of breast

cancer via the autophagy pathway and simultaneously enhance

the antitumor effects (17).
FIGURE 1

Center illustration: The role of the immune-inflammatory mechanisms in cardio-oncology as a link between tumors and CVD is crucial. Tumor-
induced secretion of inflammatory mediators by immune cells (e.g. NF-kB, TNF-a) impacting heart function. Conversely, a failing heart releases
factors promoting carcinogenesis. Understanding the role of inflammatory factors and mechanisms in CTR-CVT and tumor-related CVD is vital for
managing interference between tumors and CVD, ensuring patient safety and treatment efficacy. Immune targeted therapies like ICIs, mRNA
vaccines, and CAR-T provide a promising avenue in Cardio-oncology. However, unresolved issues, particularly establishing evaluation, diagnosis, and
monitoring standards (e.g. inflammatory biomarkers) for immune therapy and anti-inflammatory therapy, warrant urgent attention in clinical practice.
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TABLE 1 Cardiotoxicity caused by the tumor itself and by anti-cancer treatment.
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Cardiotoxicity Arrhythmia Myocarditis
Coro
art
dise

Heart
damage

Cardiomyopathy HF

Tumor itself ✓ ✓ ✓ ✓ ✓

chemotherapeutic drugs

Anthracyclines
(Adriamyci)

✓ ✓ ✓ ✓ ✓

Cyclophosphamide
(CTX)

✓ ✓

Platinum
metal complexes

✓ ✓

Drugs that act on
cellular

microtubules: TAX

✓ ✓ ✓ ✓ ✓

Targeted drugs

Antimetabolites: 5-fu ✓ ✓

HER2 or ErbB2
inhibitors (T-DXd)

✓ ✓

VEGFI ✓ ✓ ✓

EGFR-
TKI (Osimertinib)

✓ ✓

PIs (Kafizome) ✓ ✓

BTK inhibitors ✓ ✓

BCR-ABL
kinase inhibitors

✓ ✓ ✓

ICIs ✓ ✓ ✓

CAR-T ✓ ✓ ✓

Anti-CD20 therapy ✓ ✓ ✓

mRNA vaccine ✓

anti-inflammatory therapy ✓ ✓ ✓

Endocrine therapy ✓ ✓

Radiotherapy ✓ ✓

The symbol “✓” indicates the cardiac manifestations caused by different types of cardiotoxicity, respectively.
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Alkylating agents (cyclophosphamide, CTX, etc.): This alkylating

agent is commonly used in combination chemotherapy for various

solid tumors. CTX is well tolerated at low doses, and previous use of

anthracyclines and mediastinal radiotherapy are considered to be

contributing factors. Unlike anthracyclines, alkylating agents are

more toxic at cumulative doses shortly after chemotherapy and can

lead to heart failure, myocarditis, and pericarditis. High doses of CTX

can affect myocardial capillaries (18). CTX at a therapeutic dose of 170-

180 mg/kg induced a cardiotoxicity incidence of 7%- 28% and a

mortality rate of 11% -43% (19). Amulticenter open study showed that

patients with HER2-positive limited breast cancer (BERENICE) treated

with CTX experienced at least one decrease in left ventricular ejection

fraction (20). It has been suggested that the possible cause of alkylating

agent-based cardiotoxicity may be the alteration of membrane

permeability and disruption of endothelial barrier function, leading

to vascular injury, which in turn enhances the synthesis of

inflammatory cytokines, such as TNF-a, IL-1b, and IL-6, similar to

the inflammatory pathways associated with atherosclerosis (21, 22).

Platinum metal complexes, such as cisplatin, are widely used

antitumor drugs worldwide, with precise efficacy, broad-spectrum

anticancer effects, and relatively low prices. Platinum metal

complexes may cause hypertension and increase cardiac load

during hydration. Acute clinical syndromes associated with

cisplatin include chest pain, palpitations, and occasional elevation

of cardiac enzymes. Platinum drugs induce oxidative stress in vivo,

thereby upregulating reactive oxygen species (ROS) levels and

triggering an inflammatory response. Oxidative stress can damage

cardiomyocytes, leading to apoptosis and dysfunction. ROS

activates inflammatory pathways and releases pro-inflammatory

cytokines (e.g., TNF-a, IL-1b, and IL-6), which further exacerbates

myocardial injury (23). In a mouse model of cisplatin-induced

cardiotoxicity, the nuclear factor Nrf2/heme oxidase-1 (HO-1)

pathway was found to play a major role in suppressing oxidative

stress and inflammation (23).

Drugs that act on cellular microtubules (Paclitaxel):

Paclitaxel (TAX) is considered to be the most influential

anticancer drug discovered by mankind to date. It can be used in

the treatment of many types of cancers by acting on cellular

microtubules. TAX can cause a series of cardiac adverse reactions,

such as asymptomatic reversible bradycardia, blood pressure

changes, arrhythmias, myocarditis, pericarditis, pericardial

tamponade, and acute myocardial infarction (AMI), with the

most common symptom being bradycardia (18). The cause of

arrhythmias may be autonomic dysfunction of the heart and

impaired cardiac conduction (24). However, there are limited

studies on the cardiotoxicity mechanism of TAX, and since the

cardiotoxicity of most anticancer drugs is due to the activation of

the inflammatory/apoptotic/ROS pathway (25), we hypothesized

that TAX induces cardiotoxicity through this pathway.

The use of nanoparticle delivery systems to carry

chemotherapeutic drugs can effectively enhance therapeutic

efficacy and prevent cardiovascular toxicity, and polyphenols (e.g.,

curcumin and flavonoids) can also alleviate cardiovascular toxicity

of chemotherapy (26). However, due to individual differences and

drug interactions, these two therapeutic means have low absorption,
Frontiers in Oncology 05
variable bioavailability and safety, and their mechanisms need

further studies.
2.2 Targeted therapy-
induced cardiotoxicity

Targeted antitumor drugs can lead to myocardial injury,

arrhythmia, heart failure, hypertension, and vascular events

through ion channel inhibition, inflammatory response, and

vascular endothelial dysfunction. Anti-metabolites, such as 5-FU

can induce ischemic syndromes, arrhythmias, and thrombosis, and

increase cardiovascular risk in long-term use (27). Human

epidermal growth factor receptor 2 (HER2 or ErbB2) inhibitors,

such as detrastuzumab and trastuzumab, mainly cause reversible

left ventricular insufficiency and tachycardia and exacerbate

cardiotoxicity in combination with anthracyclines (28). Vascular

endothelial growth factor inhibitors (VEGFIs) can induce heart

failure and hypertension (29), affect hERG potassium channels, and

increase the risk of QT prolongation (30). The epidermal growth

factor receptor tyrosine kinase inhibitors (EGFR-TKI) ositinib can

significantly increase the risk of heart failure (31), with a QT

prolongation risk 49 times higher than that of other EGFR-TKIs

(32). In addition, proteasome inhibitors, such as carfilzomib, cause

heart failure, hypertension, and ischemic heart diseases (33, 34),

mainly through NF-kB, AMPK inactivation, and autophagy

regulation (35, 36). Bruton’s tyrosine kinase (BTK) inhibitors,

such as ibrutinib, mainly regulate atrial fibrillation (37) and

arrhythmias (38) through the PI3K-Akt pathway, leading to

serious cardiac events (39). In contrast, BCR-ABL inhibitors, such

as dasatinib, ponatinib, and nilotinib, can induce heart failure (40),

atrial fibrillation (41), hypertension (42), and adverse vascular

events (43) by inhibiting the VEGF signaling and inducing

atherosclerosis (44).

Targeted therapies, as a revolutionary cancer treatment strategy,

improve efficacy and minimize side effects by acting precisely on

specific targets. Although targeted therapies have demonstrated

unique advantages in improving efficacy and minimizing side

effects, they still face several key challenges. First, drug resistance

reduces treatment efficacy and leads to disease recurrence (45). To

address this issue, combination therapy, as an effective strategy, can

decrease the risk of drug resistance and improve efficacy by

combining targeted drugs with other medications, such as

chemotherapy and immunotherapy. Second, combination therapy

can control side effects; certain targeted agents may affect normal

cells and trigger toxicity while optimizing drug selectivity (e.g.,

antibody-drug couplers, nano-delivery systems), and individualized

treatment can prevent side effects (46, 47). Third, cancer

heterogeneity increases the difficulty of target screening; therefore,

multi-omics analysis and artificial intelligence technology can

improve the efficiency and accuracy of target discovery (48).

Fourth, the complexity of individualized treatment, individual

differences in tumors make it difficult to generalize the use of a

single targeted drug. Genomic analysis, microenvironmental

studies, and liquid biopsy can help precise treatment and
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dynamic adjustment of regimen. Finally, drug efficacy may decrease

over time or drug resistance may emerge. Optimizing drug delivery

and kinetic properties, combined with comprehensive treatment

strategies, is expected to prolong efficacy and improve tolerance.

Therefore, by improving the precision of targeted drugs,

individualized treatment and long-term management can

promote the development of targeted therapies.
2.3 Cardiotoxicity caused by immune
checkpoint inhibitors

Cancer immunotherapy has emerged as a crucial clinical

strategy for treating various solid tumors and hematologic

malignancies (49). The application of ICIs significantly prolongs

the overall survival of patients, and is regarded as a major

breakthrough in cancer treatment. Immune checkpoints are

expressed by various immune and non-immune cells to activate

or deactivate the immune system. However, cancer cells can express

these molecules to evade detection by the immune system. ICIs and

monoclonal antibodies can block these immune checkpoints to

reduce negative regulatory signals, enhance positive co-stimulatory

signals, and modulate tumor antigen recognition by cytotoxic T

lymphocytes. Programmed cell death protein 1 (PD-1),

programmed death-ligand 1 (PD-L1), and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) are well-known

immune checkpoints. Due to the marked therapeutic effects of

ICIs in cancer patients, their immune-related adverse events (irAEs)

have increasingly garnered attention (50–52). Cardiotoxicity is a

more serious adverse reaction, and myocarditis, pericardial disease,

heart failure, dyslipidaemia, MI, and cerebral arterial ischemia are

the six major manifestations, the incidence rate is 3.2% ~19.3% (53).

Palaskas et al. (54) proposed that PD-1/PD-L1 immune checkpoint

inhibitor-induced myocarditis occurs due to the presence of

common antigens in tumor cells and cardiomyocytes. One of

these antigens is differently targeted by the TCR but homologous

to the muscle antigen that serves as the tumor antigen, and the other

one is a specific TCR targeting a different antigen. Drugs can

similarly target the common antigen, causing myocardial injury

and myocarditis. Liu et al. (55) found that deletion of the PCSK9 (a

key protein regulating cholesterol metabolism) gene in mouse

cancer cells significantly attenuated or prevented tumor growth in

a cytotoxic T-cell-dependent manner, while significantly increasing

PD-1 anti-cancer efficacy. Thus, due to their well-known safety

profile, anti-PCSK9 antibodies may enhance the therapeutic efficacy

of ICIs while reducing cardiotoxicity.
2.4 Cardiotoxicity due to endocrine
therapy for breast cancer

Endocrine therapy for breast cancer can cause cardiotoxic

manifestations such as dyslipidemia, lipodystrophy, metabolic

syndrome, hypertension, heart failure, MI, and other cardiotoxic

manifestations (1). Aromatase inhibitors (AIs) are widely used in
Frontiers in Oncology 06
adjuvant endocrine therapy for postmenopausal breast cancer, but

may decrease estrogen levels, which in turn increase vascular

endothelial dysfunction and increase the risk of AS (56, 57). In

contrast, patients treated with the selective ER modulator tamoxifen

suffer from a higher incidence of deep vein thrombosis compared to

AIs (58). The emergence of cyclin-dependent kinase 4 and 6

(CDK4/6) inhibitors in recent years has brought new therapeutic

options for HR-positive metastatic breast cancer. In clinical studies

of CDK4/6 inhibitors, prolonged QT intervals and increased risk of

sudden death were observed in patients treated with ribociclib (59).

Besides, endocrine therapy may affect cardiovascular health by

modulating the immune response. Studies have shown that low

estrogen levels may aggravate chronic inflammation and activate T-

cells and macrophages, thereby accelerating the development of

atherosclerosis (60). Endocrine therapy not only affects the immune

escape of cancer cells but also alters the immune microenvironment

of the cardiovascular system. Studies have shown that tamoxifen

may affect macrophage polarization and alter the inflammatory

state (61), whereas aromatase inhibitors may affect cardiac immune

homeostasis by modulating B and T cell function (62). Thus,

endocrine therapy not only inhibits tumor growth by blocking

hormonal signals but also modulates the immune response.

However, the immune system also plays an important role in

resistance to endocrine therapy through CD8+ T cells and the

STING pathway (63). Researchers began the use of endocrine

therapy in combination with ICIs to enhance anti-tumor effects

to overcome drug resistance (64). Future studies will further reveal

the immunomodulatory mechanisms and optimize the

combination therapy strategy to improve efficacy and overcome

drug resistance.
2.5 Radiotherapy-induced cardiotoxicity

Radiation therapy can activate several pathways, inducing

oxidative stress, inflammation, microvascular dysfunction,

myocardial injury, and fibrosis, collectively known as radiation-

induced heart disease (RIHD) (65). Acute RIHD is mainly caused

by radiation-induced acute inflammatory response in the heart

(mainly myocardium) during radiotherapy (66). During acute

injury, immune cells, such as neutrophils and macrophages,

accumulate and secrete different cytokines that enhance the acute

inflammatory response (67).

Chronic RIHD is mainly caused by chronic oxidative stress and

free radical production, in which the cardiac fibroblast-induced

cGAS-STING innate immune response pathway plays a key role in

the inflammatory damage observed in chronic RIHD (68).

Myocardial tissues and cells receive impacts on their function and

blood supply with the advancement of the radiation process, which

leads to the formation of myocardial fibrosis and cardiac

hypertrophy, and ultimately exacerbating myocardial fibrosis and

chronic cardiac injury (69). Studies have shown that breast cancer

patients are at risk for serious ischemic events during radiotherapy,

but lower mean heart dose (MHD) reduce the risk of major

ischemic events (70).
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In conclusion, the toxicities caused by cancer drugs are one of

the primary obstacles to improving cancer treatment. A thorough

understanding of anti-cancer treatment is crucial to detect, prevent,

and provide targeted treatments.
3 Immuno-inflammatory mechanisms
in CVD associated with
antitumor therapy

In the 2022 ESC guidelines, cardiovascular complications

associated with cancer treatment are categorized into 9 types:

myocardial injury, heart failure, coronary artery disease, valvular

disease, arrhythmias (particularly long QT syndrome),

hypertension, thromboembolic disorders, peripheral vascular

diseases, and stroke (2). Among them, myocardial injury and HF

are the most severe.
3.1 CTRCD

CTRCD may occur due to direct cardiomyocyte damage,

leading to primary cardiomyopathy. The most recent definition of

CTRCD encompasses a wide range of cardiac manifestations, such

as cardiac injury, cardiomyopathy, and heart failure, caused by

cancer therapies, including chemotherapy, targeted therapy,

immunotherapy, and radiation therapy (2). So far, the most

extensively studied CTRCD is immune checkpoint inhibitor-

related myocarditis, which has the highest fatality rate among all

types of immune toxicities and remains a significant challenge for

researchers. Immune inflammation may play a crucial role in

developing immune checkpoint inhibitor-related myocarditis.

Endomyocardial biopsy (EMB) and post-mortem examinations

revealed extensive infiltration of CD3+ T lymphocytes, including

abundant CD8+ and CD4+ T lymphocytes, in the myocardial tissue of

patients with ICI-associated myocarditis. Some patients also exhibit

tissue infiltration of CD68+ macrophages, eosinophils, and rare

CD56+ cells without evidence of antibody deposition (50).

Additionally, there may be a certain degree of fibrosis in the

myocardium, and the conduction system may also be involved.

Furthermore, studies identified a shared high-frequency T

lymphocyte receptor sequence in the myocardial and tumor tissues

of such patients, suggesting that activated T lymphocytes following

ICI therapy not only target tumor cells but also recognize shared

antigens in the skeletal muscle and myocardium, thereby triggering

autoimmune lymphocytic myocarditis (51). ICI-associated

myocarditis is more common in patients with melanoma, but the

exact mechanism remains unclear. In two reported cases of

melanoma, during combined nivolumab and ipilimumab therapy,

both patients developed myositis and rhabdomyolysis, accompanied

by extensive infiltration of macrophages and T cells. Lymphocytes in

the myocardium and tumor displayed the clonality of T cell receptor

(TCR), indicating that the heart and the tumor may share antigens

recognized by the same T cell clones (51).
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3.2 Coronary artery disease

Tumor patients have several risk factors for developing acute

coronary syndrome (ACS), with immune inflammation being a

major risk factor. It has been reported that patients receiving ICIs

may experience stable angina and ACS (71). The underlying

pathological mechanisms involved in ICI-related MI are still

unclear. Three possible hypotheses have been proposed in this

regard. The first hypothesis suggests that ICI-related inflammation

may affect atherosclerotic coronary artery plaques and trigger fibrous

cap rupture, leading to AMI (72). Recent single-cell sequencing and

mass spectrometry analysis of human atherosclerotic plaques have

shown that T cells are the main immune cells in human AS lesions

(73). Both CD4+ and CD8+ T cells are activated in the atherosclerotic

plaques, which not only promotes the formation of AS lesions but

also prompts the progression of the plaque to a vulnerable state,

thereby increasing the risk of MI or ischemic stroke (51). PD-1 and

PD-L1 are upregulated inmyocardial ischemia andMI, increasing the

functional molecules of CD4+ and CD8+ T cells and exacerbating AS

in hyperlipidemic mice (73). Hypothesis 2: Transient ST-segment

elevation caused by coronary artery spasm can occur during

treatment with PD-1 inhibitor (pembrolizumab) (72). Hypothesis

3: T cells can induce coronary vasculitis (2). The lymphocyte/

macrophage ratio was significantly higher in plaques of patients

treated with ICIs (CD3/CD68 ratio) than in plaques of patients not

treated with ICIs. Elevated CD3/CD68 ratio may be related to ICI-

induced intra-plaque T-cell infiltration, reactivation of plaque T-cells,

or increased T-cell-induced macrophage apoptosis (74).

Tumors and AS may be completely different diseases, but they

share several pathophysiological features. For instance, some

proteoglycans that bind strongly to low-density lipoprotein (LDL)

are abundantly present in both AS regions and metastatic tumors.

Tsumita et al. (75) demonstrated for the first time the mechanistic

similarity between CVD and tumor progression. They found that

highly metastatic tumor tissues accumulate large amounts of LDL,

oxidized LDL (ox-LDL), and lectin-like ox-LDL receptor 1 (LOX-1).

LOX-1 is an ox-LDL receptor that is highly expressed in tumor

endothelial cells (TECs). The LOX-1/ox-LDL axis in TECs may lead

to the formation of a highly metastatic tumor microenvironment by

attracting neutrophils.
3.3 Arrhythmias

Cancer treatment can induce various types of arrhythmias,

including sinus bradycardia, atrioventricular block, atrial

fibrillation, and ventricular tachycardia. Tumor-related arrhythmias

can be divided into primary and secondary arrhythmias. The former

is caused by the effect of chemotherapeutic drugs on certain ion

channels, and the latter is mainly secondary to myocardial lesions,

cardiac insufficiency, hypertension, and other factors caused by

antitumor drugs. It is not easy to differentiate between primary and

secondary arrhythmias. Secondary arrhythmias are more common,

with QTc of concern.
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AF is the most common type of cancer-related arrhythmia and

increases the incidence of postoperative arrhythmias in cancer patients

(74). The pro-inflammatory state caused by cancer can trigger AF

through atrial reorganization. The levels of circulatory CRP, an

inflammatory marker in cancer patients, not only correlate with the

presence of AF but also predict the risk of future AF (76). Many studies

also confirmed a temporal association between the development of AF

after tumor resection and the activation of proinflammatory factors,

suggesting that inflammation may be an important factor in the

development of postoperative AF. Other studies have shown that

infiltration of immune cells and proteins that mediate the immune

response in cardiac tissues and the circulatory system is associated with

the development of AF (77, 78). Similarly, elevated levels of several

inflammatory cytokines, such as C-reactive protein, TNF -a, IL-2, IL-6,
and macrophage migration inhibitory factor (MIF), can be found in

tumors and AF (79). The cause of ICI-associated arrhythmias is

thought to be related to T-cell-mediated cytotoxicity (74). In the

histopathology of one patient who developed conduction

abnormalities after treatment with ICIs, patchy lymphocytic

infiltration was seen in the sinus node and AV node (72).
3.4 Hypertension

Several chemotherapeutic agents impair vascular endothelium,

sympathetic nerve activity, and renin-angiotensin system activity,

which makes hypertension the most common comorbidity

associated with tumors (66), and some scholars have proposed

the new concept of “onco-hypertension”. Inflammation also links

tumors to hypertension (80). Levels of inflammatory factors such as

TNF-a, IL-6 and hsCRP are closely associated with the

development and progression of hypertension. Angiotensin II

(AngII)-induced hypertension increases the number of aortic

monocytes/macrophages. Markers of aortic inflammation, such as

vascular cell adhesion molecule-1, cyclooxygenase 2, and inducible

molecules, and chronic low-grade inflammation, are associated with

activation of NF-kB signaling and elevated levels of aromatase (the

rate-limiting enzyme of estrogen biosynthesis) (76, 81) in adipose

stromal cells of the breast. Aromatase regulates inflammatory

mediators through several signaling pathways, including LKB1/

AMPK, p53, HIF-1a and PKM2 pathways (76). A recent cohort

study proposed that hypertension in middle-aged and young adults

is strongly associated with the risk of death from colorectal cancer.

They suggested that the renin-angiotensin-aldosterone system,

which is responsible for the regulation of blood pressure, may

play a role in biological processes such as cell proliferation,

inflammation, angiogenesis, and tissue remodeling (82).
3.5 Thrombosis & vascular embolism

Patients with tumors have a significantly increased risk of

pulmonary embolism, venous thrombosis, intracranial

thrombosis , and arterial thromboembolism. Systemic
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chemotherapy (e.g., alkylating agents), anti-angiogenic drugs (e.g.,

bevacizumab), immunomodulators (e.g., thalidomide), hormonal

therapies, and other therapies, such as immune-targeted therapies,

have been shown to increase the risk of thromboembolism (1).

The mechanism of ICI-associated venous thromboembolic

disease (VTE) has not been clarified so far, but some possible

mechanisms have been suggested, including the expression of tissue

factor-positive microparticles (TF-MPs) by T cells, increased

abundance of myeloid-derived suppressor cells (MDSCs), and

overproduction of inflammatory cytokines, etc. (83). SATO et al.

(83) first proposed that ICIs activate T cells by blocking the immune

checkpoint pathway, which further induces the production of F-

MPs in PD-L1-overexpressing human peripheral blood CD14+

monocytes and impairs the function of the coagulatory system. In

addition, it was found that both IL-8 and type 1 soluble vascular cell

adhesion molecule (sVCAM-1), as important inhibitory cytokines

that recruit and activate MDSCs, are significantly upregulated in the

plasma of VTE patients than in the plasma of patients without VTE

(84). In addition, MDSCs can promote the release of neutrophil

extracellular traps (NETs) through CXCL8, thereby increasing the

risk of thrombosis (84). Therefore, immunotherapy-associated VTE

may be the result of IL-8 overexpression, and increased abundance

of MDSCs promotes the release of NETs, which in turn triggers

immune-mediated thrombosis.

On September 16, 2022, Health Canada alerted that Janus

kinase (JAK) inhibitors (tofacitib, baricitinib, and upatinib) used

to treat various chronic inflammatory diseases can increase the risk

of major CVD (e.g., heart attack or stroke), tumors, deep vein

thrombosis, pulmonary thromboembolism, serious infections, and

death (85). This news also reveals that inflammation plays a role in

tumor, CVD, and thrombosis.
3.6 Pericardial disease

The incidence is relatively low. Various reasons, such as

infection, tumor invasion, radiotherapy, and chemotherapy,

predispose tumor patients to pericardial disease, with acute

pericarditis and pericardial effusion being the most common

pericardial diseases in tumor patients (86). Analysis of patients

with ICI-related pericardial disease revealed that none of the

leukocytes (predominantly lymphocytes) in the pericardial

effusion had cytological signs of malignancy (87). CT scan

showed new-onset pericardial effusions and pericardial

thickening. Also, cardiac MRI showed active pericardial

inflammation (87). This may be due to the exposure of antigens

shared by normal cells and cancer cells in cancer patients who

underwent thoracic radiotherapy. ICIs may promote cytotoxic T

cells to recognize antigens, which may induce pericardial

inflammatory response and lead to pericardial effusion. In

addition, Altan et al. (88) found high expression of CD68+ in the

pericardial effusion of patients treated with ICIs and inferred that

macrophage dysfunction is involved in the development of

pericardial effusion.
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3.7 Other diseases

Valve Heart Disease (VHD): The incidence is relatively low.

Chemotherapeutic agents do not directly affect the heart valves, and

valvular disease occurs usually secondary to pre-existing valvular

disease, infective endocarditis, and left ventricular dysfunction. It

has been reported that ICIs can lead to valvular dysfunctions, such

as moderate-to-severe aortic valve insufficiency and mitral and

tricuspid regurgitation by activating cytotoxic T cells. In addition,

most of these lesions are accompanied by myocardial pathologies

such as myocarditis or dilated cardiomyopathy (70). Baratchi et al.

(89) found that constant compression of the stenotic aortic valve

activates a large number of leukocytes, exacerbating inflammation

and accelerating the progression of aortic stenosis. Transcatheter

aortic valve implantation (TAVI) not only improves blood flow but

also suppresses inflammation.

Pulmonary Arterial Hypertension (PAH): Venous thrombosis

is the main cause of pulmonary vasculopathy in patients with

tumors (90). Vascular remodeling and perivascular inflammatory

cell (macrophage/lymphocyte) infiltration have been observed in

human lung cancer tissues. PAH has been shown to be common in

mouse models of lung cancer, in which chemokine production by

tumor cells, together with perivascular inflammatory cell

infiltration, is the main pathological mechanism (90). Zhang et al.

(91), on the other hand, found for the first time that chronic

thromboembolic pulmonary hypertension (CTEPH)/PAH may

share similar characteristics and disease mechanisms with tumors,

i.e., the conversion to a more pro-inflammatory IgG N-glycosome

phenotype and the consequent decrease in the ability of IgG to

inhibit chronic inflammation may be an important molecular

mechanism in CTEPH. Recent studies have shown that PD-1/PD-

L1 can inhibit helper T-cell responses through the PI3K/AKT/

mTOR pathway and improve endothelial dysfunction in mice with

hypoxia-induced pulmonary arterial hypertension (92).

Heart Tumor: Cardiac mucinous tumor, the most common

cardiac neoplastic disease, is a less common and sporadic tumor

that can lead to heart failure and systemic inflammatory symptoms

and increase the risk of embolism. Intratumor inflammation and

senescence appear to be involved. One of the major cellular

mechanisms associated with tumor progression is autophagy,

which is largely unknown in mucinous tumors. It was shown that

the majority of mucinous tumors highly express autophagy markers

LC3B and p62/sequestosome 1. LC3B expression was positively

correlated with PD-L1 and CD163 expression, while LC3B was

negatively correlated with CD8, CD20, CD138, and CD117

expression (93).
4 Targeted therapy in cardio-
oncology based on immuno-
inflammatory mechanism

The coexistence of cancer and CVD makes treatment complex,

as treating one condition may adversely affect the other. However,
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immune-targeted therapies have emerged as a promising approach

in both cancer treatment and certain CVD conditions that are

refractory to conventional therapies. This highlights the broad

potential of immune-targeted treatments in the field of cardio-

oncology, offering new avenues for treatment.
4.1 Anti-inflammatory therapy

Atherosclerosis (AS) underlies the development of most CVDs,

and since the introduction of the “inflammation theory” in AS by

Russel Ross in 1990, more and more studies have confirmed that

inflammation is a key driver of AS and its complications. Various

cells (monocytes, macrophages, vascular endothelial cells, vascular

smooth muscle cells, and T lymphocytes, etc.) and related

inflammatory cytokines (C-reactive protein (CRP), interleukin IL-

6, and IL-1, etc.) are involved in inflammatory signaling pathways

and development of AS (94). At the molecular level, the formation

of NLRP3 inflammatory vesicles in macrophages is a key step in the

spread of inflammation, and the NLRP3/IL-1/IL-6/hypersensitive

CRP (hs-CRP) classical inflammatory pathway is closely associated

with the increased risk of atherosclerosis (95). hs-CRP, an

important biomarker of inflammation, can directly reflect the

inflammation to a certain extent; therefore, several guidelines at

home and abroad recommend hs-CRP ≥2mg/L as a risk factor for

CVD (96, 97). Many scholars conducted large-scale clinical trials to

verify the role of inflammation in CVD [Table 2 (98–107)].

For the first time, the landmark study of anti-inflammatory

therapy for AS, the Canakinumab Anti-Inflammatory Thrombosis

Outcome Study (CANTOS), demonstrated that anti-inflammatory

drugs targeting IL-1b (such as canakinumab) can reduce the

incidence of adverse cardiovascular events in patients with MI by

lowering lipid levels (108). Similarly, Colchicine Cardiovascular

Outcomes Trial (COLCOT) and LoDoCo2 trial demonstrated that

colchicine can reduce the risk of cardiovascular events in patients

with chronic coronary artery disease and recent MI who are already

receiving standard therapy (94, 109–111). They also indicated that

specific inflammatory pathways are involved in human ASCVD,

and highlighted the role of NOD, LRR, and nod-like receptor

protein 3 (NLRP3) inflammasome-associated pathways as

effective therapeutic targets for ASCVD.

Despite advances in IL-1b-neutralizing therapies, reliance on a

single cytokine inhibition may not be sufficient to fully address

inflammation in cardiovascular diseases. Recently, several cytokine

receptor blockers have been progressively studied in the

cardiovascular field, such as anti-TNF-a monoclonal antibodies

(e.g., infliximab and adalimumab), which have reduced the

incidence of cardiovascular events and improved the symptoms of

heart failure in several clinical studies (112). However, the

widespread use of TNF-a inhibitors needs more clinical data,

especially when the risk of infection is high (113). In several

clinical trials, anti-IL-6 receptor monoclonal antibodies (e.g.

tocilizumab) have been shown to attenuate the inflammatory

response by inhibiting IL-6 activity, which subsequently mitigates

cardiovascular diseases (114). However, the multiple biological roles
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of IL-6 also suggest the possible risk of immunosuppression with

this treatment, and further studies are needed to focus on its long-

term efficacy and safety. Neutralizing antibodies against IL-18 (e.g.,

toleragen) have shown the potential to reduce cardiovascular

inflammation and improve cardiac function in preclinical studies;

however, relevant clinical data are limited and research in this

direction is promising (115). Vascular endothelial growth factor

(VEGF) plays an important role in neovascularization and

inflammatory responses, especially in AS plaque formation and

the rupture of unstable plaques (116). The progression of AS can be

reduced by inhibiting VEGF activity. Although this strategy is

mainly used in the treatment of cancer, it is also a research

hotspot in the cardiovascular field, especially in patients with a

high risk of AS.

However, anti-inflammatory therapy reduces the “residual

inflammation risk” and also reduces the effect of anti-cancer

therapy, and can even lead to some cardiovascular toxic effects.

Anti-infectives, non-steroidal anti-inflammatory drugs (NSAIDs)

and other commonly used drugs that reduce inflammation, such as

statins and metformin, have been shown to reduce cancer risk.

However, NSAIDs can simultaneously affect the cardiovascular

system through several mechanisms, increasing the risk of MI,

heart failure, hypertension, and other cardiovascular diseases (117).

Therefore, they can be combined with nanoparticle-carrying drugs

to enhance the therapeutic effect and avoid cardiotoxicity at the

same time. They have not yet been widely used in the clinic due to

the high cost or adverse effects. There are still unmet clinical needs

for anti-inflammatory therapy, which necessitates new anti-

inflammatory targets and drugs to protect patients against

cardiotoxicity while reducing the effectiveness of anti-

cancer treatment.
4.2 Inflammatory biomarkers

Inflammatory responses are involved in the pathogenesis of

oncological heart disease; therefore, inflammatory biomarkers can
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serve as cardiovascular toxicity markers after cancer treatment.

They can be observed before and after oncological heart disease

(mainly for cardiovascular toxicity risk assessment, treatment

regimen assessment, cardiotoxicity monitoring protocols, and

post-hospital follow-up management) to determine the severity of

oncological heart disease. Therefore, it is urgently needed to

establish a unified cardiovascular assessment, diagnosis, or

monitoring standard for anti-inflammatory therapy to guide

clinical practice. Currently known markers of immune

inflammation are summarized below:

Inflammatory cytokines such as NF-kB, IL-6, IL-1b, and TNF-
a are indicators of inflammation and can be used to assess the

severity of cancer-associated myocardial damage (5).

Inflammatory markers, such as VCAM1, sST2, and

adiponectin, can be used as early indicators of decreased cardiac

function in patients with breast cancer following antitumor

treatments (can be used for determining tumor type and

staging) (118).

Neutrophil-to-lymphocyte ratio (NLR), Platelet-to-

lymphocyte ratio (PLR), Monocyte-to-lymphocyte ratio (MLR),

Neutrophil-to-eosinophil ratio (NER): Many studies have

demonstrated a close association between the combination of

NLR and PLR, and the development and prognosis of

cardiovascular diseases. The combination of NLR and PLR

showed a better predictive efficacy for cardiovascular adverse

events than individual markers (119). MLR can be used to assess

the risk of CTRCD in patients with breast cancer. An increased

NER during iRC indicates a more severe disease and has a

prognostic value for overall mortality. Higher NER and NLR

values suggest a more severe iRC (120, 121).

Inflammatory response(SII) Index: SII is a novel biomarker of

inflammation that integrates platelet, neutrophil, and lymphocyte

counts, offering a higher predictive value than NLR and PLR (122).

It provides a more accurate and comprehensive assessment of

immune and inflammatory responses. Initially proposed by HU

et al. (123), SII reflects the severity of systemic inflammation in

patients with cancer. However, recent findings have linked SII to the
TABLE 2 Large clinical trials on inflammation and CVD.

Time (year) Trial name Characteristics Study
Objects

Inflammatory
factors

Reference

2010
Justification for the Use of Statins in Prevention: an
Intervention Trial Evaluating Rosuvastatin (JUPITER)

Double-blind RCT Rosuvastatin hs-CRP (98)

2017 Canakinumab Anti-inflammatory Thrombosis Outcome
Study (CANTOS)

Double-blind RCT Canacizumab IL-1b (29)

2018 IL-6 (30)

2019 Colchicine Cardiovascular Outcomes Trial (COLCOT) Double-blind RCT Colchicine NLRP3
inflammasome

(31)

2020-
2021

Low-dose colchicine(LoDoCo, LoDoCo2) Double-blind RCT Colchicine NLRP3
inflammasome

(32–34)

2020 CIRT Double-blind RCT Methotrexate
(MTX)

IL-6, hs-CRP (35)

2023.3 CLEAR Outcomes Trail Double-blind RCT Statin drugs hs-CRP (36)

2023.11 Beperidinic acid (37)
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severity and prognosis of certain CVD (124). A recent cross-

sectional study on the SII index in the general population of the

United States demonstrated a U-shape correlation between the SII

index and all-cause mortality, cardiovascular disease-related

mortality, and tumor-related mortality in patients with CVD.

Therefore, the SII index can serve as a predictor of all-cause

mortality, CVD mortality, and tumor-related mortality in patients

with CVD (125). Thus, maintaining the SII index within an optimal

range may effectively reduce the incidence of cardiovascular events

in tumor patients.

Myeloperoxidase(MPO): Changes in MPO can respond to

changes in cardiotoxicity after antitumor therapy; the combination

of MPO and troponin I (TnI) improves risk prediction for

cardiotoxicity (126–129).

hs-CRP: CRP is a potential biomarker for assessing the risk of

overall tumor and 12 site-specific tumors (130). hs-CRP levels can

independently predict all-cause cardiovascular mortality risk in the

general population.

The use of inflammatory biomarkers can help the early

diagnosis of MI and myocarditis, which may contribute to

timely treatment and improve the prognosis of patients.

Researchers have found the results of the test to inhibit the

inflammatory pathway to cut off the nutrient supply and growth

signals of the tumor, thereby effectively inhibiting tumorigenesis

and targeting the tumor heart disease after treatment (131). The

emergence of multi-omics technology, artificial intelligence, and

machine learning technology in recent years has brought new

opportunity for precision medicine, exploring new biomarkers for

precision treatment.
4.3 Immune checkpoint inhibitors

Recently, ICIs have emerged as a significant advancement in

cancer treatment. These antibodies primarily inhibit immune

checkpoints, thus enhancing the ability of effector T lymphocytes

to recognize and eliminate tumor cells. ICIs stimulate an augmented

systemic antitumor immune response (132). Cardiac adverse effects

of ICIs include fulminant myocarditis, myocardial-pericardial

inflammation, heart failure, arrhythmias, and MI. Accumulating

evidence suggests that immune checkpoint molecules PD-1 and

PD-L1 play a crucial role in maintaining cardiac homeostasis.

Moreover, histopathological exploration is challenging, making it

difficult to explore the pathophysiological mechanisms85and

establish diagnostic approaches (133). Preclinical evidence

indicates that PD-L1/2 and CTLA-4 blockade or knockout on

endothelial cells and cardiomyocytes, can enhance cardiac

infiltration of immune cells (134, 135), leading to fatal

myocarditis. In cases of suspected ICI-related myocarditis, high-

dose steroids are the preferred first-line treatment, and commonly

used immunosuppressants serve as the second-line medications.

Therefore, protecting the cardiovascular system during ICI-based

antitumor therapy is a research hotspot needing further

investigation. Currently, the treatment of myocarditis caused by

ICIs is mainly stopping ICIs and injecting high doses of
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corticosteroids. When the above two treatments cannot be

implemented or are ineffective, a combination of mycophenolate

mofetil and high-dose methylprednisolone or emerging drugs, such

as tofacitinib (a JAK-STAT inhibitor), tolizumab (an IL-6 receptor

inhibitor), abasicap, intravenous immunoglobulin, and anti-

thymocyte globulin, etc., can be helpful. However, there are

individual differences in treatment effects, which needs further

studies (26).
4.4 CAR-T cell therapy

Chimeric antigen receptor T cell immunotherapy (CAR-T cell

therapy) combines the specificity of chimeric antigen receptors with

the T cell immune response to selectively kill malignant tumor cells

(136). After the recognition of tumor antigens, CAR-T cells release

pro-inflammatory cytokines IL-1, IL-6, IFN- g, and TNF-a to

induce a cytotoxic response (137). Tissue damage is usually

caused by the activation of cytokine release syndrome (CRS) and

may be directly associated with fatal adverse events. Clinical studies

have shown that cardiovascular toxicity associated with CAR-T is

characterized by hypotension (5-30%), left ventricular dysfunction

(5-10%), pulmonary edema (4-5%), arrhythmias (4-8%), and heart

failure (1-6%) (138–141). Currently, cell-based therapies, especially

CAR-T cell therapy, are widely utilized for treating tumors,

exhibiting promising results, which have received widespread

attention. In addition, it also has potential therapeutic effects on

cardiac injury, and mouse studies have shown that this method can

effectively reverse myocardial fibrosis and improve function after

injury (142). Rurik et al. (143) encapsulated mRNA in bubble-like

micro-LNPs and injected them into mice, similar to mRNA

vaccines. The encapsulated mRNA molecules were captured by T

cells, converting them into CAR-T cells targeting myocardial

fibroblasts, thereby improving cardiac function in mice with heart

failure. CAR-T cells treat myocardial fibrosis after myocardial

injury. Even by hindering only a small percentage of disease-

causing fibroblasts, CAR-T cells can effectively restore myocardial

function. Thus, in the future, CAR-T cell therapy can be combined

with other modalities of immunotherapy to take advantage of its

highly precise and personalized potential in the field of

cardio-oncology.
4.5 mRNA vaccines

Recently, the preventive use of tumor vaccines has evolved into

therapeutic applications. Tumor mRNA vaccines induce or enhance

the body’s anti-tumor immune effects by activating the body to

generate an immune response, which in turn induces or enhances

the body’s anti-tumor immune response (144). Therapeutic

vaccines for CVD are bioformulations composed of specific

antigenic epitopes of targeted molecules and carriers. They induce

the production of specific antibodies against these self-epitopes and

exert therapeutic effects on the targeted molecules (145). Currently,

mRNA vaccine development primarily focuses on the treatment of
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tumors and infectious diseases, while research on cardiovascular

diseases has been confined to hypertension, diabetes, and

atherosclerosis. There are only a few case reports of mRNA

vaccine-induced cardiac injury, including myocarditis and

pericarditis (146), which suggests the potentially unfavorable T-

cell response of mRNA vaccines. The balance of the immune effect

and safety aspects still needs further studies. However, it is

undeniable that mRNA vaccines will play a prominent role in

cardio-oncology in the future.
4.6 Anti-CD20 therapy

CD20 plays a key role in the development, differentiation, and

activation of B cells. It is an important target for the treatment of B

cell malignancies. Anti-CD20 immunotherapy can specifically target

B cells and has minor effects on other types of cells. B cells can recover

after stopping treatment and do not affect the patient’s humoral

immunity (147). Anti-CD20 immunotherapy is rapidly developing.

In addition to traditional monoclonal antibodies (mAbs), there are

antibody-drug couplings (ADCs), bispecific antibodies (BsAbs), and

CAR-T. Studies have shown that B cells can either play a direct role

through differentiation into plasma cells and secretion of antibodies,

or an indirect role through antigen presentation and release of

cytokines or chemokines to promote an antitumor response. They

possess regulatory effects, but more studies are needed to unravel the

specific antitumor mechanisms. In a real-world study, two CD20

inhibitors, ocrelizumab and ofatumumab, were significantly

associated with various adverse cardiovascular events, particularly

coronary artery disease, heart failure, and atrial fibrillation (148).

In addition to their role in cancer, accumulating evidence

indicates that B cells play an equally important role in AS and HF

progression. Clinical studies have shown that treatment with

rituximab (RTX), a human-mouse chimeric monoclonal antibody

targeting CD20, can improve endothelial function and reduce arterial

wall thickness and arterial stiffness (149–151). Anti-heart

autoantibodies can cause cardiac injury directly through functional

or cytotoxic effects or indirectly through the formation of antigen-

antibody complexes and complement activation, leading to

inflammatory cardiac injury (152). Experimental studies have

shown that mature B lymphocytes mobilize inflammatory

monocytes into the heart after AMI in mice, leading to increased

infarct size and deterioration of cardiac function. These findings

suggest that RTX possesses a protective effect (153). A recent trial

provided preliminary evidence of the safety and feasibility of acute

single RTX infusion in patients with ST-segment elevation

MI (STEMI) (154). In addition, in patients with dilated

cardiomyopathy, an elevated abundance of TNF-a-secreting B cells

positively correlated with the cardiac fibrosis marker type III

procollagen (155). RTX has been successfully used in selected

patients with chronic inflammatory cardiomyopathy and improved

survival in patients undergoing transplantation and suffering from

antibody-mediated rejection (156). However, it has also been shown

that RTX accelerates the development of allograft vasculopathy after

cardiac transplantation (157). A phase II clinical trial is currently
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evaluating the safety and efficacy of RTX in patients with stable grade

III/IV HFrEF (158). Thus, the role of CD20+ B cells in cancer and

CVD reveals their complexity in the pathogenesis of both diseases.

Their pathological effects are time-dependent and context-dependent,

depending on the microenvironment and immune response, and may

even be associated with the NLRP3/IL-1b pathway.
5 Conclusion and outlook

Immuno-inflammatory mechanisms play a pivotal role in the

development of CTR-CVT and CTR-CVD. In this paper, we

summarized the latest research progress in the prediction of

tumor-associated CVD and inflammatory markers in CTR-CVT,

but there is still a lot of work to be done:
1. Although some clinical trials have demonstrated that

inflammation and immune system dysregulation are

common mechanism between tumors and CVD, there is

a lack of additional clinical data to support this.

2. The mechanisms linking these novel inflammatory

markers, such as MPO, high-sensitivity troponin, and hs-

CRP, and anti-tumor therapy-associated cardiovascular

toxicity has not been fully investigated.

3. It should be investigated whether these inflammatory

markers can be combined and developed into a

systematic scoring system for risk stratification of patients

with tumor-associated CVD and CTR-CVT for prevention

and early diagnosis and treatment.

4. Although studies on anti-inflammatory therapy for AS

have made some progresses in reducing adverse

cardiovascular events and mortality in patients with

ASCVD, there is still a lack of appropriate clinical trials

to clarify their indications; thus, anti-inflammatory therapy

still has a long way to go in the prevention and treatment of

tumor-associated CVD and CTR-CVT.

5. The discovery of various predictors of CTR-CVT has

played a key role in achieving therapeutic efficacy in anti-

tumor cardiology. Many of the emerging therapeutic

strategies mentioned in the paper, such as nano-bearers,

can be combined with several anti-cancer treatment

modalities to reduce the incidence of CTR-CVT. They

have not yet been widely used in the clinic due to the

high cost or adverse effects. There are still unmet clinical

needs for anti-inflammatory therapy, which necessitates

new anti-inflammatory targets and drugs to protect

patients against cardiotoxicity while reducing the

effectiveness of anti-cancer treatment.
Therefore, targeted therapies based on immune-inflammatory

mechanisms may become an extremely promising new avenue for

treating CTR-CVT and cardiovascular complications associated

with oncologic therapy, and research in this area has the potential

to improve treatment outcomes and prognosis of patients with

tumor cardiology in the future.
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ACS Acute Coronary Syndrome
Frontiers in Oncology
AF Atrial fibrillation
AS atherosclerosis
CAR-T chimeric antigen receptor T cell
CHF congestive heart failure
CTLA-4 Blocking cytotoxic T-lymphocyte-associated protein 4
CTLs cytotoxic T lymphocytes
CTRCD cancer therapy-related cardiac dysfunction
CTR-CVT cancer therapy-related cardiovascular toxicity
CVD cardiovascular disease
ESC European Society of Cardiology
ICIs immune checkpoint inhibitors
irAEs immune-related adverse events: iRCs, ICI‐related

cardiotoxicities
HF heart failure
LNPs lipid nanoparticles
MI myocardial infarction
MLR Monocyte-lymphocyte ratio
MPO myeloperoxidase
18
NF-kB nuclear factor-kB
NER neutrophil-to-eosinophil ratio
NLR neutrophil-to-lymphocyte ratio
NLRP3 nod-like receptor protein 3
PD-1 Programmed cell death protein 1
PD-L1 PD-1 and its ligand 1
PLR platelet-to-lymphocyte ratio
QTc corrected QT interval
ROS reactive oxygen species
SII systemic immune inflammation
sST2 soluble suppression of tumorigenicity 2
TAMs tumor-associated macrophages
TILs tumor-infiltrating lymphocytes
Th1 T helper cell 1
Th2 T helper cell 2
TnI troponin I
VCAM-1 vascular cell adhesion molecule 1
frontiersin.org

https://doi.org/10.3389/fonc.2025.1516977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Immuno-inflammatory mechanisms in cardio-oncology: new hopes for immunotargeted therapies
	Highlights
	1 Introduction
	2 Cancer treatment-related cardiovascular toxicities
	2.1 Cardiotoxicity due to chemotherapeutic agents
	2.2 Targeted therapy-induced cardiotoxicity
	2.3 Cardiotoxicity caused by immune checkpoint inhibitors
	2.4 Cardiotoxicity due to endocrine therapy for breast cancer
	2.5 Radiotherapy-induced cardiotoxicity

	3 Immuno-inflammatory mechanisms in CVD associated with antitumor therapy
	3.1 CTRCD
	3.2 Coronary artery disease
	3.3 Arrhythmias
	3.4 Hypertension
	3.5 Thrombosis &amp; vascular embolism
	3.6 Pericardial disease
	3.7 Other diseases

	4 Targeted therapy in cardio-oncology based on immuno-inflammatory mechanism
	4.1 Anti-inflammatory therapy
	4.2 Inflammatory biomarkers
	4.3 Immune checkpoint inhibitors
	4.4 CAR-T cell therapy
	4.5 mRNA vaccines
	4.6 Anti-CD20 therapy

	5 Conclusion and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary


