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Background: To compare the ability and potential additional value of various

diffusion models, including continuous-time random walk (CTRW), restrictive

spectrum imaging (RSI), and diffusion-weighted imaging (DWI), as well as their

associated histograms, in distinguishing the pathological subtypes of liver cancer.

Methods: 40 patients with liver cancer were included in this study. Histogram

metrics were derived from CTRW (D, a, b), RSI (f1, f2, f3), and DWI (ADC)

parameters across the entire tumor volume. Statistical analyses included the

Chi-square test, independent samples t-test, Mann-Whitney U test, ROC, logistic

regression, and Spearman correlation.

Results: Patients with hepatocellular carcinoma exhibited higher values in f1

median, f1 20th, f1 40th, and f1 60th compared to patients with intrahepatic

cholangiocarcinoma, whereas Dmean, Dmedian, D40th, D60th, and D80th

percentiles were lower (P<0.05). Among the individual histogram parameters,

f1 40th percentile demonstrated the highest accuracy (AUC = 0.717). Regarding

the combined and single models, the total combined model exhibited the best

diagnostic performance (AUC = 0.792). Although RSI showed higher diagnostic

efficacy than CTRW (AUC = 0.731, 0.717), the combination of CTRW and RSI

further improved diagnostic performance (AUC = 0.787), achieving superior

sensitivity and specificity (sensitivity = 0.72, specificity = 0.80).
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Conclusion: CTRW, RSI, and their corresponding histogram parameters

demonstrated the ability to distinguish between pathological subtypes of liver

cancer. Moreover, whole-lesion histogram parameters provided more

comprehensive statistical insights compared to mean values alone.
KEYWORDS

continuous-time random walk, restrictive spectrum imaging, whole-lesion histogram,
hepatocellular carcinoma, intrahepatic cholangiocarcinoma
Introduction

Liver cancer is one of the leading causes of cancer-related deaths

globally, with incidence and mortality rates steadily increasing (1, 2).

Hepatocellular carcinoma (HCC) is the most common form of

primary liver cancer, accounting for 90% of cases, while

intrahepatic cholangiocarcinoma (ICC) makes up 10-15% (1).

Compared to HCC, ICC is more aggressive and has a higher

potential for metastasis, resulting in differences in treatment and

prognosis (3, 4). On dynamic contrast-enhanced computed

tomography (CT) or magnetic resonance imaging (MRI), ICC can

present imaging features similar to those typical of HCC, making

differentiation complex and time-consuming, even for experienced

specialists (5, 6). Additionally, the use of contrast agents is costly and

may be contraindicated in certain patients (7). A biopsy is also a

common method for distinguishing pathological subtypes of liver

cancer. However, this approach is invasive and has several drawbacks,

including low patient compliance and a high rate of complication.

Thus, the development of a non-invasive technique to accurately

differentiate pathological subtypes of liver cancer remains a

significant challenge.

DWI, the pioneering diffusion imaging technique employed in

clinical practice, quantifies the extent of restricted diffusion motion

of water molecules through the quantitative parameter known as the

apparent diffusion coefficient (ADC) (8). Study has demonstrated

that ADC can serve as a potential surrogate imaging biomarker for

distinguishing HCC, ICC, and metastatic cancer (9). However, DWI

assumes a Gaussian distribution of the diffusion motion of water

molecules in biological tissues, which makes it unable to fully

capture the non-Gaussian characteristics of water diffusion in

complex subcellular microstructures, which in turn leads to

limitations in the accuracy of ADC value assessment (10). To

obtain more accurate information on water diffusion and to map

tissue microstructure, researchers have developed non-Gaussian

mathematical models based on high b-value DWI, such as the

continuous-time random walk (CTRW) (11, 12). The CTRW

provides three parameters: diffusion coefficient (D), temporal

diffusion heterogeneity (a), and spatial diffusion heterogeneity

(b). The D describes the non-Gaussian diffusion behavior in
02
biological tissues, while a and b are related to temporal and

spatial diffusion heterogeneity, respectively. Both parameters may

reflect different aspects of tissue structural heterogeneity within the

voxel (13). Currently, CTRW has demonstrated significant potential

in distinguishing benign from malignant breast lesions, identifying

pathological subtypes, and evaluating prognosis (14–16). However,

reports on the use of CTRW to assess the severity of liver fibrosis

and liver cancer metastasis are limited (12, 17). Various DWI

techniques encounter the challenge of significant overlap between

diffusion signals due to the mixed signals from intracellular and

extracellular water molecule diffusion (18). A novel diffusion-

weighted magnetic resonance imaging technique, known as

restriction spectrum imaging (RSI), addresses this issue (19). In

the three-compartment model, each compartment represents a

different water molecule diffusion, f1 indicates the signal fraction

of restricted diffusion, reflecting the tumor’s cellular composition; f2
represents the signal fraction of hindered diffusion, indicating

delayed water molecule passage around cellular obstacles; and f3
represents the signal fraction of free water diffusion, reflecting

microcirculation perfusion (20). RSI can isolate areas of truly

restricted diffusion by separating and removing hindered diffusion

signals, offering a more direct measurement of tumor cells

compared to other diffusion-weighted methods (19). RSI has

achieved significant breakthroughs in distinguishing benign from

malignant tumors and has demonstrated potential in differentiating

cancerous from non-cancerous tissues in studies involving lungs,

prostate, and breast (18, 20, 21). However, the relative value of

CTRW and RSI in distinguishing pathological subtypes of liver

cancer has not been compared. Histogram is a classical analysis

method based on image voxel values, which not only has high

reproducibility and consistency, but also can provide additional

quantitative indicators (22–24). Therefore, if histogram analysis is

applied to RSI and CTRW, it is expected to mine richer image

information and thus provide more evidence for ICC and

HCC identification.

The objective of this study was to compare the value of RSI,

CTRW and DWI and their associated histograms in differentiating

HCC from ICC, with the aim of finding an accurate, non-invasive

imaging marker to guide clinical decision making.
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Materials and methods

Participants

This prospective study received approval from the Research Ethics

Committee and obtained written informed consent from all

participating patients. From March 2022 to March 2024, a total of

70 patients diagnosed with focal liver lesions (FLLs) underwent liver

MRI examinations. Patient demographic data were collected from

electronic medical records. Inclusion criteria are as follows: (1) patients

with pathologically confirmed HCC or ICC; (2) those without MRI

contraindications, such as cardiac pacemakers, ferromagnetic implants,

or claustrophobia. exclusion criteria are as follows: (1) patients who had

undergone prior local treatment for liver tumors, such as resection,

transplantation, chemotherapy, trans arterial chemoembolization,

radiofrequency ablation, or immunosuppressive therapy; (2) patients

with non-liver primary lesions and those whose image quality was

compromised by ghosting, distortion artifacts, or respiratory motion

artifacts, making it impossible to delineate the FLLs. The flowchart for

this selection process is illustrated in Figure 1.
Image acquisition

All initially enrolled patients underwent MRI examinations

using a 3.0 T MRI scanner (uMR790, United Imaging Healthcare,

Shanghai, China) equipped with a 12-channel phased-array body

coil. Patients were positioned in a supine, head-first orientation.

Initially, routine axial T1-weighted and axial and coronal T2-

weighted images were acquired. Subsequently, diffusion-weighted

images with multiple b-values were obtained. The detailed MRI

parameters are provided in Table 1.
Data post-processing

The parameter from different DWI techniques were calculated

using prototype software developed with Python (Python 3.8;
Frontiers in Oncology 03
Python Software Foundation). These calculations were based on

the following formulas.

(1) The mono-exponential model:

Sb=So = exp ( − b   x  ADC)

In this model, S0 refers to the signal obtained using a b-value of

0 mm²/s, while Sb corresponds to the signal obtained using a b-value

of 800 mm²/s. ADC denotes the apparent diffusion coefficient (25).

(2) The CTRW model:

Sb=So = Ea ½−(b   x  D)b �
In this model, E . dotes the Mittag-Leffler function of order a. D

represents an anomalous diffusion coefficient, while a and b are

diffusion metrics associated with temporal and spatial diffusion

heterogeneity, respectively. Both a and b range from 0 to 1,

indicating the degree of homogeneity within the medium (14).

(3) The Tri-Compartmental RSI model:

Sb
So

= f 1   x   exp ( − b · D1) + f2   x   exp ( − b · D2) + f3   x   exp ( − b · D3)

In this model, the signal intensities Sb and S0 correspond to

specific b–values, with b = 0 mm²/s D1, D2, and D3 represent the

diffusion coefficients for restricted, hindered, and free diffusion,

respectively. The variables f1, f2, and f3 denote the volume fractions

of these diffusion components. Restricted diffusion refers to water

molecules trapped within intracellular spaces, resulting in very slow

diffusion. Hindered diffusion occurs when extracellular water

molecules are obstructed by cells, impeding their movement Free

diffusion, by contrast, describes the rapid, unrestricted movement of

water molecules. Based on reference studies, the optimal diffusion

coefficients for D1, D2, and D3 were determined to be 0.05 × 10−3

mm2/s, 1.25 × 10−3 mm2/s, and 20 × 10−3 mm2/s, respectively.

These values were used to calculate f1, f2, and f3 maps. The b-values

used for fitting the RSI model were 0, 25, 50, 100, 150, 200, 400, 600,

800, 1000, 1500, 2000, and 3000 s/mm2 (26).

In order to fully reflect the lesion information, all slices

containing tumors were selected from DWI images with b = 600

mm²/s, using conventional T1-weighted and T2-weighted images as

references, and regions of interest (ROIs) were manually outlined

layer by layer along the edges of the tumors. This process should

avoid obvious bleeding, necrosis and other areas as much as

possible, and the final volumes of interest (VOIs) were composed

of different slices of ROI. Subsequently, VOIs were replicated on D,

a, b, f1, f2, f3, and ADC pseudo color maps, and the following

histogram indicators were also extracted based on existing studies:

mean, median, maximum, minimum, 20th percentile, 40th

percentile, 60th percentile, 80th percentile, standard deviation,

variance, kurtosis, and skewness (23, 27). Figures 2 and 3 present

representative MRI images of HCC and ICC, respectively. The

above work was performed collaboratively by two radiologists (with

8 and 14 years of experience in abdominal imaging diagnosis) who

had no prior knowledge of the clinical and pathological data, and in

the event of disagreement, the decision was taken by negotiation

and ultimately by the more experienced radiologist.
FIGURE 1

Flow diagram of the study population.
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Statistical analysis

All data were statistically analyzed using MedCalc 15.0 (MedCalc

Software, Mariakerke, Belgium) and SPSS 26.0 (SPSS, Chicago, IL).

The Shapiro-Wilk test and Levene’s test were employed to assess the
Frontiers in Oncology 04
normality of general data and histogram parameters, as well as the

equality of variances. The Chi-square test, independent samples t-test,

and the Mann-Whitney U test were used to compare differences in

general data and quantitative histogram parameters between the

HCC and ICC groups. Logistic regression was applied to establish
TABLE 1 MR Scanning Parameters.

Parameter T1WI T2WI T2WI Multiple b-value DWI

TR (ms) 3.98 4190 4190 3051

TE (ms) 1.48 93.60 97.20 92.30

Flip angle (deg.) 12 90 90 90

Slice thickness (mm) 5.0 6.0 6.0 5.0

FOV*(mm2) 400×280 380×280 380×380 320×200

Matrix 320×320 243×304 228×304 160×160

Bandwidth (kHz) 1260 700 700 1670

NEX 1 1 1 1,1,1,1,1,1,1,1,4,4,6,8,10,12

b values (s/mm2) / / / 0,25,50,100,150,200,400,600,800,1000,1500,2000,3000

Orientation Axial Axial Coronal Axial

Breath control Breath holding Breath holding Breath holding Breathe freely

Scanning time 15.8s 33.5s 33.5s 2.49min
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion weighted imaging; FOV, field of view; NEX, number of excitations; TE, echo time; TR, repetition time.
FIGURE 2

A 51-year-old male with hepatocellular carcinoma. (a-h) Pseudo-color drawings corresponding to D, a, b, and ADC. (i-p) Histograms of D, a, b, and ADC.
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combined models of histogram parameters and various model

parameters. Receiver operating characteristic (ROC) curves were

used to evaluate the ability of individuals and combined to

distinguish pathological subtypes of liver cancer. Diagnostic

thresholds, sensitivity, and specificity were determined based on the

maximum Youden index. Spearman correlation analysis was

conducted to explore correlations between parameters, with

correlation coefficients (r) categorized as follows: 0-0.49 for poor

correlation, 0.50-0.74 for moderate correlation, and 0.75-1.00 for

strong correlation (11). A significance level of P< 0.05 was considered

statistically significant for all analyses.
Results

Patient characteristics

Initially, 70 patients diagnosed with FLLs were enrolled in this

prospective study. After excluding 30 patients due to preoperative

treatment (N = 12), non-hepatic primary lesions (N = 3), unclear

histopathological results (N = 4), poor image quality (N = 2), and

pathological results indicating benign FLLs (N = 9), a total of 40

patients were included in the final analysis. The 40 patients had an

average age of 57.43 ± 10.47 years (range: 33-75 years). Based on

histopathological results, 25 patients were diagnosed with HCC and
Frontiers in Oncology 05
15 patients were diagnosed with ICC. Table 2 presents the detailed

patient characteristics.
Correlation between the mean values of
CTRW-, RSI- and ADC-Derived Parameters

Spearman correlation analysis revealed several correlations,

notably, Dmean and f1 mean exhibited a strong negative correlation

(r = -0.869, P< 0.0001), while Dmean and ADC mean showed a strong

positive correlation (r = 0.887, P< 0.0001). A moderate negative

correlation was observed between f1 mean and ADC mean (r = -0.716,

P< 0.0001), and similarly between amean and f1 mean (r = -0.698, P<

0.0001). Furthermore, moderate positive correlations were found

between Dmean and f3 mean (r = 0.556, P< 0.0001), bmean and f2 mean

(r = 0.661, P< 0.0001), as well as between f3 mean and ADC mean (r =

0.749, P< 0.0001). Other correlations among the parameters were

not statistically significant.
Comparison of histogram-derived
parameters between HCC and ICC

Dmean, Dmedian, D40th, D60th and D80th were significantly lower

in HCC patients compared to ICC patients (P = 0.037, 0.049, 0.049,
FIGURE 3

A 33-year-old male with Cholangiocarcinoma. (a-h) Pseudo-color drawings corresponding to D, a, b, and ADC. (i-p) Histograms of D, a, b,
and ADC.
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0.040, and 0.037, respectively). Additionally, f1 median, f1 20th, f1 40th,

and f1 60th were significantly higher in HCC patients compared to

ICC patients (P = 0.024, 0.031, 0.022, and 0.046, respectively). No

significant differences were observed in the other parameters, as

shown in Table 3 and Figure 4.
Diagnostic performance of histogram-
derived parameters in distinguishing
pathological subtypes of liver cancer

Individual histogram parameters Dmean, Dmedian, D40th, D60th,

D80th, f1 median, f1 20th, f1 40th, and f1 60th, along with combined

models - total (a combination of Dmean, Dmedian, D40th, D60th, D80th,

f1 median, f1 20th, f1 40th, and f1 60th), CTRW combined model (D, a,
and b), RSI combined model (combining f1, f2, and f3), and CTRW

+RSI combined model - all demonstrated statistically significant

ROC curves. AUC values of total, f1 40
th, f1 median, f1 20

th, D80th,

Dmean, D60th, f1 60th, D40th, and Dmedian were 0.792, 0.717, 0.715,

0.703, 0.699, 0.699, 0.696, 0.691, 0.688, and 0.688, respectively. The

combined models demonstrated significantly higher diagnostic
Frontiers in Oncology 06
performance, and among individual parameters, the combined

models showed the best sensitivity. Regarding the CTRW, RSI,

and CTRW+RSI combined models, their diagnostic efficiencies in

distinguishing HCC and ICC were ranked as follows: AUC (CTRW

+RSI) > AUC (RSI) > AUC (CTRW), with AUC values of 0.787,

0.731, and 0.717, respectively. Although RSI exhibited better

diagnostic performance than CTRW in differentiating the

pathological subtypes of liver cancer, the combination of CTRW

and RSI improved diagnostic efficiency, providing the highest

sensitivity and specificity (Table 4, Figure 5).
Discussion

This study represents a significant and pioneering effort in

evaluating the diagnostic capabilities of two advanced, non-

Gaussian diffusion-weighted models, CTRW and RSI, in

distinguishing HCC from ICC. The results demonstrated that both

the CTRW and RSI models effectively distinguish between HCC and

ICC. Notably, the RSI model exhibited superior diagnostic

performance compared to the CTRW, with the signal fraction of

restricted diffusion (f1) from RSI showing greater potential for

differentiating HCC from ICC. Moreover, combining histogram

parameters or integrating multiple diffusion models significantly

enhanced diagnostic accuracy. The combined histogram parameter

model demonstrated the highest diagnostic efficacy among all

approaches tested. This study establishes the potential of these

models to improve diagnostic accuracy and provides a foundation

for future research into their broader clinical application, particularly

in the context of liver cancer subtyping.

A substantial body of research suggests that the ADC values

derived from the mono-exponential model are based on the

assumption that water molecule diffusion follows a Gaussian

distribution (28). However, the actual microenvironment within

biological tissues, especially in heterogeneous tumors, is far more

complex. In such environments, the movement of water molecules

is restricted by cellular structures and membranes, resulting in non-
TABLE 3 Comparison of Histogram-Derived Parameters between HCC and ICC.

Parameter HCC ( N = 25 ) Median (IQR) ICC ( N = 15 ) Median (IQR) Z P

D mean 0.827 (0.730, 0.979) 0.939 (0.860, 1.196) 2.081 0.037

D median 0.805 (0.729, 0.958) 0.936 (0.831, 1.216) 1.970 0.049

D 40th 0.773 (0.675, 0.916) 0.904 (0.803, 1.107) 1.970 0.049

D 60th 0.846 (0.765, 1.021) 0.963 (0.878, 1.330) 2.053 0.040

D 80th 0.951 (0.893, 1.168) 1.162 (0.977, 1.583) 2.081 0.037

f1 median 0.167 (0.103, 0.215) 0.090 (0.050, 0.162) 2.253 0.024

f1 20th 0.106 (0.599, 0.147) 0.056 (0.050, 0.109) 2.152 0.031

f1 40th 0.154 (0.090, 0.188) 0.079 (0.050, 0.134) 2.290 0.022

f1 60th 0.184 (0.121, 0.242) 0.125 (0.063, 0.180) 1.999 0.046
HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; IQR, Interquartile Range; D, diffusion coefficient; f1, the signal fraction of restricted diffusion; D mean, D median, D 40th, D

60th and D 80th represent the mean, median, 40th percentile, 60th percentile and 80th percentile of the D in the continuous-time random walk, respectively; f1 median, f1 20th, f1 40th and f1 60th

represent the median, 20th percentile, 40th percentile and 60th percentile of the f1 in the Tri-Compartmental restriction spectrum imaging model, respectively. D mean, D median, D 40th, D 60th and
D 80th are expressed in units of ×10-3 square millimeters per second (mm2/s); f1 median, f1 20th, f1 40th and f1 60th are unitless. Mann-Whitney U test was used for group comparison.
TABLE 2 Demographics.

HCC ICC P

Number of patients 25 15 /

Gender (M:F) 20:5 11:4 0.705

Age (year) mean ± SD 58.04 ± 9.96 56.4 ± 11.55 0.638

AFP (ng/ml)
Median (IQR)

59.85
(6.55, 3740.00)

4.13 (2.73, 14.35) 0.011*

Background liver

Chronic hepatitis B 21 6 0.006*

Cirrhosis 22 6 0.003*
SD, standard deviation; AFP, Alpha-Fetoprotein; *, P < 0.05; HCC, hepatocellular carcinoma;
ICC, intrahepatic cholangiocarcinoma.
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Gaussian diffusion behavior (11). Consequently, ADC values fail to

account for the non-Gaussian characteristics of water diffusion

within these intricate subcellular microstructures, limiting their

diagnostic efficacy (12). This aligns with our study’s findings,

which indicate that ADC values are suboptimal for distinguishing

between pathological subtypes of liver cancer.

The RSI separates the diffusion of water molecules in tissues into

restricted diffusion, hindered diffusion, and free water diffusion, and

its parameters f1, f2, and f3 represent the proportions in which the

above three compartments are located, typically summing to 1. In this

study, the f1 median, f1 20th, f1 40th, and f1 60th values were significantly

higher in HCC patients compared to ICC patients, which may be

related to the fact that HCC usually have higher cell densities and

more tightly packed cells (29). Also in this study, we found that none

of the differences in f2 and f3 between HCC and ICC were statistically
Frontiers in Oncology 07
significant. This is similar to the study by Xiong et al. (30), and we

hypothesize that this may be related to the fact that the fitting of f2
and f3 values is susceptible to the number and size of b-values.

The CTRW model has three quantitative parameters, namely,

D, a, and b. The rate parameter D is mainly used to reflect the speed

of the diffusion of water molecules. The present work found that the

D values (including Dmean, Dmedian, D40th, D60th, and D80th) were

significantly lower in HCC patients. One possible explanation is

that HCC is characterized by a higher cell density and more

complex microstructure, which restricts the free movement of

water molecules. In contrast, the central region of ICC consists of

loose fibrous tissue, with tumor cells predominantly located at the

periphery, often arranged into adenoidal patterns. This structural

arrangement in ICC facilitates the diffusion of water molecules (31).

The a and b describe the potential of water molecules to be retained
FIGURE 4

(a-i) Comparison of different parameters (D mean, D median, D 40th, D 60th, D 80th, f1 median, f1 20th, f1 40th and f1 60th) between the HCC group and the ICC group.
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or released during diffusion. There were no significant differences in

both a and b between HCC and ICC in this study, which is not

consistent with previous study (16). We consider that this may be

related to the small sample size in this study and the different fitted

b values used between studies.

This investigation also explore the correlations between mean

histogram-derived parameters from these advanced models. The

Spearman correlation analysis revealed a strong negative correlation
Frontiers in Oncology 08
between Dmean and f1 mean, a strong positive correlation between

Dmean and ADC mean, and a moderate negative correlation between f1

mean and ADC mean, indicating their association with tissue cellular

structures (32). These findings support the consistency of these

parameters in assessing tumor tissue characteristics. Theoretically,

smaller a and b values suggest a more heterogeneous spatial

environment (33), while f1, f2, and f3 correspond to intracellular

restricted water, extracellular restricted water, and freely diffusing
TABLE 4 ROC Analysis of the Diagnostic Performance for Different Parameters and Methods Alone or in Combination for Distinguishing HCC
from ICC.

Parameters AUC(95% CI) Cut off
Sensitivity
(95% CI)

Specificity
(95% CI)

Youden Index P

Dmean (×10
-3) 0.699 (0.533-0.833) 0.831 0.560 (0.349-0.756) 0.867 (0.595-0.983) 0.427 0.037*

Dmedian (×10
-3) 0.688 (0.522-0.825) 0.805 0.520 (0.313-0.722) 0.867 (0.595-0.983) 0.387 0.049*

D 40th (×10
-3) 0.688 (0.522-0.825) 0.826 0.720 (0.506-0.879) 0.667 (0.384-0.882) 0.387 0.049*

D 60th (×10
-3) 0.696 (0.530-0.831) 0.857 0.560 (0.349-0.756) 0.867 (0.595-0.983) 0.426 0.040*

D 80th (×10
-3) 0.699 (0.533-0.833) 0.950 0.520 (0.313-0.722) 0.867(0.595-0.983) 0.386 0.037*

f1 median 0.715 (0.550-0.846) 0.162 0.600 (0.387-0.789) 0.867 (0.595-0.983) 0.467 0.025*

f1 20th 0.703 (0.537-0.836) 0.077 0.680 (0.465-0.851) 0.733 (0.449-0.922) 0.413 0.034*

f1 40th 0.717 (0.553-0.848) 0.133 0.640 (0.425-0.820) 0.800 (0.519-0.957) 0.440 0.023*

f1 60th 0.691 (0.525-0.827) 0.154 0.720 (0.506-0.879) 0.667 (0.384-0.882) 0.387 0.046*

Total 0.792 (0.634-0.904) 0.579 1.000 (0.863-1.000) 0.533 (0.266-0.787) 0.533 0.002*

CTRW 0.717 (0.553-0.848) 0.353 0.640 (0.428-0.820) 0.800(0.519-0.957) 0.440 0.023*

RSI 0.731 (0.567-0.858) 0.379 0.680 (0.465-0.851) 0.800 (0.519-0.957) 0.480 0.016*

ADCmean(×10
-3) 0.637 (0.470-0.783) 1.199 0.600 (0.387-0.789) 0.733 (0.449-0.922) 0.333 0.150

CTRW+RSI 0.787 (0.628-0.900) 0.318 0.720 (0.506-0.879) 0.800 (0.519-0.957) 0.520 0.003*
ROC, Receiver Operating Characteristic; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; AUC, Area Under the Curve; CI, Confidence Interval; D, diffusion coefficient; f1,
the signal fraction of restricted diffusion; D mean, D median, D 40th, D 60th and D 80th represent the mean, median, 40th percentile, 60th percentile and 80th percentile of the D in the continuous-time
random walk, respectively; f1 median, f1 20th, f1 40th and f1 60th represent the median, 20th percentile, 40th percentile and 60th percentile of the f1 in the Tri-Compartmental restriction spectrum
imaging model, respectively; *, P < 0.05; CTRW, continuous-time random walk; RSI, restriction spectrum imaging; ADC, apparent diffusion coefficient. D mean, D median, D 40th, D 60th and D 80th

are expressed in units of ×10-3square millimeters per second (mm2/s); f1 median, f1 20th, f1 40th and f1 60th are unitless.
FIGURE 5

(a-b) The ROC curves for CTRW-derived histogram parameters (D mean, D median, D 40th, D 60th, D 80th) and RSI-derived histogram parameters (f1
median, f1 20th, f1 40th, f1 60th) distinguishing between the HCC group and the ICC group. (c) The ROC curves for CTRW, RSI, the combined model
(CTRW+RSI) and the total combined model (D mean, D median, D 40th, D 60th, D 80th, f1 median, f1 20th, f1 40th and f1 60th) distinguishing between the HCC
group and the ICC group.
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water, respectively (20). Further analysis demonstrated a moderate

negative correlation between a mean and f1 mean, as well as a moderate

positive correlation between bmean and f2 mean. This suggests that as

cellular density increases, water molecules encounter more obstacles

or irregularities during their movement between cells, leading to a

greater proportion of water molecules being confined to intracellular

spaces. Consequently, this results in an increase in the fraction of

restricted diffusion (f1) and a decrease in the fraction of extracellular

restricted water (f2). The observed correlations between diffusion

parameters not only support the theoretical associations between

specific parameters in these different diffusion models, but also have

the potential to provide markers for tumor characterization

assessment, such as monitoring cell morphology and density

changes during treatment by f1-f2-ADC alterations. However, there

are few relevant studies yet, and further large sample size

experimental observation is still needed in the future.

In this study, the results indicate that both CTRW and RSI

outperform traditional DWI-ADC in differentiating between HCC

and ICC, with RSI exhibiting the highest discriminatory power. This

superiority is likely due to the non-Gaussian distribution characteristics

of CTRW and RSI, which, unlike the Gaussian assumptions of the

ADC model, accurately reflect the complex diffusion behavior of water

molecules and the intricate microstructure of tumor tissues (13). In

addition, the high diagnostic performance of RSI may be attributed to

the ability to isolate genuinely restricted diffusion areas, thereby

minimizing interference from extracellular diffusion signals (34). This

allows RSI to more directly measure tumor cell density and tissue

structure, making the difference in high cell density regions between

HCC and ICC more pronounced. Although CTRW and RSI represent

significant advancements in DW-MRI, no single imaging technique

currently fulfills all diagnostic requirements for tumors. Our study

demonstrates that both the combined models of CTRW and RSI, as

well as the integrated models of histogram parameters showing

statistically significant differences between the pathological subtypes

of liver cancer, provide superior diagnostic performance compared to

individual models or histogram parameters used in isolation. This

enhanced performance is attributed to the comprehensive integration

of multidimensional information, including cellular metabolism and

water molecule diffusion, which provides valuable complementary

insights. Therefore, where possible, adopting multimodal imaging

approaches for lesion assessment is likely to yield the greatest

diagnostic benefits. By leveraging the strengths of various imaging

techniques, clinicians can obtain a more holistic understanding of

tumor characteristics, ultimately leading to more accurate diagnoses

and better patient management.
Limitations

Firstly, it was a single-center and relatively small sample size study

Secondly, no test-retest procedure was implemented for diffusionMRI

within the same participants. The Quantitative Imaging Biomarkers

Alliance advocates for such retest procedures to assess the repeatability

and reproducibility of quantitative MRI techniques. Thirdly, the scans

in this study were performed a single imaging vendor or scanner.

These limitations suggest that while our findings are promising,
Frontiers in Oncology 09
caution should be exercised in generalizing the results until further

research can provide more robust validation. In the future, we will

include more patients and conduct multicenter studies at different

institutions, and will further optimize the parameters, port the relevant

scanning protocols to different devices, and conduct external

validation of the relevant parameter measurements with a view to

improving the fitness and reducing the bias.
Conclusion

In summary, both the CTRW and RSI models, along with their

derived histogram parameters, demonstrated the ability to

differentiate between pathological subtypes of liver cancer,

whether utilized individually or in combination. Furthermore,

whole-lesion histogram parameters provide richer statistical

information compared to mean values, offering a quantitative

approach to analyzing subtle changes in tumor voxels. This

advancement has the potential to find an accurate, noninvasive

imaging marker for the differentiation of HCC and ICC, which

could help reduce unnecessary biopsies, especially in resource-

limited settings, and in turn guide clinical decision-making.
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