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Identification and prognostic
analysis of propionate
metabolism-related genes
in head and neck
squamous cell carcinoma
Shitong Zhou1,2, Yu Jiang1, Panhui Xiong1, Zhongwan Li2,
Lifeng Jia2, Wei Yuan2, Xiufu Liao2, Xiang An2, Jie Hu2,
Rui Luo2, Hailan Mo2, Hongyan Fang2 and Yucheng Yang1*

1Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General
Hospital, Chongqing University, Chongqing, China
Introduction: Head and neck squamous cell carcinoma (HNSCC) is a highly

heterogeneous malignancy with poor overall prognosis. Recent studies have

suggested that propionate metabolism-related genes (PMRGs) may play key

roles in tumor progression and immune regulation, yet their functions in HNSCC

remain unclear.

Methods: Transcriptomic data from 502 HNSCC tumor samples and 44 normal

tissue samples were obtained from the UCSC Xena database as the training set.

Two independent datasets (GSE41613 and GSE6631) from the GEO database

were used for validation. Differentially expressed genes (DEGs), key module

genes identified via weighted gene co-expression network analysis (WGCNA),

and PMRGs were intersected to identify candidate genes. A prognostic model

was constructed using Cox regression and LASSO analysis. Immune infiltration,

somatic mutations, and drug sensitivity were compared between high- and low-

risk groups. Gene expression was further validated by RT-qPCR using

clinical samples.

Results: A total of 42 intersecting genes were identified, and four feature genes

(PRKAA2, SLC7A5, GRIP2, CHGB) were selected to build the prognostic model.

The model effectively stratified patients into high- and low-risk groups with

significant survival differences in both the training and validation cohorts. The

high-risk group exhibited marked differences in immune cell infiltration, immune

checkpoint expression, and cancer immune cycle activity. Mutation burden and

drug sensitivity also varied significantly between risk groups. A nomogram

combining r isk score and pathological N stage showed strong

predictive performance.
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Discussion: This study highlights the potential role of PMRGs in immune

regulation and tumor progression in HNSCC. The proposed four-gene

signature provides a novel tool for prognosis prediction and offers new insights

for risk stratification and individualized therapy. Further multicenter validation

and mechanistic studies are warranted.
KEYWORDS
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth

most common cancer globally, with 5-year survival rates consistently

ranging from 40% to 60% over the past few decades (1–3). Clinically,

HNSCC is divided into HPV-positive and HPV-negative subtypes

based on the presence of human papillomavirus (HPV), each with

distinct etiologies, molecular profiles, therapeutic responses, and

prognoses (4). HPV-positive HNSCC typically arises in the

oropharynx, is more prevalent among nonsmokers, demonstrates

relatively stable molecular features, and responds well to

chemoradiotherapy, resulting in a favorable prognosis. In contrast,

HPV-negative HNSCC is strongly associated with tobacco and alcohol

use, displays considerable molecular heterogeneity, and is linked to

poorer outcomes, including increased resistance to treatment and

higher rates of local recurrence (4, 5). Current precision medicine

strategies for HNSCC face two major challenges: the lack of reliable

molecular biomarkers for prognostic prediction and significant

individual variability in response to chemotherapeutic agents such

as docetaxel and methotrexate (6). These issues highlight the urgent

need for further exploration of molecular mechanisms to improve risk

stratification and therapeutic approaches.

Recent research has emphasized the pivotal roles of tumor

metabolic reprogramming and immune evasion. Metabolic

reprogramming, for example, has been shown to influence the

expression of immune checkpoint molecules such as PD-L1 (7).

Tumor cells can increase PD-L1 expression through the activation

of transcription factors like HIF-1a, thus suppressing T cell activity

and enabling immune escape (8). Additionally, alterations in short-

chain fatty acid (SCFA) metabolism, particularly propionate, have

been implicated in tumorigenesis and progression (9, 10). Propionate,

a key SCFA produced primarily through gut microbial fermentation of

dietary fiber, not only contributes to energy metabolism but also plays

pivotal roles in immunomodulation, epigenetic regulation, and

cellular signaling (11). Growing evidence suggests that disturbances

in propionate metabolism are closely associated with malignant

progression and metastasis in various cancers (12). For instance,

propionate promotes the differentiation of regulatory T cells (Tregs)

and inhibits proinflammatory Th17 cells by activating G-protein-

coupled receptors (GPR43/41) and suppressing HDAC activity,
02
thereby fostering an immunosuppressive tumor microenvironment

(TME) (13). Moreover, metabolites such as methylmalonic acid

(MMA) can induce CD8+ T-cell exhaustion and enhance PD-L1

expression, further contributing to tumor immune evasion (14). In

colorectal cancer and melanoma, disrupted propionate metabolism

has been linked to the polarization of M2-type tumor-associated

macrophages (TAMs) and the recruitment of myeloid-derived

suppressor cells (MDSCs), suggesting a role in immune escape (15).

Despite these findings, the biological functions and clinical

significance of propionate metabolism-related genes (PMRGs) in

HNSCC remain largely unexplored.

This study identified key genes associated with propionate

metabolism in HNSCC and developed a prognostic model based on

these genes. A comprehensive analysis of clinical features, immune cell

infiltration, immune checkpoint expression, immune cycle dynamics,

and drug sensitivity differences between high- and low-risk patient

groups was performed. In summary, the findings of this study uncover

potential therapeutic targets linked to propionate metabolism in

HNSCC and offer novel insights that may aid in the development of

precision treatment strategies for this challenging malignancy.
2 Materials and methods

2.1 Data source and tissues

Transcriptome sequencing data from 502 HNSCC tumor tissue

samples and 44 normal tissue samples were retrieved from the

UCSC Xena database (https://xenabrowser.net/datapages/) to serve

as the training set. Two additional HNSCC datasets (GSE41613 and

GSE6631) were sourced from the GEO database (https://

www.ncbi.nlm.nih.gov/gds). The validation set included 97 oral

tissue samples from patients with HPV-negative HNSCC from

GSE41613 (platform GPL570). For expression verification, 22

tissue samples from patients with HNSCC and 22 normal tissue

samples from GSE6631 (platform GPL8300) were utilized. A total

of 603 PMRGs were obtained from the GeneCards database

(https://www.genecards.org/). Real-time quantitative reverse

transcription polymerase chain reaction (RT-qPCR) validation

was conducted on tumors and adjacent normal tissues from 24
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patients at the Department of Otolaryngology, Chongqing General

Hospital. Histological evaluation was performed on each sample,

and all participants provided written informed consent. The study

was approved by the Ethics Committee of Chongqing General

Hospital (Approval No. KY S2023-102-01).
2.2 Acquisition of intersecting genes

Gene expression data were standardized by converting probe IDs

into gene identifiers and eliminating duplicate entries for the same

gene in each sample to ensure a single representation per gene.

Subsequently, differential expression analysis was performed using

the “limma” package (v 3.58.1) (16) in the training set, identifying

differentially expressed genes (DEGs) with a threshold of | Fold

Change (FC)| ≥ 1 and adj. p< 0.05. Weighted gene coexpression

network analysis (WGCNA) was conducted using the “WGCNA”

package (v 1.70-3) (17) to identify the most relevant modules for

HNSCC in the training set. Hierarchical clustering was initially

performed to detect outliers, with any identified outlier samples

excluded. The optimal soft threshold was determined based on the

scale-free fit index (signed R2) and average connectivity (targeting a

value close to 0). Genes were then grouped into modules using the

hybrid dynamic tree-cutting algorithm. The correlation between these

modules and the HNSCC phenotype was calculated, and the modules

with the strongest correlations were defined as key modules. Genes

within these key modules were identified as key module genes.

Intersecting genes were derived by overlapping DEGs, key module

genes, and PMRGs. To explore the biological functions and pathways

involved in the intersecting genes, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

were performed using the clusterProfiler package (v 4.2.2) (18).

Protein–protein interactions (PPI) among the intersecting genes

were assessed using the STRING database (https://cn.string-db.org/).
2.3 Prognostic risk model

Univariate Cox regression analysis was performed on the

intersecting genes in the training set to calculate the p-values, hazard

ratios (HRs), and their 95% confidence intervals (CIs) for each gene (p<

0.05, HRs ≠ 1). Genes identified by univariate Cox regression were

further analyzed using the Least Absolute Shrinkage and Selection

Operator (LASSO) with the “glmnet” package (v 4.1-2) (19). Tenfold

crossvalidation was conducted using the cv.glmnet function, and

candidate genes were selected based on the lambda.min value that

minimized the prediction error. These candidate genes were then

subjected to multivariate Cox regression analysis (p< 0.05) and

proportional hazards (PH) testing (p > 0.05) to identify feature

genes. The risk score for each patient in the training set was

calculated using the following formula: on
n = 1(coefi*Xi) . The

median risk score was used to categorize the samples into high- and

low-risk groups. Survival analysis was then conducted, and the Kaplan–

Meier (K-M) curve was generated using the “survival” package (v 3.3-

1) (20) (p< 0.05). Receiver operating characteristic (ROC) analysis was

performed using the plotROC package (v 2.3.1) (21), and ROC curves
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for 1-, 3-, and 5-year survival were plotted, with the area under the

curve (AUC) calculated (AUC > 0.7). Additionally, principal

component analysis (PCA) was performed to evaluate the

discriminative ability of the risk score in the training set. The same

methodology was applied to validate the risk model in the validation

set. The Wilcoxon test was used to assess differences in the expression

of feature genes between HNSCC and control samples in both the

training set and the validation set (GSE6631) (p< 0.05), with heatmaps

generated to visualize the expression patterns.
2.4 Relationship between risk scores and
clinical characteristics

Differential expression of feature genes across various clinical

characteristics and risk groups was analyzed. The distribution of

samples among each clinical characteristic group in the two risk

groups was also examined. Additionally, differences in risk scores

across clinical feature subgroups were evaluated, and survival

differences between different risk subgroups within each clinical

characteristic subgroup were computed.
2.5 Construction and evaluation of the
nomogram model

Univariate and multivariate Cox regression analyses, based on

risk scores, age, gender, stage, pathological T, pathological N, and

grade, were performed using the “survival” package (v 3.3-1) to

identify independent prognostic factors. The rms package (v 6.8-1)

(21) was then employed to construct a nomogram based on the

independent prognostic factors. The nomogram’s predictive

performance was assessed using calibration and decision curves.
2.6 Differential expression analysis

To explore the differential gene expression between the high- and

low-risk groups, differential expression analysis was performed using

the DESeq2 package (v 1.34.0) (16) in the training set with the

threshold set at |log2FC| ≥ 1 and adj. p< 0.05. GO and KEGG

enrichment analyses were conducted on the DEGs between the two

risk groups using the clusterProfiler package (v 4.2.2) (18). Single-

sample Gene Set Enrichment Analysis (ssGSEA) for KEGG pathways

was performed across all samples in the training set, identifying

pathways that differed between the high- and low-risk groups.
2.7 Somatic cell mutation, drug sensitivity,
immune microenvironment, and immune
cycle analyses

Somatic mutations in patients with HNSCC were analyzed and

visualized using the maftool package (v 2.10.5). Mutation

categories, types, and the frequency of the top 25 mutated genes

were examined in both the high- and low-risk groups.
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Chemotherapeutic agents for HNSCC were obtained from the

GDSC database (https://www.cancerrxgene.org). The IC50 values

for common chemotherapeutic and molecularly targeted drugs in

each HNSCC sample were calculated using the R package

pRRophetic (v 0.5) (22). Differences in IC50 values between the

high- and low-risk groups were assessed using the Wilcoxon rank-

sum test. Subsequently, ssGSEA of 16 immune cell types, eight

immune functions, 19 immune checkpoints, and seven immune

cycles was performed for both groups in the training set using the

GSVA package (v 1.42.0) (16). The estimate package (v 1.0.13) (18)

was used to calculate stromal, immune, and ESTIMATE scores for

each HNSCC sample in the training set, and differences in these

scores were compared between the high- and low-risk groups.
2.8 RNA isolation, RT-PCR, semi-
quantitative PCR, and qPCR

Total RNA was extracted from cell lines and tissues using

TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) following the

manufacturer’s protocol. The RNA was quantified through

spectrophotometry and stored at − 80°C. Primer sequences are

listed in Table 1.

For qPCR, SYBR Green (Thermo Fisher Scientific, Hong Kong,

China) was used according to the manufacturer’s instructions, with

amplification performed on a 7500 Real-Time PCR System

(Applied Biosystems, Foster City, CA, USA). GAPDH served as

the internal control. Gene expression levels were calculated using

the 2−DDCt method, with all samples analyzed in triplicate.
2.9 Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0

(GraphPad Software Inc., CA, USA) and SPSS 23.0 (IL, USA). All

experiments were conducted in triplicate, and data are presented as

the mean ± standard deviation. Normality and equality of variance

were assessed using the Shapiro–Wilk and Levene tests,

respectively. For normally distributed data, comparisons between

groups were made using Student’s t-test, with Welch’s correction

for unequal variances. For non-normally distributed data, the

Mann–Whitney U test was employed. The Wilcoxon rank-sum

test was used to compare ssGSEA scores between groups. The Cox

regression model was tested for PH assumptions, and survival

analysis was conducted using the log-rank test.
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3 Results

3.1 Intersecting genes were related to fatty
acid metabolic processes

A total of 10,185 DEGs were identified in the training set, with

6,298 genes upregulated and 3,887 genes downregulated in HNSCC

(Figures 1A, B). WGCNA revealed the green module, comprising

993 genes, as the most highly correlated with HNSCC (Cor = 0.43,

adj. p = 2 × 10−22) (Figure 1C). Forty-two intersecting genes were

derived by overlapping the 10,185 DEGs, 993 key module genes,

and 603 PMRGs (Figure 1D). GO analysis of these intersecting

genes highlighted pathways such as fatty acid metabolic processes

and protein-lipid complex binding (Figure 1E). KEGG pathway

analysis further identified involvement in pathways such as alanine,

leucine, and isoleucine degradation (Figure 1F), suggesting that

these genes may influence HNSCC by modulating fatty acid

metabolism. To investigate potential gene interactions, a PPI

network was constructed. Genes such as ACADM and ACADS,

ACHE and MAPT, as well as ACSS3 and AOX1, showed significant

interactions (Figure 1G).
3.2 Prognostic risk models were
constructed based on PRKAA2, SLC7A5,
GRIP2, and CHGB

Univariate Cox regression analysis identified five genes (TAC1,

PRKAA2, SLC7A5, GRIP2, CHGB) with p< 0.05 and HR ≠ 1

(Figure 2A). Four feature genes (PRKAA2, SLC7A5, GRIP2,

CHGB) were selected through LASSO and multivariate Cox

regression analysis (Figures 2B, C). Based on these feature genes,

risk scores for patients with HNSCC in the training set were

calculated. Patients were stratified into high- (n = 250) and low-

risk (n = 251) groups based on the median risk score. As the risk score

increased, mortality rates also increased (Figure 2D), with patients in

the low-risk group exhibiting significantly longer survival (Log-rank

test p< 0.0001) (Figure 2E). The AUC values for the 1-, 3-, and 5-year

ROC curves of the risk model were all greater than 0.6, indicating

strong model performance (Figure 2F). PCA demonstrated that the

risk scores effectively distinguished between samples in the training

set (Figure 2G). External validation in the GSE41613 dataset yielded

consistent results with the training set (Figures 3A–D). TheWilcoxon

test confirmed that the expression trends of feature genes in control

and disease samples were consistent across both datasets, with

SLC7A5 showing significant upregulation in HNSCC samples (p<

0.01) (Figures 3E–H).
3.3 Nomogram diagram could effectively
predict the risk profile of patients with
HNSCC

The expression of feature genes across different subgroups is

shown in Figure 4A. The distribution of clinical characteristics in
TABLE 1 Primer sequences in the RT-qPCR experiment.

Genes Forward primer
(5′–3′)

Reverse primer (5′–3′)

PRKAA2 TCAATCGTTCTGTCGCCA CGTTAGCATCATAGGAAGGG

CHGB GACCACCATTCAACCCAC CCCAACTCTCCTCACTCTG

SLC7A5 GCCGAGGAGAAGGAAGA TGCCCGAGCCGATAATG

GRIP2 CCCTCGTGTGCTTCATCG GCTTCCTCCATAGTCCC
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the high- and low-risk groups is presented in Figure 4B. Risk scores

significantly differed between tumor grading and pathological stage

T subgroups, but not between age, gender, tumor grading, tumor

stage, and pathological stage N subgroups, indicating that risk

scores are more closely associated with tumor grading and
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pathological stage T (Figure 4C). Significant survival differences

between high- and low-risk groups were observed across 12

subgroups: age (≤ 60, > 60), gender (women, men), tumor grade

(G2, G3), tumor stage (stage II, stage IV), pathological stage N (N1,

N2), and pathological stage T (T2, T4) (Figure 4D).
FIGURE 1

Acquisition of differentially expressed genes (DEGs) and key module genes. (A) Volcano plot of DEGs between HNSCC and normal samples (|log2FC|
> 0.5 and p-value< 0.05). (B) Heatmap of the top 20 DEGs between HNSCC and normal samples. (C) Correlation heatmap between gene modules
and disease status. (D) Venn diagram showing the overlap of module genes, DEGs, and propionate metabolism-related genes (PMRGs) for screening
PMRG-DEGs. (E) GO enrichment bubble plot. (F) KEGG enrichment bubble plot. (G) PPI network.
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Univariate and multivariate Cox regression analysis

identified two independent prognostic factors: pathological

stage N and risk score (Figures 5A, B). A nomogram was

constructed based on these two factors (Figure 5C). The

calibration curves for 1-, 3-, and 5-year survival showed slopes

close to 1 (Figure 5D), indicating that the nomogram has high
Frontiers in Oncology 06
predictive accuracy. Furthermore, the 1-, 3-, and 5-year ROC

curves for the nomogram demonstrated AUC values greater than

0.6 (Figure 5E), suggesting excellent prediction performance. In

conclusion, the nomogram developed in this study exhibits

favorable accuracy in predicting 1-, 3-, and 5-year overall

survival (OS) in patients with HNSCC.
FIGURE 2

Risk model construction and evaluation in the training set. (A) Forest plot of univariate Cox analysis. (B) Regression coefficient-lambda plot.
(C) Forest plot of multivariate Cox analysis. (D) Risk score distribution in the training dataset. (E) Survival curves of high- and low-risk groups in the
training set. (F) ROC curves for 1-, 3-, and 5-year survival based on the training set. (G) PCA dendrogram.
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3.4 DEGs were related to immunity

A total of 1,336 DEGs were identified between the high- and low-

risk groups, with 277 genes upregulated and 1,059 genes

downregulated in the high-risk group (Figure 6A). GO analysis of
Frontiers in Oncology 07
these DEGs highlighted pathways such as adaptive immune

response and immune system processes (Figure 6B). KEGG

pathway analysis identified involvement in pathways such as

primary immunodeficiency and the intestinal immune network for

IgA production (Figure 6C), suggesting that these DEGs may
FIGURE 3

Validation of the risk model in the verification set. (A) Risk score distribution in the verification dataset. (B) Survival curves of high- and low-risk
groups in the verification set. (C) ROC curves for 1-, 3-, and 5-year survival based on the verification set. (D) PCA dendrogram. (E, F) Heatmaps of
model gene expression (training and verification datasets). (G, H) Box plots of feature gene expression in the training set and verification set
(GSE6631). ns, p > 0.05; **p< 0.01; ***p< 0.001.
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influence risk scores through modulation of immune responses. The

ssGSEA scores for seven of the 186 pathways showed significant

differences between the two groups (Figure 6D), with the high-risk

group exhibiting generally lower scores in these pathways.
Frontiers in Oncology 08
3.5 High-risk high-mutation rate

In this study, 96.79% of samples in the high-risk group and 93.9%

of samples in the low-risk group exhibited mutations in the top 25
FIGURE 4

Analysis of risk scores across clinical subgroups. (A) Heatmap of model gene expression across different clinical groups. (B) Distribution of clinical
characteristics in high- and low-risk groups. (C) Boxplot of risk scores among different clinical characteristic subgroups. (D) Survival curves of high-
and low-risk groups across different clinical characteristic subgroups.
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most frequently mutated genes (Figure 7A). The most common

mutation type was missense mutation (SNP), with TP53 showing

the highest mutation frequency across samples (Figure 7B).

Additionally, 12 drugs displayed significant differences in sensitivity

between the high- and low-risk groups, such as dasatinib,

lenalidomide, and lapatinib (Figure 7C).
Frontiers in Oncology 09
3.6 Significant differences in immune cells,
immune checkpoints, and immune cycles

The heatmap of ssGSEA scores for 16 immune cell types is shown

in Figure 8A. Except for macrophages, the remaining 15 immune cell

types exhibited significant differences in scores between the high- and
FIGURE 5

Nomogram construction and evaluation. (A) Forest plot of univariate Cox analysis. (B) Forest plot of multivariate Cox analysis. (C) Nomogram of independent
prognostic factors. (D) Predicted probabilities of 1–5-year overall survival (OS) based on the nomogram. (E) ROC curves for 1-, 3-, and 5-year survival.
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low-risk groups (Figure 8B). There was a negative correlation between

risk scores and the scores of immune cells, with the strongest correlation

observed between risk scores and CD8+ T cells (Figure 8C). Significant

differences in immune scores and ESTIMATE scores were found

between the two groups, while stromal scores showed no significant

differences (Figure 8D). The ssGSEA scores for four immune functions
Frontiers in Oncology 10
were significantly different between the groups (Figure 8E), and 16

immune checkpoints also exhibited significant differences (Figure 8F).

All seven cancer immune cycle scores differed significantly between the

high- and low-risk groups (Figure 8G). Furthermore, these cancer

immune cycle scores were negatively correlated with risk scores, with

STEP 3 showing the strongest correlation (Figure 8H).
FIGURE 6

Differential expression and pathway analysis. (A) Volcano plot of differentially expressed genes. (B) Circular plot of GO enrichment. (C) Circular plot
of KEGG enrichment. (D) Heatmap of ssGSEA scores for the pathways.
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3.7 Validation of the mRNA expression of
four genes (PRKAA2, GRIP2, CHGB,
SLC7A5) in HNSCC

To validate the expression changes of the feature genes in

HNSCC, 24 pairs of tumor and adjacent noncancerous
Frontiers in Oncology 11
t issues were col lected, and qPCR was performed for

verification. The results showed no significant expression

changes for PRKAA and GRIP2 in head and neck tumors

(Figures 9A, B), whereas CHGB exhibited a noticeable

upregulation, and SLC7A5 showed downregulation in head and

neck tumors (Figures 9C, D).
FIGURE 7

Gene mutation analysis and drug sensitivity. (A) Waterfall plot of gene mutation analysis (high- and low-risk groups). (B) Gene mutation cartogram
(high- and low-risk groups). (C) Boxplot of differential drug sensitivity analysis.
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4 Discussion

HNSCC is a highly heterogeneous malignancy whose development

is strongly linked to HPV infection and immunometabolic

reprogramming within the TME (23). Recent studies have
Frontiers in Oncology 12
highlighted the involvement of SCFAs, particularly propionate, as

microbial metabolites that regulate energy metabolism and influence

tumor progression through epigenetic modifications and

immunomodulatory pathways (24). However, the exact mechanisms

of PMRGs in HNSCC remain poorly understood. In this study, four
FIGURE 8

Immune cell and immune function analysis. (A) Heatmap of immune cell ssGSEA scores. (B) Boxplot of immune cell ssGSEA scores. (C) Lollipop
diagram of correlation analysis between risk scores and immune cell scores. (D) Boxplot of stromal, immune, and ESTIMATE scores between high-
and low-risk groups. (E) ssGSEA scores for immune function between high- and low-risk groups. (F) Boxplot of immune checkpoint inhibitor
expression. (G) Boxplot of cancer immune cycle scores. (H) Correlation analysis between cancer immune cycle scores and risk scores.
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characteristic genes associated with propionate metabolism in HNSCC

—PRKAA2, SLC7A5, GRIP2, and CHGB—were identified through

bioinformatics analysis, and their potential roles were explored,

providing new theoretical insights for future research on HNSCC.

PRKAA2, also known as AMPKa2, encodes the catalytic a2
subunit of AMP-activated protein kinase (AMPK) (25). It regulates

glucose metabolism, which affects tumor cell growth and energy

supply (26). Notably, PRKAA2 expression is significantly elevated

in hepatoblastoma (HB), where it acts as an oncogenic factor by

promoting cell proliferation and inhibiting ferroptosis (27). In non-

small cell lung cancer (NSCLC), PRKAA2 enhances tumor growth

and suppresses ferroptosis via the SLC7A11/GSH/GPX4 pathway

(28). These findings suggest that PRKAA2 may similarly influence

tumor cell proliferation and survival in HNSCC.

SLC7A5 (LAT1) facilitates the cellular uptake of neutral amino

acids, including leucine and glutamine (29). Its transport of leucine

activates the mTORC1 signaling pathway, thereby promoting

protein synthesis to support rapid tumor cell proliferation (30).

Tumor cells can modulate SLC7A5 expression to alter immune cell

function and evade immune surveillance (31, 32). Li et al. identified
Frontiers in Oncology 13
SLC7A5 as a potential prognostic biomarker in HNSCC associated

with immune infiltration (33), suggesting that therapeutic targeting

of SLC7A5 may offer a novel strategy for treatment.

GRIP2 encodes a PDZ domain-containing protein that binds

GluR2 to anchor AMPA receptors within neuronal signaling

complexes, playing pivotal roles in synaptic transmission and

plasticity (34). Given the frequent dysregulation of signaling

pathways in cancer cells (35), GRIP2 may influence HNSCC

progression by modulating key tumorigenic pathways.

Interestingly, GRIP2 has been linked to variations in innate CD8+

T cells (36), suggesting its potential immunomodulatory effects in

HNSCC progression. Thus, GRIP2 may regulate both tumor

signaling pathways and immune cell function, making it a

promising therapeutic target.

CHGB is a highly conserved eukaryotic protein involved in

secretory regulation (37). While CHGB genetic variants have been

associated with cardiovascular disease risk (38) and the protein

regulates ion channels to maintain secretory granule homeostasis

(37), its role in cancer remains poorly understood and warrants

further investigation.
FIGURE 9

RT-qPCR verification of model genes. (A) Expression of PRKAA. (B) Expression of GRIP2. (C) Expression of CHGB. (D) Expression of SLC7A5.
Compared with Normal, **P<0.01, ***P<0.001.
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Drug sensitivity analysis identified 12 compounds, including

dasatinib, lenalidomide, and lapatinib, with significantly different IC50

values between high- and low-risk groups, suggesting their potential

clinical applications. Dasatinib, a multi-target tyrosine kinase inhibitor,

may enhance treatment response in high-risk patients by inhibiting

SRC family kinases and exerting immunomodulatory effects (39–41).

The immunomodulator lenalidomide could improve the TME and

increase sensitivity to chemoradiotherapy (42, 43). Lapatinib, an oral

tyrosine kinase inhibitor targeting the EGFR/HER2 pathways, may

provide precision therapy for specific molecular subtypes (44). These

observed differences in drug sensitivities support the rationale for

molecular classification and personalized treatment strategies in

HNSCC. Validation through in vitro experiments and clinical cohorts

is essential, alongside exploration of combination therapies with

existing treatments, such as immune checkpoint inhibitors, to refine

and optimize precision treatment regimens.

Significant differences in the expression of 16 immune checkpoint

genes, including PD-L1, were identified between risk groups. Previous

studies have shown that HNSCC cells often overexpress PD-L1, which

binds to PD-1 on T cells, thereby suppressing their activation and

function, enabling immune evasion (45–47). This immunosuppression

is a key mechanism driving HNSCC progression (48). Furthermore,

PD-L1 overexpression is associated with poorer prognosis in patients

with HNSCC (49), likely due to reduced survival rates from PD-L1-

mediated immune suppression. The elevated expression of PD-L1 in

high-risk patients observed in this study supports these immune escape

mechanisms and offers valuable insights for understanding prognostic

differences and developing novel immunotherapies.

In summary, this study identified four characteristic genes

associated with propionate metabolism through bioinformatics

analysis and established a risk model based on these genes. These

findings provide new insights for prognostic assessment and the

development of innovative therapeutic strategies for HNSCC.

However, several limitations must be acknowledged. The current

sample size necessitates further validation through multicenter

studies with larger cohorts to confirm the clinical applicability of

the model. Additionally, while these metabolic genes have been

identified as potential therapeutic targets, their precise mechanisms

in modulating the immune microenvironment require further

functional studies and clinical trials. Future research should refine

this risk stratification system and investigate metabolism-targeted

combination therapies to develop more precise treatment strategies

for patients with HNSCC.
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