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The diagnostic performance of artificial intelligence (AI)-assisted endoscopy for

digestive tumors remains controversial. The objective of this umbrella review was

to summarize the comprehensive evidence for the AI-assisted endoscopic

diagnosis of digestive system tumors. We grouped the evidence according to

the location of each digestive system tumor and performed separate subgroup

analyses on the basis of the method of data collection and form of the data. We

also compared the diagnostic performance of AI with that of experts and

nonexperts. For early digestive system cancer and precancerous lesions, AI

showed a high diagnostic performance in capsule endoscopy and esophageal

squamous cell carcinoma. Additionally, AI-assisted endoscopic ultrasonography

(EUS) had good diagnostic accuracy for pancreatic cancer. In the subgroup

analysis, AI had a better diagnostic performance than experts for most digestive

system tumors. However, the diagnostic performance of AI using video data

requires improvement.
KEYWORDS

artificial intelligence, endoscopy, endoscopic ultrasound, precancerous lesion,
digestive system tumors
1 Introduction

The incidence and mortality rates of gastrointestinal (GI) tumors remain high. The

health economic burden of these tumors is of great concern (1, 2). Early diagnosis of GI

tumors is critical to achieve the best possible outcome for these patients. Endoscopy is an

important method for GI tumor diagnosis, and reducing the rate of missed diagnosis is

essential (3–6). Diagnosis of pancreatic tumors and mesenchymal tumors relies heavily on

endoscopic ultrasonography (EUS), but the performance among EUS endoscopists varies

greatly. Possible blind spots during surgery can lead to compromised patient health (7).
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In recent years, the application of artificial intelligence (AI)

technology (computer vision) in reducing missed diagnosis of GI

tumors and improving the accuracy of EUS has received widespread

attention (8, 9). However, whether the ability of AI in diagnosing all

types of digestive system tumors is superior to that of experts or

nonexperts is unclear (10–13). Although several meta-analyses have

measured the ability of AI-assisted endoscopy to diagnose digestive

system tumors, there are flaws in their study designs and the results

are inconsistent. According to the largest recent surveys of

endoscopists’ perceptions of AI, while most endoscopists view it

positively, doubts about its diagnostic capabilities persist (14).

There are fewer studies on the diagnostic capabilities of

diagnostic AI in real-world clinical settings, and most are in the

preclinical research stage. To avoid potential risks, a systematic

evaluation of the ability of AI to aid in the diagnosis of early

digestive system tumors is needed before it can be widely used in

clinical practice. Therefore, we conducted a comprehensive

umbrella review of this topic in the hope of contributing to the

advancement of the literature in this regard.
2 Methods

2.1 Search strategy

This study was prospectively registered in PROSPERO

(CRD42023445537). We strictly followed the PRIMA checklist.

Institution Review Board approval and written consent are not

applicable to this study. The PubMed, Web of Science, Embase, and

Cochrane databases were searched to identify all (published and

unpublished) meta-analyses and diagnostic studies on AI-assisted

endoscopy for the diagnosis of digestive system tumors. The search

was completed in July 2023. We searched the databases using a

combination of Medical Subject Heading terms and keywords

related to digestive system tumors, endoscopy, and AI (see

Supplementary Tables S3, S4 for specific search terms). Two

authors (C.W.H. and Y.S.) performed separate searches to include

relevant studies in the review, and any discrepancies were resolved

by consultation with a third author (J.Z.D.). Additionally, meta-

analyses and individual diagnostic studies were manually searched

using the reference lists of all included articles.
2.2 Selection criteria

Meta-analyses and single diagnostic studies were eligible for

inclusion if they included indicators of diagnostic performance, e.g.,

sensitivity and specificity. Studies were included if the outcome was

CRC, pancreatic cancer, esophageal cancer, gastric cancer (GC),

mesenchymal tumors, or capsule endoscopy. We extracted data on

individual outcomes separately if two or more diagnostic outcomes of

the disease were reported in a study. If there was more than one eligible

meta-analysis of AI-assisted endoscopy for the same disease diagnostic
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outcome, we included the most recent study for data extraction, which

was generally the study with the largest sample size (15).

The exclusion criteria for this umbrella review were articles with

incorrect exposure or design (errors in data count or meta-search

design and data organization), studies that did not provide any

information regarding the number of patients or images, and

studies published in non-English languages.
2.3 Data extraction

The listed authors independently extracted the following

information from each eligible study: first author’s name,

nationality, year of publication, tumor site, exposure factors,

study design (retrospective or prospective), number of patients,

and number of images (video or image data). We counted true

positives (TPs), false positives (FPs), true negatives (TNs), and false

negatives (FNs) for each study of AI. For articles without available

TP, FP, FN, and TN data of AI, we emailed the corresponding

authors of the studies to request the raw data. Studies wherein the

authors did not agree to provide raw data were excluded.

Additionally, we performed a grouping analysis according to the

location of each tumor (capsule endoscopy, as a specific endoscopic

technique, was treated as a separate group). We further sub grouped

the studies according to whether the data were collected by image or

video, and whether the study design was retrospective or

prospective (the number of original studies included in each

subgroup was more than three). We also compared the diagnoses

of digestive system tumors between experts and nonexperts (experts

and nonexperts were both gastroenterologists; experts were defined as

having more than 5 years of experience with white light endoscopy or

more than 3 years of experience with magnifying endoscopy with

narrow-band imaging). It is worth noting that the images and videos

involved in most of the AI models were confirmed by histopathology.

For studies involving experts and nonexperts, we again extracted TPs,

FPs, FNs, and TNs for experts and nonexperts. The third author

(J.Z.D.) randomly extracted the data to verify the accuracy.

The AI neural network model used in most of the literature

included in this paper was a convolutional neural network, which is

a specific class of deep neural network that consists of convolutional

and pooling layers in a pattern that resembles the organization of

the visual cortex and is hence well suited for image recognition and

video analysis (16). Most of the endoscopic images included were

white light endoscopy and no magnified narrow-band images.
2.4 Statistical analysis

Pooled sensitivities and specificities with corresponding 95%

confidence interval (95% CI) were calculated using a random-effects

model, and forest plots (Supplementary Figures S1–S7) were

constructed on the basis of these models. The Cochran Q test and

I2 statistic were used to assess heterogeneity between the studies (17).
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I2 >50% or a p-value ≤0.1 was considered to indicate significant

heterogeneity. The Egger test was used to detect potential publication

bias. Statistical significance was set at a p-value <0.1 (18).

Heterogeneity and publication bias were also calculated in the

subgroup analysis. All statistical analyses were performed using

Stata 16 (StataCorp LLC, College Station, TX, USA) and R version

4.3.1 (R Foundation for Statistical Computing, Vienna, Austria).
2.5 Quality assessment of the methods and
evidence

The methodological quality of the meta-analyses was assessed

using the AMSTAR2.0 instrument, a 16-item methodological

assessment tool (19). Additionally, Grading of Recommendations,

Assessment, Development, and Evaluations (GRADE) was used to

assess the quality of evidence for each outcome included in the

review (20). The GRADE approach categorizes evidence as “high,”

“moderate,” “low,” or “very low” quality. The level of evidence can

be downgraded by the risk of bias, inconsistency, indirectness,
Frontiers in Oncology 03
imprecision, and publication bias. The methodological quality of

the studies and the quality of the evidence were independently

assessed by two authors (C.W.H. and Y.S.).
3 Results

3.1 Characteristics of the meta-analysis
(search, deduplication, exclusion,
screening, and synthesis)

Figure 1 shows the flowchart of the literature search and

screening. After a systematic literature search, 700 articles were

identified. After screening titles and abstracts and removing

duplicates, 43 articles were included. Then, 22 articles were

retrieved for full-text review, of which 21 were discarded for

the following reasons: one was not a meta-analysis, two studies

had inappropriate designs, and three were published in languages

other than English. One meta-analysis was performed by

manually searching the reference lists of the included meta-
FIGURE 1

Flowchart of the systematic search and selection process.
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analyses. Finally, 23 meta-analyses were included in this

review (Table 1).
3.2 Characteristics of the data

The studies reported on AI-assisted endoscopic diagnosis of

pancreatic (n=3), esophageal (n=8), gastric (n=6), and colorectal

(n=6) cancers; mesenchymal tumors (n=1); and AI-assisted

capsule endoscopy for the diagnosis of GI tumors (n=2). Our

literature search for individual diagnostic studies not included in

the published meta-analyses identified 25 additional studies (the

original studies had the same inclusion and exclusion criteria as

the meta-analysis): three studies on the diagnosis of pancreatic
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cancer, two studies on the diagnosis of esophageal cancer, 17

studies on the diagnosis of gastric cancer (GC), and three studies

on the diagnosis of mesenchymal tumors. After removing

duplicates, 193 original articles were included. We compared

AI’s performance with the gold standard pathological diagnosis

as follows: TP, correctly diagnosed patients with tumors; TN,

correctly diagnosed healthy individuals; FP, incorrectly diagnosed

healthy individuals as having tumors; and FN, incorrectly

diagnosed individuals with tumors as healthy. Sensitivity (TP/

TP+FN) reflects the ability of AI to detect patients, with higher

sensitivity indicating fewer missed diagnoses. Meanwhile,

specificity (TN/TN+FP) reflects the ability to correctly identify

patients without the condition; the higher the specificity, the lower

the misdiagnosis rate (10).
TABLE 1 Characteristics of the included meta-analysis.

Number of
included
individual studies

GI
cancer

NO. of
patients

NO. of
cases

Sensitivity Speciality Quality
assessment

Babu P Mohan
(2022) (12)

11 PC 2182 - 0.90 (95%CI:0.88-0.92) 0.84 (95% CI: 0.79-0.88) Low

Elena Adriana
(2022) (21)

10 PC 1871 - 0.92 (95%CI:0.89-0.95) 0.90 (95% CI: 0.83-0.94) Very Low

Thaninee(2022) (22) 8 PC 870 - 0.91 (95%CI:0.87-0.93) 0.90 (95% CI: 0.79-0.96) Low

Nadia Guidozzi
(2023) (23)

23 EAC/
ESCC

2068
-

ESCC: 0.91 (95%
CI:0.84-0.95)

ESCC: 0.80 (95% CI:
0.64-0.90)

Very Low

EAC: 0.93 (95% CI:
0.87-0.96)

EAC: 0.87 (95% CI:
0.83-0.91)

Visaggi(2022) (24) 14 EAC/
ESCC

- - ESCC: 0.95 (95% CI:
0.91-0.98)

ESCC: 0.92 (95% CI:
0.82-0.97)

Very Low

EAC: 0.89 (95% CI:
0.84-0.93)

EAC: 0.86 (95% CI:
0.83-0.93)

Julia Arribas
(2020) (25)

19 EAC/
ESCC/GC

1116 23878 ESCC: 0.93 (95% CI:
0.73-0.99)

ESCC: 0.89 (95% CI:
0.77-0.95)

Low

EAC: 0.89 (95% CI:
0.83-0.93)

EAC: 0.88 (95% CI:
0.84-0.91)

GC: 0.88 (95% CI:
0.78-0.94)

GC: 0.89 (95% CI:
0.82-0.93)

Islam(2022) (13) 28
EAC/
ESCC

- 703006
0.938 (95% CI:
0.936-0.94)

0.917 (95% CI:
0.915-0.92)

Very Low

De Luo(2022) (10) 39 EAC/
ESCC/
EGC

1380 13091 EC: 0.94 (95% CI: 0.91-
0.96)*/0.95 (95% CI:
0.95-0.96)

EC: 0.90 (95% CI: 0.88-
0.92)*/0.95 (95% CI:
0.94-0.95)

Very Low

0.87(95%CI:0.87-0.88) 0.88(95%CI:0.87-0.88)

Thomas K L Lui
(2020) (26)

17 EAC/
ESCC/GC

- 969318 ESCC: 0.76 (95% CI:
0.48-0.93)

ESCC: 0.93 (95% CI:
0.67-0.995)

Low

EAC: 0.88 (95% CI:
0.82-0.92)

EAC: 0.90 (95% CI:
0.86-0.95)

GC: 0.92 (95% CI:
0.86-0.96)

GC: 0.88 (95% CI:
0.72-0.96)

(Continued)
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3.3 Quality assessment of the meta-
analyses

The quality of the included meta-analyses was assessed using

AMSTAR (version 2). Supplementary Table S1 presents details of

the quality assessment of the 23 included meta-analyses. There was

no “high” or “moderate” quality evidence. Eleven of the studies were

of “low” quality, and 12 of the studies were of “very low” quality.
3.4 Heterogeneity

The I2 statistic and Cochran Q test were used to detect possible

heterogeneity between the studies. Seven (22%) outcomes had

significant heterogeneity (I2 >50% or p-value ≤0.1), and the rest

(78%) had no significant heterogeneity (Figure 2). The main reasons

for heterogeneity were differences in AI methods and endoscopic
Frontiers in Oncology 05
imaging techniques, differences in quality and quantity of endoscopic

images and videos, and differences in study design. Additionally, the

reasons for greater heterogeneity in the image subgroup compared

with the video subgroup and in the retrospective subgroup compared

with the prospective subgroup were the large number of included

studies and differences in AI algorithms and imaging techniques.
3.5 Group and subgroup

3.5.1 GI tumors
The abilities of AI-assisted endoscopy to diagnose esophageal

tumors (Barrett esophagus and esophageal adenocarcinoma, and

esophageal squamous cell carcinoma), GC, and colorectal cancers

(CRCs), and AI-assisted capsule endoscopy to diagnose GI tumors

are summarized as follows. Details of the summary effect sizes are

shown in Figure 2.
TABLE 1 Continued

Number of
included
individual studies

GI
cancer

NO. of
patients

NO. of
cases

Sensitivity Speciality Quality
assessment

Jin Lin Tan
(2022) (27)

12 EAC 1361 532328 0.90 (95% CI: 0.87-0.93) 0.84 (95% CI: 0.80-0.88) Low

Chang Seok Bang
(2021) (28)

22 EAC/
ESCC

2102 78882 0.93 (95% CI: 0.86-0.96)
*/0.94 (95% CI:
0.89-0.96)

0.85 (95% CI: 0.78-0.89)
*/0.88 (95% CI:
0.76-0.94)

Very Low

Pei-Chin Chen
(2022) (29)

12 EGC - 11685 0.86 (95% CI: 0.75-0.92) 0.90 (95% CI: 0.84-0.93) Very Low

Kailin Jiang
(2021) (30)

16 EGC 3787 1708519 0.86 (95% CI: 0.77-0.92) 0.93 (95% CI: 0.89-0.96) Very Low

Islam(2021) (31) 15 EGC 7538 231096 0.89 (95% CI: 0.88-0.89) 0.89 (95% CI: 0.89-0.90) Very Low

Xin-Yuan Liu
(2022) (32)

8 GIST 533 - 0.92 (95% CI: 0.85-0.96) 0.80 (95% CI: 0.70-0.87) Low

Jiawei Bai(2023) (33) 13 CRC 1472 13918 0.68 (95% CI: 0.59–0.76)
(Japan/Korea)/0.88 (95%
CI: 0.78–0.94) (China)

0.96 (95% CI: 0.93–0.98)
(Japan/Korea)/0.88 (95%
CI: 0.80–0.93)(China)

Low

Yixin Xu(2021) (11) 13 CRC - 234266 0.85 (95% CI: 0.69–0.93) 0.97 (95% CI: 0.95–0.98) Very Low

Aling Wang
(2021) (34)

26 CRC - 5246543 0.88 (95% CI: 0.81-0.92) 0.95 (95% CI: 0.94–0.96) Low

Thomas K L Lui
(2020) (35)

18 CRC - 7680 0.92 (95% CI: 0.89-0.95) 0.90 (95% CI: 0.85-0.93) Low

Ming-De Li
(2022) (36)

16 CRC - 33388 0.93 (95% CI: 0.91-0.95) 0.87 (95% CI: 0.76-0.93) Very Low

Chang Seok Bang
(2021) (37)

13 CRC - 6564 0.88 (95% CI: 0.87–0.88) 0.79 (95% CI: 0.78–0.80) Low

Junjie Mi(2022) (38) 8 CRC
(WCE)

819 18414 0.97 (95% CI: 0.95-0.98) 0.97 (95% CI: 0.94–0.98) Very Low

Hye Jin Kim
(2022) (39)

7 Intestinal
polyp
(WCE)

- 28148 0.97 (95% CI: 0.82-0.99) 0.98 (95% CI: 0.92-0.99) Low
PC, pancreatic cancer; EAC, esophageal adenocarcinoma; ESCC, esophageal squamous cell carcinoma; EGC, early gastric cancer; GIST, gastrointestinal stromal tumors; CRC, colorectal cancer;
WCE, wireless capsule endoscopy.
*patients #cases.
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In terms of tumor location, AI-assisted capsule endoscopy

showed excellent performance in diagnosing GI tumors with a

pooled sensitivity of 0.93 (95% CI: 0.90–0.96) and pooled specificity

of 0.93 (95% CI: 0.89–0.95).In gastroenteroscopy, AI-assisted

endoscopy exhibited the best diagnostic performance for

esophageal squamous cell carcinoma, followed by Barrett

esophagus, esophageal adenocarcinoma, colorectal cancer, and GC.

Most groups showed better diagnostic performance with image data

than with video data. This was observed in the groups of esophageal

adenocarcinoma [EAC], pooled specificity: 0.85 [95% CI: 0.79–0.89]),

esophageal squamous cell carcinoma [ESCC], and CRC. The GC group

showed similar performance in the picture and video subgroups.

For prospective studies, no data existed on ESCC, and the

available prospective studies for GC were limited. Except for the

CRC group, the diagnostic performance of AI in retrospective and

prospective studies was not significantly different; however, AI

performed better in retrospective studies than in prospective studies.

We compared the diagnostic performance of AI with that of

experts and nonexperts (expert and nonexpert diagnostic capabilities

were meta-analyzed on the basis of the extracted data).he combined

results showed that most AI models had better diagnostic capabilities

than experts (Summary effect sizes are shown in Figure 2).

Interestingly, three studies (40–42) analyzed the ability of nonexperts

in diagnosing GC under endoscopy; with the help of AI, the diagnostic

performance of nonexperts was found to reach the level of experts.

Two studies (43, 44) reported that AI-assisted nonexperts achieved

diagnostic performance comparable to that of experts in CRC.
Frontiers in Oncology 06
3.5.2 Pancreatic tumors and mesenchymal
tumors

Studies on AI-assisted EUS for the diagnosis of digestive system

tumors are fewer, focusing on pancreatic tumors and mesenchymal

tumors. Overall, the diagnostic performance of AI for pancreatic

tumors was superior to that of mesenchymal tumors. Similar to GI

tumors, the diagnostic performance of AI-assisted EUS was better

than that of experts. There were no significant differences between

retrospective and prospective studies.
3.6 Assessment of the risk of bias

Publication bias was found for ESCC (expert and nonexpert

subgroups), Barrett esophagus and EAC (video subgroup), CRC

(video and expert subgroups), and GC (expert and nonexpert

subgroups). The remaining outcomes did not exhibit significant

publication bias.
3.7 Grade

We downgraded the evidence according to five factors (risk of

bias, inconsistency, indirectness, imprecision, and publication bias).

The evidence for the following outcomes was downgraded to

“moderate” quality: GC group, GC (image subgroup, retrospective

subgroup, expert subgroup, and nonexpert subgroup), CRC group,
FIGURE 2

Summary findings for each outcome.
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CRC (image subgroup, video subgroup, retrospective subgroup, and

expert subgroup), Barrett esophagus and EAC (video subgroup),

and ESCC (expert subgroup and nonexpert subgroup). Only one

piece of evidence was downgraded to “low” quality (ESCC group).

The primary reasons for this downgrading were inconsistencies and

publication bias. The evidence for the remaining outcomes was of

“high” quality (Supplementary Table S2).
4 Discussion

Our results showed that the use of AI improved the detection

and diagnostic accuracy of early digestive system tumors.

Furthermore, AI-assisted endoscopic ultrasonography (EUS) had

good diagnostic accuracy for pancreatic cancer.; meanwhile, AI

showed high diagnostic performance in capsule endoscopy and

esophageal squamous cell carcinoma for early digestive system

tumors and precancerous lesions. Additionally, we compared the

diagnostic capabilities of AI with those of experts and found that the

diagnostic capability of AI was superior to that of experts.

During endoscopy, endoscopists must obtain diagnostic

information while performing the endoscopy; therefore, most

real-life scenarios are similar to video data formats. Therefore, we

subdivided the AI into image subgroups and video subgroups. In

this study, most subgroups using video data had lower diagnostic

capability than those using image data. Therefore, we concluded

that, although AI has a high diagnostic accuracy using image data,

its diagnostic capability may be limited during clinical

endoscopic procedures.

Prospective studies have a higher level of evidence compared to

other studies. We performed meta-analysis on prospective studies

of esophageal adenocarcinoma, colorectal cancer, and pancreatic

cancer. The results showed that AI’s diagnostic performance in the

prospective study group surpassed that of the experts and was

higher than video-based diagnostic performance. This supports our

conclusion that AI’s diagnostic capability surpasses that of experts,

though AI ’s performance with video data still requires

improvement. Notably, although fewer prospective studies were

available for gastric cancer in our review, the results from these

studies also align with the conclusion mentioned above. Regarding

the outcome of CRC, we found that the retrospective subgroup had

higher sensitivity, whereas the prospective subgroup had higher

specificity. However, this was not the case in other retrospective and

prospective subgroups. We believe that a possible reason for this

result is that there may have been selection bias when

retrospectively collecting CRC data, which may lead researchers

to select images with better bowel preparation scores, resulting in

higher sensitivity. Overall, AI’s diagnostic capabilities in prospective

studies require further improvement when compared to

retrospective studies. This indicates a need for additional

prospective studies to validate AI’s diagnostic abilities.

Overall, there was less heterogeneity in the outcomes, except for

esophageal squamous carcinoma, GC, and CRC. Regarding the risk

of bias, there was greater publication bias associated with

esophageal cancer and CRC and almost no publication bias in the
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remaining outcomes. Selection bias in retrospective studies is

inevitable. Many retrospective studies were included in this study;

therefore, the selection bias was high. Regarding the evidence rating,

the performance of AI in diagnosing ESCC was low-level evidence,

whereas those of the remaining studies were medium- and high-

level evidences. Although a small number of randomized controlled

trials have evaluated the ability of AI to assist in the early diagnosis

of cancer in clinical settings, most applications of AI for the

endoscopic diagnosis of digestive system tumors are still in the

preliminary stage (45–47).

AI is not yet widely used in clinical practice; thus, our study

systematically summarizes the current research on the diagnostic

capability of AI-assisted diagnosis of digestive system tumors and

presents a pooled analysis of all data containing comparisons with

experts and nonexperts. This study provides the latest evidence of

AI-assisted endoscopy for the diagnosis of early digestive system

tumors and precancerous lesions. The results of this study have

practical implications in guiding the development of real-

world applications.

In the past few years, the application of AI to endoscopic clinical

practice has received increasing attention. AI can recognize subtle

changes that cannot be identified by traditional methods and help

identify subtle lesions. During endoscopy, AI can match multiple

endoscopic imaging modalities, such as white light endoscopy

(WEL) and narrowband imaging (NBI). AI can also help to label

suspicious lesions in real time (12, 14).Thus, AI has been shown to

improve the detection rate of digestive tumors, especially for less

experienced endoscopists. AI-assisted novice endoscopists have

lower rates of missed diagnoses, with results not inferior to the

expert level (48). Interestingly, AI can also assign monitoring

intervals to patients after polypectomy (49), and it can even

improve bowel preparation (50). In recent years, automated

endoscopic reporting systems have received increasing attention.

One study (51) showed that the use of an AI-based endoscopy

automatic reporting system significantly improved the accuracy and

completeness of esophagogastroduodenoscopy (EGD) reporting,

reduced the work burden of endoscopists, and promises to be an

enhanced tool for EGD recording services. However, before

focusing on the diagnostic capabilities of automated endoscopic

reporting systems, it is essential to summarize the diagnostic

capabilities of AI. Other prospective studies assessing AI’s

performance in diagnosing digestive tumors have yielded

important results. Most of these studies reported results aligning

with our findings that the application of AI can improve the

diagnosis rate of digestive system tumors (52–56). However, some

prospective studies have indicated that AI may not enhance the

diagnosis rate of these tumors (57, 58). We speculate that this

discrepancy may stem from the fact that studies reporting no

improvement were primarily single-center studies. One study

involved a small sample size, and the other included a high-risk

oncology hospital population, potentially influencing the results.

Based on previous meta-analysis and diagnostic tests (36, 41),

we defined physicians with 5 years of experience as endoscopists.

Although our study provided a uniform definition of “expert,” some

diagnostic experiments use more detailed definitions, such as the
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number of operational cases or recognition by an academic

association. This leads to heterogeneity in the definition of

“experts.” The AI models or algorithms also differ between

studies. These differences will have an unpredictable influence on

the research results. Additionally, the prospective and video

subgroups included a smaller number of studies, which also

affected the results. Therefore, further prospective studies on the

diagnostic capabilities of AI models based on video data are

required to provide the latest evidence.

Still, before AI can be used in large-scale clinical applications,

several problems must be resolved. First, the establishment of AI

models requires large amounts of patient data. Owing to the lack of

policies regarding the use of training data, there is a substantial risk

of patient information leakage, and formulating relevant regulations

is recommended to avoid potential risks (59). Additionally, to gain

the trust of doctors and patients in the clinical stage of AI

application, AI is required to achieve better diagnostic capability

and interpretability. Our current research provides the latest

evidence for the diagnostic capability of AI in the endoscopic

diagnosis of digestive system tumors, indicating that AI has an

excellent diagnostic performance; yet, convincing patients of the

diagnosis of AI requires more popular science (60, 61).

Although there have been some active attempts to address the

“black box” problem in neural networks, we cannot adequately

explain the results produced by current AI (62). Most importantly,

whether the responsibility for the errors that occur when AI is used

in clinical applications lies with the endoscopic technologist, AI

developer, or regulator cannot be answered (63–65).

Despite the good diagnostic performance achieved by AI, there

are still some problems to be solved before its large-scale clinical

application. Sound policies and regulations need to be developed to

address the ethical issues associated with AI applications.
5 Conclusion

This is an umbrella review to evaluate the diagnostic

performance of artificial intelligence (AI)-assisted endoscopy for

digestive tumors. The results indicate that, for early digestive system

cancer and precancerous lesions, AI showed a high diagnostic

performance in capsule endoscopy and esophageal squamous cell

carcinoma. Additionally, AI-assisted endoscopic ultrasonography

(EUS) had good diagnostic accuracy for pancreatic cancer. In the

subgroup analysis, AI had a better diagnostic performance than

experts for most digestive system tumors. However, the diagnostic

performance of AI using video data requires improvement.
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