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Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), originates

from primary tumors and metastatic lesions in cancer patients, often carrying

genomic variations identical to those of the primary tumor. ctDNA analysis via

liquid biopsy has proven to be a valuable biomarker for early cancer detection,

minimal residual disease (MRD) assessment, monitoring tumor recurrence, and

evaluating treatment efficacy. However, despite advancements in ctDNA analysis

technologies, standardized protocols for its extraction and detection have yet to

be established. Each step of the process—from pre-analytical variables to

detection techniques—significantly impacts the accuracy and reliability of

ctDNA analysis. This review examines recent developments in ctDNA detection

methods, focusing on pre-analytical factors such as specimen types, collection

tubes, centrifugation protocols, and storage conditions, alongside high-

throughput and ultra-sensitive detection technologies. It also briefly discusses

the clinical potential of liquid biopsy in nasopharyngeal carcinoma (NPC).
KEYWORDS
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1 Introduction

First described by Mandel and Metais in 1948, circulating cell-free DNA (cfDNA) has

emerged as a key focus in medical research due to its clinical significance (1). Circulating

tumor DNA (ctDNA), a specific subset of cfDNA, originates from primary tumors and

metastatic sites, carrying genomic alterations identical to those found in the primary tumor

(2, 3). This makes ctDNA a powerful tool for non-invasive, real-time analysis of tumor

dynamics, enabling the monitoring of therapeutic responses, clonal evolution, and

resistance development (4).

The detection of ctDNA, however, is often challenging due to its low abundance, as it is

heavily diluted by non-tumor cfDNA (5). Despite advancements in detection technologies,
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sequencing accuracy can be compromised by biological noise,

including somatic mosaicism (6). CtDNA is typically extracted

from peripheral blood, and its reliability as a biomarker depends

on efficient isolation and analytical techniques, which are crucial for

consistent quantification and normalization.

Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma

originating from the nasopharyngeal cavity’s roof and lateral walls,

shows a highly uneven global distribution. More than 70% of new

cases cluster in East and Southeast Asia. In endemic regions, over

95% of NPC patients present with non-keratinizing squamous cell

carcinoma, strongly associated with Epstein-Barr virus (EBV) (7, 8).

The etiopathogenesis of NPC remains incompletely understood,

involving EBV infection, environmental factors, ethnic

susceptibility, and genetic predisposition. Characterized by an

insidious onset, approximately 70% of patients are diagnosed at

mid - to - late stages, resulting in a 5-year survival rate of less than

10% (9). With the increasing application of peripheral blood tumor

DNA detection, plasma EBV DNA testing has emerged as a valuable

tool for NPC diagnosis, prognosis assessment, and minimal residual

disease monitoring (8). As ctDNA technology advances, it is

anticipated to become a standard approach in comprehensive

NPC management.

This review explores the critical requirements for optimal

ctDNA analysis and discusses recent advancements in high-
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throughput and ultrasensitive detection methods. Additionally, it

highlights the potential clinical applications of liquid biopsy

technologies, with a particular focus on NPC. Figure 1 shows a

brief workflow for ctDNA analysis.
2 Pre-analytical considerations
for ctDNA

Pre-analytical variables include all steps preceding the analysis

of ctDNA specimens and play a critical role in determining ctDNA

integrity, purity, and yield, as well as its suitability for subsequent

analyses. Despite their importance, these factors are often

overlooked during validation, potentially undermining the

reliability of results. Establishing standardized pre-analytical

protocols is essential to ensure consistency and accuracy in

ctDNA analysis (10).
2.1 Sample types

Plasma and serum are the most commonly used sample types

for ctDNA analysis. However, cfDNA concentrations are reported

to be 1–8 times higher in serum compared to plasma due to
FIGURE 1

A brief workflow for ctDNA analysis. Tumor cells release DNA fragments into the bloodstream, and circulating tumor DNA (ctDNA) may carry
genomic alterations identical to those of the primary tumor. By collecting patient blood samples, centrifuging them, extracting ctDNA from the
blood, and performing ctDNA detection, the resulting data can be analyzed to guide clinical screening, diagnosis, treatment, and
prognosis assessment.
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leukocyte lysis during coagulation and fibrinolysis (11).

Consequently, plasma is preferred for ctDNA analysis as it

enhances sensitivity and promotes data consistency.
2.2 Collection tubes

For ctDNA collection, ethylene-diaminetetraacetic acid

(EDTA) tubes are favored over heparin or citrate tubes because

EDTA inhibits plasma deoxyribonuclease activity, preserving

ctDNA stability (11, 12). However, genomic DNA contamination

from leukocytes can occur within four hours of collection if samples

are not processed promptly. To mitigate this issue, specialized blood

collection tubes (BCTs) with stabilizing agents—such as Streck,

Roche, Norgen, PAXgene, and CellSave—have been developed.

These tubes extend ctDNA stability, allowing preservation for up

to 48 h or longer, which facilitates delayed processing and

transportation. While some researchers suggest that proper

processing within a few days reduces the importance of specific

tube selection, these BCTs remain valuable for scenarios requiring

extended sample handling times (13). Specialized BCTs broaden the

scope of ctDNA collection and enable delayed transport between

clinical center. However, further research is needed to identify

subtle differences among these tubes and to establish standardized

protocols for optimal ctDNA collection and measurement.
2.3 Centrifugation protocols

Efficient ctDNA analysis requires removing heterogeneous

content from plasma to ensure the isolation of high-quality ctDNA.

Sherwood et al. evaluated single versus dual centrifugation in blood

samples from NSCLC patients, finding no significant difference in

DNA yield when plasma was centrifuged twice within 2 h compared

to a single centrifugation. However, after 72 h, dual centrifugation

yielded less DNA, highlighting the influence of protocol timing on

DNA recovery (14). Most studies recommend a two-step

centrifugation process to optimize cfDNA quality. The initial low-

speed centrifugation (800–1,900 g for 10 min) pelts blood cells,

followed by high-speed centrifugation (14,000–16,000 g for 10 min)

to eliminate remaining cellular debris and improve cfDNA purity (15,

16). Protocols employing extended centrifugation times, such as the

adapted (1,900 g for 10 min; 16,000 g for 10 min, at room

temperature) and original CEN protocols (1,900 g for 10

min;16,000 g for 10 min, at 4°C), minimize contamination with

long DNA fragments compared to shorter centrifugation durations.

The adapted CEN protocol may be particularly suitable for ctDNA

analysis using cell stabilizer tubes (17). For quality control, plasma

should be divided into small aliquots following centrifugation,

tailored to specific analytical requirements (18).
2.4 Storage conditions

The time and temperature of blood storage before plasma

preparation vary based on tube type. Blood in standard EDTA
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tubes can be stored at 4°C for up to 2 days to reduce cell lysis (12).

In contrast, cell stabilizer tubes permit storage at 10°C to 30°C for up

to 5 days. Once plasma is separated, freezing at -80°C preserves

cfDNA levels for up to 2 weeks, even if the second centrifugation is

delayed (19). Although a single freeze-thaw cycle has minimal impact

on ctDNA integrity, more than three cycles can degrade nucleic acids,

reducing detection efficiency. Long-term storage requirements

depend on the intended analysis. Samples stored at -20°C or -80°C

for up to 9 months are suitable for mutation detection, whereas

ctDNA quantification and fragmentation are optimal within

3 months at -20°C (20). Currently, there is no universal consensus

on storage temperatures or durations, emphasizing the need for

further standardization.
3 ctDNA extraction techniques

Efficient extraction of ctDNA with high yield and purity is

critical to ensuring the sensitivity and reliability of downstream

analyses. Current DNA extraction methods can be categorized into

three main approaches: phase isolation, silica membrane-based spin

columns, and magnetic bead-based isolation (21). Silica-based

methods leverage the high affinity between the negatively charged

DNA backbone and positively charged silica, enabling effective

DNA binding. Although phase isolation can achieve high purity,

it is more complex and time-consuming compared to other

methods (22). Spin column and magnetic bead-based isolation

differ primarily in how DNA is captured: in spin columns, DNA

binds to a resin, while magnetic beads use a silica-coated surface.

Magnetic bead-based systems are particularly efficient at recovering

smaller DNA fragments, offering advantages such as lower cost,

shorter processing times, and full automation. In contrast, spin

column methods are better suited for recovering variable-sized

DNA, particularly high molecular weight fragments (>600 bp),

and are widely regarded as the preferred choice for general

ctDNA isolation due to their reliability and high recovery rates

(23). Commercial extraction kits typically employ either spin

column or magnetic bead-based approaches. However, novel

methods, such as magnetic ionic liquid (MIL)-based extraction,

have demonstrated superior performance. For instance, MIL-based

dispersive liquid-liquid microextraction (DLLME) combined with

direct-multiplex-qPCR enables the simultaneous enrichment of

multiple DNA fragments from human plasma with significantly

higher enrichment factors than conventional silica-based or

magnetic bead methods. This approach holds significant potential

for ctDNA detection (24).

Recent advancements in nanotechnology have introduced

ultrasensitive magnetic nanowire networks for cfDNA isolation.

These structures, characterized by elongated or tubular

morphologies and high saturation magnetization, facilitate the

efficient capture of cfDNA while minimize loss and degradation,

producing high-quality DNA in sufficient quantities (25).

Microfluidic devices for DNA isolation are also under

development, classified into solid-phase and liquid-phase isolation

techniques. Solid-phase methods employ functionalized surfaces or
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immobilized beads to capture DNA, while liquid-phase methods

utilize chemical reagents or rely on electrophoresis (EP) or

dielectrophoresis (DEP) to selectively migrate negatively charged

DNA (26). Advances in microfluidic technologies have led to

integrated and automated chips and discs capable of isolating

ctDNA with high yield and specificity. These devices require

minimal sample volumes, reduce processing time, and minimize

DNA degradation. They also enhance sensitivity, allowing for

accurate quantification and high-throughput screening, making

them increasingly feasible for routine clinical applications (27–29).
4 Methods for ctDNA detection

ctDNA detection methods can be broadly divided into targeted

and untargeted approaches. Targeted methods focus on detecting

specific molecular alterations in predefined genes, while untargeted

methods extend the genomic scope to identify novel tumor-related

alterations, providing potential avenues for advancing cancer

therapy (30). Although untargeted methods exhibit high

sensitivity, their high cost, long turnaround times, and

impracticality for routine clinical use limit their widespread

application. Table 1 compares the advantages and disadvantages

of some common ctDNA detection methods.
4.1 PCR-based methods

PCR-based methods are the most commonly used techniques

for ctDNA detection, offering exceptional sensitivity.

4.1.1 Targeted PCR methods
Targeted PCR techniques employ biological, physical, or

chemical methods—such as specific primers , probes ,
Frontiers in Oncology 04
endonucleases, optimized denaturation temperatures, magnetic

beads, barcodes, Raman spectroscopy, chemical modifications,

and microfluidic chips—to selectively amplify wild-type or

mutant sequences. Key approaches in targeted PCR include allele-

specific PCR, multi-target PCR, methylation-specific PCR, and

digital PCR.

4.1.1.1 Allele-specific PCR

Allele-specific PCR, also known as the Amplification Refractory

Mutation System (ARMS-PCR) or PCR amplification of specific

alleles (PASA), has been used for detecting hotspot mutations and

single nucleotide polymorphisms (SNPs) for years (31). This

method employs primers designed to precisely complement the

mutation site. DNA polymerase selectively amplifies mutant DNA

when the primer’s 3′-end matches the variant base, ensuring

high specificity.

The enhanced version, Super-ARMS, further improves

specificity and sensitivity through optimized primer design,

making it especially suitable for liquid biopsies in NSCLC. Super-

ARMS is increasingly used to detect EGFR mutations in plasma

(32), with commercially available kits such as the Cobas EGFR

Mutation Test v2 and the Super-ARMS EGFR Mutation Test Kit

approved for clinical use. These techniques are valuable for

detecting T790M resistance mutations during follow-up in

NSCLC patients (33). Although ARMS-PCR is cost-effective and

widely accessible, its analytical sensitivity and genetic loci are

limited. Low ctDNA concentrations and undetected mutations

can hinder its broader clinical utility.

4.1.1.2 Methylation-specific PCR

DNA methylation is a key driver of tumorigenesis and tumor

progression, making it a valuable biomarker for cancer detection

(34). Most ctDNA methylation studies currently rely on bisulfite

conversion-based methods, such as methylation-specific PCR
TABLE 1 Comparison of ctDNA detection methods.

Technique Approach Method Advantage Disadvantage Reference

PCR-based Targeted
approaches

Allele-
specific PCR

High specificity, economical and
easily accessible.

Limited sensitivity, unknown mutations cannot
be detected.

(31–33)

Methylation-
based PCR

High specificity, high sensitive. Sulfite conversion methods result in a loss of DNA
information, limited by methylation mutations.

(35, 36)

Multiplexed
targeted PCR

High specificity, high sensitive,
multiple mutation detection.

Unknown mutations cannot be detected, cost may
increase with the number of targets.

(40–43)

Digital PCR High specificity, high sensitive,
multiple mutation detection.

Complex operation, expensive. (44–47)

Untargeted
approach

Enhanced-ice-
COLD-PCR

Non-targeted, simple
operation, rapid.

Limited quantitative accuracy. (53)

NGS-based Targeted
approaches

Amplicon
−based

High specificity, high sensitive. Amplification bias, limited detection range. (55–59)

Hybrid
capture-based

High specificity, high sensitive. Uneven capture efficiency, complex operation. (60–63)

Untargeted
approach

Genome-
wide analysis

Complete coverage, discovery of
new variation.

Complex operation, expensive, complex data analysis. (66–68)
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(MSP) and Methylated CpG Tandem Amplification and

Sequencing (MCTA-seq). For example, Nesvet et al. introduced a

method that combines MSP with melt curve analysis using a giant

magnetoresistance (GMR) biosensor. This approach enhances

methylation detection by employing GMR sensors functionalized

with synthetic DNA probes targeting methylated or unmethylated

CpG sites. The probes detect melting temperature differences

(DTm) in MSP amplicons, achieving a detection limit as low as

0.1% methylated DNA in solution. The assay’s multiplexing

capability and high sensitivity, without the need for deep

sequencing, represent a significant step toward early cancer

detection through plasma-based methylation analysis (35).

Despite its utility, bisulfite treatment degrades DNA, resulting in

the loss of critical methylation data and low-complexity sequencing

libraries (36). To overcome these limitations, bisulfite-free

enrichment methods have been developed without cytosine

conversion, which improve specificity by targeting methylated

DNA with anti-methylcytosine antibodies or methyl-CpG binding

proteins (37). Aberg et al. demonstrated that optimized Methyl-

CpG-binding domain sequencing (MBD-seq) offers distinct

advantages for methylome-wide association studies (MWAS).

This method provides sensitivity and specificity comparable to

whole-genome bisulfite sequencing, even with low-input DNA,

while detects a higher density of CpG sites and the largest

proportion of CpG islands (CGIs). In the context of limited

understanding of methylomes in common diseases, MBD-seq is a

valuable tool for identifying disease-associated methylation

patterns (38).
4.1.1.3 Multiplex targeted PCR

Multiplex PCR enables the simultaneous amplification of

multiple targets in a single reaction. Low-temperature co-

amplification (COLD)-PCR is a specialized technique designed to

enrich low-abundance mutant sequences amidst wild-type

sequences by leveraging critical denaturation temperatures (39).

When combined with high-resolution melting (HRM) analysis,

Full-COLD PCR offers high sensitivity, simplicity, and cost-

effectiveness, making it a promising tool for early-stage breast

cancer screening (40). Differential Strand Separation at Critical

Temperature (DISSECT) is another effective method for enriching

low-frequency mutations. It relies on thermal denaturation of DNA

heteroduplexes, eliminating the need for enzymatic reactions.

DISSECT shows great potential for routine genetic screening,

particularly in cancer detection, and is effective for identifying

mutations such as EGFR-resistant mutations and KRAS

mutations. Using post-DISSECT Sanger sequencing, KRAS

mutations with initial abundances as low as 0.05%–0.1% can be

directly detected (41). To address the limitation of targeting a

restricted number of mutation sites, advanced techniques such as

Simple Multiplexed PCR (SiMSenSeq) and Massively Multiplexed

PCR (mmPCR) have been developed. These methods enable the

simultaneous detection of multiple mutations. Notably, mmPCR

coupled with next-generation sequencing (mmPCR-NGS) can

accurately identify copy number variants (CNVs) with mean

allele imbalances as low as 0.5%. This approach holds significant
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promise for diagnosing, characterizing, and monitoring CNV-rich

cancers, including breast, ovarian, and lung cancers (42, 43).

However, its clinical application remains constrained by the need

for prior variant information and the increased costs associated

with expanding detection targets.

4.1.1.4 Digital PCR

dPCR partitions DNA into individual reaction compartments,

converting the exponential analog signal of conventional PCR into a

linear digital signal. This allows for absolute nucleic acid

quantification and improves mutation detection by enhancing

amplification specificity and minimizing errors. High-sensitivity

dPCR methods, such as BEAMing, droplet digital PCR (ddPCR),

and Integrated Fluidic Circuit-PCR, have been developed to detect

genomic alterations with limits of detection (LoD) as low as 0.01%–

0.001% (44, 45). Yin et al. developed a self-priming multiplex dPCR

chip capable of detecting four targets using a single fluorescence

signal and performing on-chip amplification. This innovation

reduced detection time while maintained high accuracy (46).

Similarly, Geng et al. designed the integrated droplet digital PCR

(IddPCR) microdevice using a “3D extensible” approach. The

device addressed challenges in liquid handling, including scaling

down from milliliter samples to nanoliter droplets, automating the

liquid biopsy workflow, and detecting rare tumor mutations. These

advancements hold significant potential for clinical applications

(47). However, the widespread clinical adoption of these methods

remains limited by their complexity and high cost.

4.1.1.5 Other targeted PCR methods

In addition to PCR-based methods, several alternative

approaches have been developed for detecting ctDNA. One such

method is the ultra-sensitive assay using mass spectrometry (MS),

particularly matrix-assisted laser desorption/ionization time-of-

flight (MALDI-TOF). This technique detects multiple mutations

with mutant allele fractions (MAF) as low as 0.1% by analyzing the

distinct masses of extension products on chips, generating spectrum

profiles. The MassARRAY platform has been recognized as a cost-

effective tool for multigene profiling, offering reasonable sensitivity

and minimal background noise for monitoring tumor burden and

genomic changes (48).

Electrochemical biosensors have also shown promise due to

their ease of fabrication, portability, low cost, and compatibility with

microfabrication and semiconductor technologies. These features

enable the rapid development of platforms for ctDNA analysis (49).

Key components of these biosensors include bioreceptor selection,

bioassay design, and amplification strategies for detecting tumor-

specific mutations and methylation events. For instance, Wang et al.

developed a label-free electrochemical biosensor incorporating

THMS, RNase HII, and TdT dual-enzyme-assisted amplification

for ultrasensitive detection of KRAS G12Dmutations. By modifying

the recognition probe’s loop sequence, this system can be adapted

for broader ctDNA detection. This approach holds significant

potential for noninvasive liquid biopsy applications (50).

Nanoplasmonic sensing technologies have also garnered

attention. Commercial plasmonic sensors are categorized into
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surface plasmon resonance (SPR), localized surface plasmon

resonance (LSPR), and surface-enhanced Raman scattering

(SERS). These sensors measure local refractive index changes

within small sensor volumes, generating spectral shifts and

detecting target molecules with high sensitivity, making them

valuable for ctDNA detection (51). For example, a high-

throughput SERS-LFA biosensor employing a CHA signal

amplification strategy demonstrated ultrasensitive ctDNA

detection, proving effective for identifying ctDNA biomarkers

(52). However, significant challenges must be addressed before

these technologies can achieve widespread clinical application.

Efforts should focus on improving their stability and reliability

while advance clinical validation and standardization processes.

4.1.2 Untargeted PCR methods
Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) is an untargeted

method for detecting all mutations within a defined region of

interest . This technique employs chemically modified

oligonucleotides to selectively suppress wild-type (WT) sequence

amplification, combined with pyrosequencing for mutation

detection. Its key advantages include simplicity, ease of assay

optimization, compatibility with standard laboratory equipment,

and rapid results. These features make it valuable for both basic

research and clinical applications, such as identifying clinically

significant mutational subclones and tracking therapeutic

responses or disease recurrence. However, its inability to deliver

highly precise quantification limits its broader use (53).
4.2 Next-generation sequencing

PCR-based methods often face challenges such as sequence-

specific amplification bias, limited throughput, and slower

processing speeds. High-throughput NGS has addressed these

limitations, providing a transformative approach to analyzing

ctDNA. NGS enables the simultaneous detection of diverse

genetic alterations, including single nucleotide variants (SNVs),

insertions and deletions (indels), copy number alterations

(CNAs), chromosomal rearrangements, and microalterations. The

NGS workflow involves four essential steps: library preparation,

amplification, sequencing, and bioinformatic analysis. Efforts to

enhance ctDNA detection focus on increasing sequencing

depth and employing advanced error-correction techniques (54).

NGS methods can be classified into two categories: targeted

sequencing, which focuses on specific genomic regions, and

untargeted sequencing, which provides a broader analysis of

genetic alterations.

4.2.1 Targeted sequencing
Targeted sequencing is classified into two main approaches:

targeted amplicon sequencing and target hybrid capture

sequencing, differentiated by their enrichment strategies. These

methods prioritize clinically relevant genomic regions, offering

deeper coverage and simplified data processing compared to

whole-genome sequencing (WGS) (54).
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In targeted amplicon sequencing, notable techniques include

Tagged-Amplicon Deep Sequencing (TAm-Seq), the Safe-

Sequencing System (Safe-SeqS), and Duplex Unique Molecular

Identifiers (UMIs). TAm-Seq utilizes a two-step amplification

process to detect mutations with a MAF as low as ~2%, without

requiring prior knowledge of tumor-specific alterations. However,

its sensitivity is lower than methods such as BEAMing or Intplex

(55). Enhanced TAm-Seq (eTAm-Seq™) further improves

sensitivity, detecting MAFs as low as 0.25%, and can also identify

CNVs, SNVs), and short insertions and deletions (indels) (56). Safe-

SeqS incorporates unique identifiers (UIDs) during amplification to

reduce NGS artifacts, while methods like Duplex UMI and Cypher-

Seq use double-stranded barcoding to minimize errors during

library preparation and sequencing (57–59). A significant

challenge for NGS-based ctDNA analysis is the lack of robust

reference standards for benchmarking performance (59).

Hybrid capture-based methods, such as Cancer Personalized

Profiling by Deep Sequencing (CAPP-Seq), provide ultrasensitive

detection of SNVs, indels, CNVs, and rearrangements, achieving

MAFs as low as ~0.02%. Integrating error-correction systems with

hybrid-capture techniques enhances the sensitivity and specificity

of ctDNA sequencing (60), enabling the detection of minimal

residual disease. Tjensvoll et al. introduced HYTEC-seq, a

hybridization- and label-based error correction system that

combines molecular labeling and advanced error correction on

the Ion Torrent platform. This method, coupled with Plasma

Mutation Detector 2, effectively eliminates background noise,

allowing highly sensitive ctDNA detection (61). MSK-IMPACT

(Memorial Sloan Kettering-Integrated Mutation Profiling of

Actionable Cancer Targets), an FDA-approved NGS panel, targets

all exons and selected introns of 341 key cancer-related genes. It

detects SNVs, indels, CNVs, structural rearrangements,

microsatellite instability (MSI), and whole-genome doubling

(WGD) (62, 63). In many cancer patients, ctDNA levels often fall

below the detection threshold of conventional sequencing methods,

especially after treatment (64). Lowering detection thresholds is

critical for the broader clinical application of ctDNA technologies.

Broader sequencing approaches, such as whole-exome

sequencing (WES), support the discovery of novel driver

mutations and therapeutic targets beyond commonly mutated

regions. These methods hold promise for cancer screening,

diagnosis, prognosis, and treatment. WES, which focuses on

coding regions, provides a more streamlined alternative to WGS

(65). However, both WES and WGS require substantial DNA input

and exhibit limited sensitivity, which diminishes their utility for

early cancer detection due to the low background levels of ctDNA.
4.2.2 Untargeted sequencing
Advances in genome-wide analysis have significantly enhanced

the detection of ctDNA. For example, AccuScan, a cfDNA WGS

technology, achieves single-read genome-wide error correction with

an error rate of 4.2×10-7, approximately 100 times lower than

traditional read-centric de-noising methods. This high-precision

approach enables the detection of molecular residual disease with

ctDNA sensitivity in the parts-per-million range (66). Digital
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karyotyping, leveraging high-throughput WGS data, identifies

CNVs, while modified rapid aneuploidy screening tests (mFast-

SeqS) calculate genome-wide aneuploidy scores. These scores are

valuable for stratifying clinical research participants based on tumor

burden (67, 68). However, these methods are often cost-prohibitive,

technically complex, and involve challenging data analysis due to

the high volume and complexity of sequencing output.
4.3 Other methods

Single-molecule sequencing, known for its long, accurate reads,

provides a scalable and flexible platform for real-time sequencing

(69). Prominent technologies in this domain include cSMART and

INC-Seq. Hybrid approaches that combine multiple detection

methodologies have also emerged. For instance, integrating

second-generation ctDNA sequencing panels with microdroplet

digital polymerase chain reaction (PCR) and mass spectrometry

enables dynamic monitoring of ctDNA. This combined approach

effectively captures complex, longitudinal tumor evolution patterns

(70). In short, for ctDNA detection technologies to move from the

laboratory to clinical application, multiple challenges must be

overcome, including technical standardization, cost reduction,

data analysis, and clinical validation. By standardizing procedures,

reducing costs, enhancing data analysis, and conducting clinical

validation, these technologies have the potential to play a more

significant role in clinical practice.
5 Clinical applications of ctDNA in
NPC

Most NPC, strongly linked to EBV, are prevalent in southern

China and Southeast Asia. Plasma EBV DNA, a widely used ctDNA

marker, shares key molecular features with ctDNA, making it an

excellent model for studying ctDNA biology (71, 72). It is pivotal in

NPC screening, detection, risk stratification, treatment monitoring,

and prognosis evaluation.
5.1 Diagnostic applications

EBV DNA is a highly specific diagnostic marker for NPC, with a

specificity of 0.96 when compared to other markers such as EA-IgA,

VCA-IgA, EBNA1-IgA, and Rta-IgG. Its positive likelihood ratio

(PLR) exceeds 10, providing strong evidence for diagnosis.

Additionally, EBV DNA demonstrates the highest diagnostic

accuracy, with an area under the curve (AUC) of 0.96 (P < 0.05)

(73). Target capture sequencing has identified significant differences

in the abundance and size distribution of plasma EBV DNA

between NPC and non-NPC individuals. These findings have

informed the development of a second-generation NPC screening

method, which improves diagnostic performance. This approach

enables single-point testing without the need for follow-up blood

samples, greatly simplifying screening and facilitating large-scale
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population-level implementation (74). Early detection enhances

treatment outcomes, and widespread screening in endemic

regions could lead to earlier diagnoses, reduced mortality, and

improved patient quality of life. Despite its promise, EBV DNA

testing has limitations. Low-volume NPC cases may evade

detection, resulting in false negatives. Therefore, its use as a

screening tool, even in endemic areas, requires caution. Patients

missed during screening might not receive the staging or treatment

benefits afforded to those testing positive (75). Ongoing research is

essential to safely exclude NPC in clinical settings. Advances in

ctDNA testing technologies and comprehensive clinical trials are

critical to improving early detection rates and optimizing outcomes

for NPC patients.
5.2 Guidance for treatment and prognostic
evaluation

ctDNA detection has emerged as a potential valuable tool in

managing NPC, significantly enhancing risk stratification and

enabling precise evaluation of treatment responses. This technology

provides critical information for early clinical intervention and

supports the personalization and optimization of NPC therapies

(76). For example, the Matched WBC Genome sequencing

Independent CtDNA profiling (MaGIC) version 2 accurately

predicts chemotherapy sensitivity in NPC patients using a single

liquid biopsy collected prior to initiating standardized treatment (77).

Additionally, ctDNA sequencing can reproduce tumor tissue exome

sequencing, while peripheral blood ctDNA offers a non-invasive

alternative for treatment decision-making in patients who cannot

or choose not to undergo tissue biopsy (78). Combined assays, such

as oral brushing combined with plasma EBV DNA detection, further

enhance sensitivity and negative predictive value without

compromising specificity in detecting local NPC recurrence (71). A

large-scale cohort study by Jiawei Lv et al. used qPCR to track

circulating free EBVDNA (cfEBVDNA) in NPC patients throughout

treatment. The study demonstrated that dynamic cfEBV DNA

changes reflect tumor clone behavior and provide real-time risk

assessments, highlighting ctDNA’s potential as a biomarker for

therapy guidance and monitoring (79). As ctDNA detection

technology advances, it is poised to become a standard tool in

comprehensive NPC management.

Beyond NPC, ctDNA detection shows great potential in

managing other cancers, particularly non-small cell lung cancer

(NSCLC). Commercial ctDNA detection kits are now available for

monitoring NSCLC patients (33). In colorectal cancer, advancements

in analyzing ctDNAmethylation and fragmentomics, combined with

classification models, enable highly accurate differentiation of blood

samples from colorectal cancer patients and healthy individuals,

facilitating early detection (80). Additionally, ctDNA analysis can

quantify circulating tumor fraction (TF), serving as a tumor-

independent prognostic marker (81). Despite its promise,

integrating ctDNA detection into clinical oncology practice

presents challenges. These include determining optimal sampling

time points, setting variant allele frequency (VAF) thresholds, and
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addressing other technical and clinical complexities. Innovative

clinical trials are essential to expand the scope of plasma ctDNA

analysis beyond treatment selection. Nonetheless, ctDNA detection

holds significant potential to personalize cancer treatments and

improve patient outcomes across multiple cancer types (82).

To better understand the behavior of cancer cells and their

responses to drugs, and to more effectively introduce ctDNA testing

technology into clinical practice, pre-clinical models are of great

significance in facilitating this process. Preclinical models mainly

include in-vivomodels and in-vitromodels. In-vitromodels, such as

in-vitro cell line and organoid banks, have the advantages of easy

operation and low cost. Some types can also retain cell

characteristics and achieve high-throughput screening. However,

these models are insufficient in mimicking the tumor

microenvironment, suffer from problems of heterogeneity and

insufficient representativeness. In-vivo models, such as patient-

derived xenograft (PDX), patient-derived organoid (PDO), CTC-

derived xenograft (CDX), and zebrafish models, can simulate tumor

heterogeneity and be used to study disease progression and

construct disease models (83–85). Currently, the development of

patient-derived models (such as PDX and PDO) has facilitated the

research of liquid biopsy in aspects like the exploration of tumor

biological behavior, genomic analysis, and drug testing. Studies

have demonstrated that the ctDNA levels in the plasma of PDX

models can mirror the tumor burden represented by the tumor

volume across diverse cancer types. Moreover, PDX models provide

a more straightforward and efficient approach to test potential drug

targets unveiled by ctDNA sequencing results and to observe

treatment effects. Additionally, the PDO model is utilized for

high-throughput drug screening, offering an efficient platform for

assessing drug efficacy, particularly for patients receiving

neoadjuvant therapy. Analyzing ctDNA within PDX and PDO

models aids in the discovery of biomarkers and the monitoring of

tumor burden. Significantly, the results of ctDNA research in

patients and those from derived models can be mutually

explanatory and verifiable. Specifically, patient-derived models

can complement the analysis of ctDNA in human blood samples

(84, 86). In the case of head and neck cancers, preclinical research

can leverage NGS and innovative technologies, coupled with the

continuous refinement of in-vivo models. This enables the

acquisition of genomic and multi-omics profiles, the simulation of

the natural tumor microenvironment and its drug response, thus

enhancing and validating personalized treatment strategies (83). In

the future, integrating different research systems will enable us to

deeply understand the mechanisms of cancer development at

various levels and accelerate the clinical application of liquid

biopsy biomarkers.
6 Conclusion

The detection of ctDNA through mutation-based assays

depends primarily on factors such as the quantity of tumor-

derived DNA molecules in the sample, the diversity and clonality
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of cancer cell alterations, the ctDNA fraction, and the assay’s

analytical sensitivity. Technological advancements have focused

on optimizing these parameters (5) and improving pre-analytical

workflows to maximize the recovery and quality of ctDNA. Key

areas of refinement include specimen type, collection tube selection,

centrifugation protocols, storage conditions, and ctDNA extraction

methods (10, 18). Currently, ctDNA detection is widely used to

analyze tumor biology and supports tumor screening, diagnosis,

monitoring, and prognosis assessment. However, it cannot yet

replace pathological biopsy, the gold standard for tumor

diagnosis. Standardizing blood collection and plasma isolation

procedures is a crucial step toward clinical application, alongside

establishing regulatory frameworks to validate ctDNA as a

biomarker in clinical trials. Ongoing research is needed to

develop innovative and effective methods for the comprehensive

diagnosis, treatment, and management of tumors.
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