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Introduction: The colony forming assay (CFA) stands as a cornerstone technique

for evaluating the clonal expansion ability of single cancer cells and is crucial for

assessing drug efficacy. However, traditional CFAs rely on labor-intensive,

endpoint manual counting, offering limited insights into the dynamic effects of

treatment. To overcome these limitations, we developed an Artificial Intelligence

(AI)-assisted automated CFA combining time-lapse microscopy for real-time

tracking of colony formation.

Methods: Using B-acute lymphoblastic leukemia (B-ALL) cells from an E2A-PBX1

mouse model, we cultured them in a collagen-based 3D matrix with cytokines

under static conditions in a low volume (60 µl) culture vessel and validated its

comparability to methylcellulose-based media. No significant differences in final

colony count or plating efficiencywere observed. Our automated platform utilizes a

deep learning and multi-object tracking approach for colony counting. Brightfield

images were used to train a YOLOv8 object detection network, achieving a mAP50

score of 86% for identifying single cells, clusters, and colonies, and 97% accuracy for

Z-stack colony identification with a multi-object tracking algorithm. The detection

model accurately identified the majority of objects in the dataset.

Results: This AI-assisted CFA was successfully applied for density optimization,

enabling the determination of seeding densities that maximize plating efficiency

(PE), and for IC50 determination, offering an efficient, less labor-intensive method

for testing drug concentrations. In conclusion, our novel AI-assisted automated

colony counting platform enables automated, high-throughput analysis of colony

dynamics, significantly reducing labor and increasing accuracy. Furthermore, it

allows detailed, long-term studies of cell-cell interactions and treatment responses

using live-cell imaging and AI-assisted cell tracking.
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Discussion: Future integrationwithaperfusion-baseddrugscreening systempromises

toenhancepersonalizedcancertherapybyoptimizingbroaddrugscreeningapproaches

and enabling real-time evaluation of therapeutic efficacy.
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Highlights
• The study introduces an AI-assisted, automated CFA that

integrates time-lapse microscopy-based drug screening for

dynamic, real-time insights into treatment effects.

• The AI model, trained on brightfield images, achieved high

accuracy in colony identification, with promising results for

real-time analysis of B-ALL cells.

• This innovative approach optimizes drug screening processes

and supports personalized cancer therapy development.
1 Introduction

A colony-forming assay (CFA) is a type of cell survival assay that

measures the ability of a single cancer cell to grow into a colony and

have an unlimited ability to expand. This proliferative capacity of

cancer cells can be used to identify the potential of the cell to form

cancer and relapse (1, 2). Hematopoietic cancer cells, such as leukemia

cells, exhibit diverse growth properties in vitro. These cells can grow in

either liquid culture or semi-solid media depending on their

characteristics. Healthy hematopoietic progenitor cells, in contrast,

can grow in semi-solid media enriched with cytokines but do not

proliferate in liquid culture. Similarly, primary leukemia cells from

patients typically grow in semi-solid media, although in rare cases,

they may also grow in liquid culture (3). Creating a microenvironment

that promotes self-renewal without inducing differentiation is also

difficult. The precise combination and concentrations of cytokines are

critical but hard to optimize. Moreover, the natural bone marrow

microenvironment is complex, involving stromal cells, extracellular

matrix components, and signaling molecules. Reproducing this in

vitro is challenging. Therefore, the choice of culture medium and

supplements is crucial in the expansion of these cells ex-vivo (4, 5).

Traditional CFA is performed in a very labor-intensive manual way

where the cells are seeded in a 6-well plate embedded in a semi-solid

medium such as methylcellulose supplemented with necessary

cytokines and nutrients. One of the main applications of CFA is to

perform screening of potential drugs with anti-tumor activity (6–8). In

drug screenings, the antitumor agents are applied to the cells at the

time of seeding and the cells are allowed to form colonies over 7-10

days (9). Therefore, it is also an important technique in estimating

drug inhibitory effect (IC50) which is defined as the concentration of a
02
drug required to inhibit the growth of colonies by half (8, 9). This

dose-response curve allows us to determine the lowest concentration

which has inhibitory effects and therefore less toxicity when

administered in patients. Moreover, CFA is also used to measure

biological damage to the cells after ionizing radiation treatment (10).

An arbitrary threshold is set for the definition of a colony (more

than 15 cells). At the end point, the number of colonies is counted

manually under a microscope, and parameters such as plating

efficiency (PE) or survival fraction (SF) are evaluated to assess the

efficiency of the assay (11). PE is calculated as the number of

colonies formed at the final timepoint divided by the number of

cells initially seeded, while SF is determined by dividing the number

of colonies formed after treatment by the number of cells seeded

and the PE.

Although a powerful tool to measure cell proliferative ability

and to screen for the effectiveness of chemotherapy drugs, this

method has many limitations. The availability of large amounts of

samples is needed to seed 6-well plates and many plates to screen

multiple drugs. Furthermore, it is extremely cumbersome to count

the colonies under the microscope manually, and often individual

biases make it complicated to obtain consistent results. Evaluating

the colonies at the endpoint does not take into account the response

of the cells to the drugs over time. Therefore, tracking not only

colonies but also single cells and clusters over time provides a

comprehensive understanding of proliferation rates of different

cells, clonogenic potential, and resistance mechanisms (9, 11).

Automated CFA using high-throughput methods, such as

conducting the assay in a 96-well microplate with fluorescence

microscopy, presents a significant improvement over the traditional

approach (12). The Agilent BioTek Cytation 5 cell imaging multi-

mode reader, with its wide field of view, is particularly advantageous

as it allows for efficient screening in a 96-well format, saving

considerable time and resources. However, this method relies on

staining cells with crystal violet or fluorescent dyes to visualize

colonies, which introduces some limitations (13). Specifically, it

does not allow for the tracking of live cells over time, thereby failing

to capture the dynamic nature of colony formation. This lack of

real-time monitoring could overlook crucial aspects of cellular

behavior, particularly how colonies evolve and respond to

treatments across different time points. Several AI-driven colony

counting systems exist, such as Axion Biosystems’ Omni platform,

which integrates live-cell analysis with an AI-powered clonogenic
frontiersin.org
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assay module. This system enables the automated evaluation of

parameters such as PE and SF, reducing manual labor while

increasing accuracy and reproducibility (7, 8, 11). However,

current AI-based systems often have limitations, including high

costs associated with proprietary microscopes and restricted plate

formats, as is the case with Omni, which only supports 6-well plates.

Additionally, many existing solutions are incompatible with pre-

existing lab equipment and with microfluidic platform integration

adding further cost. In a broader context, AI tools such as

convolutional neural networks (CNNs) could be trained on

colony images to improve colony detection and classification

across various experimental conditions (14, 15). Moreover, open-

source platforms like CellProfiler and ImageJ can be integrated with

machine learning models for more flexible, cost-effective solutions.

Additionally, transfer learning techniques, where pre-trained

models can be fine-tuned to new datasets, also hold promise for

improving colony recognition without requiring extensive

computational resources or custom hardware (16–19). Although

manual counting is still considered the gold standard, it is labor-

intensive and can introduce variability and bias due to operator

influence. To address these challenges, recent efforts have focused

on automating cell identification and quantification (20). An

automated colony counting software ideally should reduce the

manual labor when it comes to colony counting, incorporate

automated time-lapse microscopy to acquire as much information

as possible to follow the formation of colonies over time and enable

low-volume culture vessels to address low sample availability.

CFA is routinely used for drug screening and testing combination

therapies in leukemia cells. In these assays, the leukemia cells are

cultured in methylcellulose and exposed to increasing concentrations

of various drugs. Colonies are counted 7-10 days after treatment to

assess the effectiveness of the drugs (21, 22). Moreover, the colonies are

counted at the endpoint which ignores the dynamics of colony

formation over time. Acute Lymphoblastic Leukemia (ALL) is a

hematologic malignancy of the lymphoid lineage that accounts for

25% of all childhood cancers. With multi-agent chemotherapy, the

fatality of pediatric ALL has been reduced by ~90%. In adults, the

response has not been as superior as in pediatric patients.

Nevertheless, immunotherapies like CAR-T cell therapies, and CD-

19 targeted T cell engagers have emerged as new treatment options

specifically in B-cell ALL or B-ALL (23–25). ALL is classified based on

the cell type (immature precursor of lymphoid lineage),

immunophenotyping, and genetic features of the leukemic cells.

When the malignancy arises from a precursor B-cell, it is termed a

B-cell ALL and T-cell progenitor cells derived ALL are termed a T-cell

ALL or T-ALL (26, 27). The E2A-PBX1 fusion gene plays a crucial role

in the development of a specific subtype of B-ALL. This gene is formed

by a translocation between parts of chromosomes 1 and 19 and is

found in approximately 3-5% of pediatric B-ALL cases. In this study,

we aimed to utilize the E2A-PBX1 pre-B-ALL cells from an established

murine model to develop an Artificial Intelligence (AI)-assisted

automated colony forming assay, integrating time-lapse microscopy

and microfluidics-based drug screening to facilitate a time efficient

method to accurately evaluate the effects of combination therapies. To
Frontiers in Oncology 03
ensure compatibility with microfluidic systems, we intend to use

collagen as the matrix which can better mimic the natural in-vivo

microenvironment (3, 22). Our main goal was to reduce labor-

intensive manual counting and to get more accurate insights into

the dynamics of colony formation throughout the experiment with the

help of automated imaging and finally integrating a microfluidics-

based approach to automate drug applications.
2 Materials and methods

2.1 Cell culture

The m159 primary cells used are derived from a population of

B-ALL cells isolated from a mouse model expressing the E2A-PBX-

1 fusion gene (22, 22). The E2A-PBX-1 positive mouse B-ALL cells,

hereafter referred to as m159, were kindly provided by Prof. Dr.

Jesús Duque-Afonso.
2.2 Reagents

For methylcellulose-based CFA, m159 cell suspension in complete

IMDM [cIMDM, Iscove’s Modified Dulbecco’s Medium (Stem Cell)

supplemented with 10% fetal bovine serum (FBS; Gibco), 1x L-

glutamine (Gibco) and 1% Pen Strep (10,000 Units/ml Penicillin,

10,000 mg/ml Streptomycin; Gibco)] containing IL-7 (10 ng/ml, Stem

Cell) was mixed with MethoCult™ (Stem Cell). For collagen-based

CFA, m159 cell suspension in cIMDM containing IL-7 was mixed

with a collagen solution (1.09 mg/ml). This collagen solution was

prepared using Collagen Type I Rat Tail (5 mg/ml, Ibidi) and 1 M

NaCl, 7,5%NaHCO3, andmillipore H2O. For IC50 determination, JQ1

(S7110, Selleckchem), Prednisolone (PRDL, S1737, Selleckchem), and

Daunorubicin (DNR, S3035, Selleckchem) were tested.
2.3 Transitional methodology from
traditional to automated collagen-
based CFA

A density of 50,000 cells/ml of m159 cells were cultured in both

collagen-based and methylcellulose-based media. 60 µl of each cell

suspension was seeded in triplicate in a µ-Slide 15-well 3D (Ibidi)

and incubated in the BioTek Lionheart FX Automated Microscope.

A stage-top incubator system (Ibidi) was coupled to the microscope

to maintain controlled conditions of temperature (37°C), CO2 (5%),

and humidity (95%). Time-lapse images were captured every 12 h

for 4 days. Six regions of interest (ROIs) were analyzed per well, and

brightfield images were acquired at 10x magnification. The absolute

cell number was determined by manually counting single cells,

clusters, and colonies at both the start and end time points. Colony-

forming efficiency (% PE) was calculated as the number of colonies

formed at the end time point divided by the number of single cells at

the start point.
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2.4 Collagen-based CFA for cell
density optimization

Different cell densities of m159 cells (25,000, 50,000, 100,000,

and 150,000 cells/ml) were cultured in a collagen-based medium. In

parallel, 25,000 cells/ml were cultured in a methylcellulose-based

medium as a positive control. Each cell density was seeded in

triplicates at 60 µl per well in a 15-well slide and incubated in the

UC2 Investigator Automated Microscope (UC2i) at 37°C, 5% CO2,

and 95% humidity controlled by the stage top incubator system.

The UC2i microscope was developed in-house in cooperation with

LABMaiTE GmbH & OpenUC2 GmbH. Image acquisition was

performed every 8 h for 5 days and consisted of 25 Z-slices with 30

µm separation, resulting in a total height of 750 µm. Two ROIs were

considered per well and brightfield images were captured at 10x

magnification. Z-stacks of time-lapse images generated were

annotated using Roboflow (28), an annotation tool for ground

truth labeling, with the labels single-cell, cluster, and, compact- and

dispersed-colony. Additionally, any out-of-focus clump of cells that

could become a cluster or colony was labeled as cluster-candidate or

colony-candidate, respectively (Supplementary Figure S1). Once

annotated, the dataset was exported and used for AI model training.
2.5 Automated colony counting using deep
learning & multi-object tracking

The analysis process for counting colony formation on

microscopy Z-stacks consists of two major stages. The first stage

is the localization and classification of objects on a single 2D image

or slice of the Z-stack which results in a list of objects as well as their

class, coordinates, and size of the enclosing rectangle around the

object, per image. We apply the multi-object tracking (MOT)

BOTSort algorithm to merge the slice information along the Z-

stack to form a 2.5D representation of unique objects and their

location (29).

The approach was chosen as colony formation in a 3D culture

usually involves scanning along a large vertical range to capture all

colonies growing in different layers of the material. This eliminates

the possibility of merging objects strictly by their x and y location as

this could combine multiple colonies into a single detection. Multi-

object tracking is usually applied in the temporal dimension where

the spatial movement of objects is tracked and objects are likely to

disappear or be occluded occasionally and therefore have to be re-

identified but not confused with other objects traveling across the

same location in the meantime. This domain can be easily

reformulated to fit the need for tracking objects along a Z-stack

as similar events such as positional drift, out-of-focus, or occlusion

by another object provide an equal challenge here.

Given the substantial volume of data generated per imaged

position and the large number of unique positions captured in each

experiment, we decided on a real-time object detection model,

specifically the YOLOv8-m model provided by the ultralytics

library (30). YOLOv8 is a popular, efficient, and powerful Deep

Convolutional Neural Network that can perform real-time

bounding box detection and instance segmentation tasks. We
Frontiers in Oncology 04
attempt to keep the computational cost of the analysis process

low to keep this solution accessible for consumer-level hardware

and preserve reasonable analysis runtime for a full experimental

analysis of the 11520 image slices per chip in these experiments.

Real-time models usually sacrifice accuracy for faster inference

speed which is why we expect a lower performance compared to

larger but slower models. This work however investigates the

feasibility of the method in general which can be easily adapted

to incorporate a different model once its applicability has

been shown.

Individual object detections on each independent slice of a stack

are combined into trajectories using the BOTSort tracking

algorithm. Classification of a complete track is done by taking the

maximum of all classes present in the trajectory as class IDs are

ordered hierarchical in terms of importance or relevance, i.e.

candidates (not relevant unless actual class detected), cells (a

subset of following classes), cluster (consisting of cells, a subset of

a colony), colony (extended definition of a cluster). A typical

trajectory starts with an object being recognized as a candidate

first since by definition these are objects that are out of focus (and

therefore not reliably classifiable) but their shape and size allow the

hypothesis that a larger, relevant object will come into focus. It is

followed by one or multiple cluster or colony detections after again

moving out of focus and becoming a candidate again. This approach

provides reliable classification as multiple focal planes are

considered in the classification procedure as long as the true class

is at least detected in one slice of the stack.

The detector model was trained on a dataset of 82 microscopy

images (4024x3036 pixels) containing 2.732 annotated objects

across 4 distinct classes: candidate objects, individual cells, cell

clusters, and colonies. Due to ambiguity and under-representation

of the cluster-candidate, colony-candidate as well as dispersed- and

compact colony classes in the original dataset, we decided to

combine these into the candidate and colony classes respectively.

Each training image was augmented to produce 2 additional images

to enhance the robustness and generalization of the model. The

choice of augmentation transformations included 90-degree

rotations, random cropping (0-25% zoom), random rotations

(-45° to +45°), brightness adjustments (± 15%), exposure

modifications (± 5%), and Gaussian blur up to 3.6 pixels,

resulting in 246 training images. In addition, 29 images have been

held out from the training data and augmentation and are used to

evaluate the detector performance after the hyperparameters for the

detection and tracking have been jointly optimized using the

Optuna framework (31). We optimize the parameters at the same

time as the tracking behavior heavily depends on what kind of

detections are generated by the upstream model. Note that the used

hyperparameters of the detector (confidence, NMS threshold, and

runtime augmentations) only alter the inference behavior but the

underlying trained model will remain the same.

Separately, five Z-stacks (19 slices per stack, time points 8 and

10) taken from existing experiments have been annotated using

CVAT with MOT annotations to perform and evaluate the tracking

procedure (32). Each track was assigned the proper class using the

maximum operator according to the previous definition. To reduce

the annotation effort, only cluster and colony classes have been
frontiersin.org
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annotated as these are the primary classes considered in this work

and following experiments. The python library pymotmetrics was

used to evaluate the tracking output and compute the necessary

MOT scores (33). Optuna was used to jointly optimize the YOLOv8

detection and BOTSort hyperparameters for 100 iterations on one

of the five annotated Z-stacks. The product of the IDF1 score and

percentage of objects tracked (mostly-tracked and partially tracked,

relative to total object count) was used as the optimization objective.

We aim to maximize this objective and include the tracked

percentage metric to emphasize recall of the model over precision

as consistent annotation of in-focus vs. out-of-focus in this setting

turned out to be very challenging. Hyperparameters and details for

the training of the YOLOv8 model can be found in Supplementary

Figure S2. The final optimized parameters for both YOLOv8

inference and BOTSort which were used for the analysis of the

biological results can be found in Supplementary Figure S3.
2.6 Collagen-based CFA for
IC50 determination

A 5-point drug titration was set up as follows. For JQ1, PRDL,

and DNR, a 10x dilution was prepared from the stock in cIMDM,

followed by 1:5 serial dilutions. The tested concentrations were 500

nM, 100 nM, 20 nM, 4 nM, and 0.8 nM for JQ1, 125 nM, 25 nM, 5

nM, 1 nM, and 0.2 nM for PRDL, and 25 nM, 5 nM, 1 nM, 0.2 nM,

and 0.04 nM for DNR. m159 cells (100.000 cells/ml) were

resuspended in Megacult™(Stem cell)with IL-7 and then mixed

with collagen solution and the corresponding 10x dilution of each

drug to achieve a 1x final concentration. Controls include m159

cells mixed with dimethyl sulfoxide (DMSO, 1:1000, Sigma) as

negative control and with cIMDM as an untreated (UT) control.

JQ1, PRDL, DNR, and control groups were all tested in the same

experiment using a 4-slide adapter (Ibidi) coupled to the UC2i

microscope. Each slide contained triplicates of each dilution/

condition per drug. Image acquisition was performed every 12 h

for 5 days and consisted of 20 Z-slices with 30 µm separation,

resulting in a total height of 600 µm. Two ROIs were considered per

well and brightfield images were captured at 10x magnification.

Data were normalized to the DMSO control. The IC50 was

calculated by fitting a sigmoidal dose-response curve to the

normalized total number of colonies and clusters.
2.7 Statistical analysis

Raw data from the AI-detection model was further processed

and statistical analyses were performed using GraphPad Prism 8

software (version 8.4.3). Each experiment was performed in

triplicate. For the comparison between methylcellulose and

collagen-based media, data of cell, and cluster counts were

analyzed using a two-way ANOVA Results 3.1, Figures 1A–C,

while a Student’s t-test was used to analyze colony counts and PE

data Figure 1C. In the cell density experiments shown in Results 3.3,

Figures 2A–F, comparisons were made using a two-way ANOVA to
Frontiers in Oncology 05
assess the effects of seeding cell density and time, while one-way

ANOVA was used to analyze differences in PE Figure 2G. P values <

0.05 were considered significant. For the IC50 determination

experiments (Results 3.4, Figure 3), the dose-response curve was

made by fitting a nonlinear curve (sigmoidal, 4-parameter model) of

the normalized colony and cluster count on a logarithmic scale for

JQ1 and PRDL, and a simple linear regression curve of the

normalized colony and cluster count on a logarithmic scale was

used to estimate IC50 for DNR. Results are displayed as each

individual experiment or as the mean of the three experiments

with the corresponding standard error of the mean (SEM).
3 Results

3.1 Establishing a collagen-based CFA

To develop a robust, user-friendly, and microfluidics-

compatible CFA, the traditional methodology was modified by

specifically replacing the methylcellulose medium with collagen

for cell growth and significantly reducing the volume used. The

m159 cells were cultured in collagen-based media supplemented

with Megacult and IL-7, seeded in a 15-well slide, and incubated

under controlled conditions in the microscope at 37°C with 5% CO2

and 95% humidity. Images were acquired every 12 h, consisting of

10 Z-slices with 10 µm separation, covering a total height of 100 µm.

Single cells, clusters, and colonies within 6 ROIs were manually

counted at the start and after a 4-day incubation. Only in-focus Z-

stacks were included to avoid overcounting. While images were

taken at 12-h intervals, data analysis was focused on the initial and

final time points.

To assess the efficiency of colony formation in a collagen-based

medium in a low-volume culture vessel and to confirm its

comparability to a methylcellulose-based medium, the absolute

cell counts and their capability to proliferate in both media were

evaluated. For single cells, no significant effect of the matrix, time, or

interaction between these factors was detected (pmatrix = 0.1375,

ptime = 0.2740, and pinteraction = 0.5176). Accordingly, no differences

were observed in the total number of single cells grown in collagen

compared to methylcellulose medium at any time point Figure 1A.

Clusters, defined as groups of 2-14 cells, showed a significant effect

of time (ptime = 0.0081), but neither the matrix nor interaction had a

significant effect (pmatrix = 0.0570, and pinteraction = 0.0962)

Figure 1B. Colonies, defined as groups of more than 15 cells, were

only analyzed at the final time point since only single cells or small

clusters were present initially. No significant differences were found

in the number of colonies formed in the collagen-based medium

compared to the methylcellulose-based medium (p = 0.4304)

Figure 1C. Lastly, the colony-forming efficiency (PE) after 4 days

was similar in both matrices (p = 0.5640) Figure 1D. These results

demonstrate the efficiency of scaling down from the traditionally

used CFA volume of 3 ml down to the 60 µl volume used in these

experiments. Indeed, the ability of B-ALL cells to grow and form

colonies in a collagen matrix was not affected, making it an excellent

option for use in combination with microfluidics.
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3.2 Automated colony counting using deep
learning & multi-object tracking

We evaluated both, colonies and clusters together as well as

colony and cluster tracking individually to assess the class-based

performance (only ground truth and detections for specific class

considered). We averaged the results per evaluation across the four

tracking datasets which have an average unique object count of 96.5

clusters and 28 colonies. Averaged and individual dataset results can

be seen in Table 1. Note that the dataset with id 126 is not present as

this dataset was used for the hyperparameter optimization. We

focused on the IDF1 score, which is the F1-Score adapted to the

MOT scenario, as well as the mostly- and partially-tracked metric,

which measures how many of the unique objects have been detected

by the pipeline. Similarly, the mostly-lost metric reflects how many

objects have not been tracked or less than 20% of their trajectory.

We found an IDF1 score of 0.752 with 61.2% of objects tracked

more than 80% of their trajectory (mostly-tracked), 28.2% between

80% and 20% (partially-tracked) and 10.6% failed to be recognized

by our system (mostly-lost). The majority of the missed objects

appeared to be smaller clusters caused by inconsistencies in the

annotations. Out of the total of 112 colonies present in the dataset,
Frontiers in Oncology 06
only 3 are missed by the pipeline (2.7%). These misses can be

explained by large colonies that span across a wide range of focal

planes, exposing different portions of the colony in focus at each

step and therefore the detection model recognizing only portions of

the colony in contrast to the complete colony including the out-of-

focus parts (Figure 4). These large changes in coordinates cause the

tracker to not be able to associate the objects, therefore failing to

combine them into a single trajectory. Similarly, the partial

detection of colonies can also lead to a recognition of a large

colony as multiple smaller sub-colonies, resulting in an

overestimation of colony count. Both issues should be addressable

by revisiting the annotation criteria of colonies and including out-

of-focus parts to get more consistent large colony detection.

Furthermore, we observed that the general definition of cluster

(15 cells or less) vs. colony (more than 15 cells) generally seems to

be picked up well by the model but occasionally sees

misclassifications towards the decision boundary.

We also noted that our experiment shows no ID-switching

errors, indicating that the tracker is capable of re-associating objects

very reliably which is important as ID switches would cause a single

true object to be counted multiple times. Overall, a qualitative

inspection yielded a reliable tracking and detection mechanism with
FIGURE 1

Efficiency of collagen-based CFA. (A) Absolute cell count, (B) clusters, and (C) colonies grown on collagen- and methylcellulose-based media and
manually counted at baseline and after 4 days of incubation. (D) Plating efficiency (PE) in collagen and methylcellulose-based media after 4-day
incubation. Individual results from each independent experiment (n = 3) are plotted alongside the mean ± SEM.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1520972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Klett et al. 10.3389/fonc.2025.1520972
occasional errors in edge cases. An example of the pipeline output

can be found in Figure 5.

With optimized parameters for the detector and the tracking

algorithm, we can additionally evaluate the detector on the initial

manual annotations to assess the frame-by-frame classification

performance. In contrast to the tracking datasets, annotations for

candidates and single-cell classes are also present and the

classification performance for these objects can also be assessed.

We found that the evaluation results on the 29 ground truth

images confirm the results seen in the tracking evaluation. The

detector achieved a mean Average Precision (mAP) of 0.668 at an

Intersection over Union (IoU) threshold of 50% across all classes.

Table 2 shows that performance varied considerably between

classes, with colonies showing the highest mAP50 of 0.861,

followed by clusters (0.722), cells (0.697), and candidates (0.392).
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The lower scores for clusters and cells can most likely be explained

by inconsistencies in the ground truth due to the different focal

planes and subjective decisions on which potential object to

annotate and which one is too far out of focus. The confusion

matrix shown in Figure 6 supports this by revealing a large number

of supposedly false positives for single cells and clusters, which

upon inspection turn out to be unlabeled objects, either due to the

focus conditions or due to the object being enclosed by a larger

object (e.g. cells within a cluster annotation). Only in rare cases

actual false positives, e.g. detecting debris are seen which can be

explained by limited examples of debris in the training dataset.

Overall, the results show that the detection model can correctly

recognize the majority of objects in the dataset although with

confusion in the classification caused by overlapping or

inconsistent class definitions.
FIGURE 2

Effects of seeding cell density on cell, cluster, and colony counts in a collagen-based CFA. (A) Absolute cell count, (B) cluster, and (C) colony over
time for varying initial seeding densities (25,000, 50,000, 100,000, and 150,000 cells/ml) enumerated by the AI-detection model. Results are
presented as the mean ± SEM from three independent experiments. (D) Absolute counts of single cells, (E) clusters, and (F) colonies at the final time
point (day 4) across the different cell densities. Individual results from independent experiments are presented, along with mean ± SEM. Statistically
significant differences between groups are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (G) PE across different seeding
cell densities after 4 days of incubation. Individual results from independent experiments are presented, along with mean ± SEM.
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3.3 AI-assisted CFA for cell
density optimization

After establishing the collagen-based CFA, we aimed to utilize

this setup to optimize and select the most suitable cell seeding

density that leads to the most optimal PE, ensuring consistent and

reliable colony formation results. Furthermore, the initial seeding

density mustn’t lead to overcrowded colonies which makes it

difficult to track and count manually as well as for the AI

detection model.

The detection model recognized, counted, and tracked single

cells, clusters, and colonies throughout the time. For single cells, the

absolute count remained consistent over time across all tested

seeding densities. A significant effect of cell density on cell

number was observed, but there was no effect of time or the

interaction between both factors (pcell density < 0.0001, ptime =

0.8253, and pinteraction > 0.9999) Figure 2A. By the final time

point, after 8 days of incubation, the number of single cells in the

lowest density group (25,000 cells/ml) was significantly lower than

in the 50,000, 100,000, and 150,000 cells/ml groups (p = 0.0181, p =

0.0366, and p < 0.0001, respectively) Figure 2D. For clusters, an

increase in the absolute count was observed starting at 12 h of

incubation, after which the number remained constant until the last

time point in all evaluated groups. A significant effect of both cell
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density and time on the number of clusters was detected, but not of

their interaction (pcell density < 0.0001, ptime < 0.0001, and pinteraction
> 0.7832) Figure 2B. At the final timepoint, although the total

number of clusters formed in the 25,000 cells/ml group was lower

than in the other groups, it was only significantly different from the

100,000 and 150,000 cells/ml groups (p = 0.0237, and p < 0.0001,

respectively). While the total number of clusters in the 150,000

cells/ml group was higher than in the other groups, it was only

significantly different from the 50,000 and 100,000 cells/ml groups

(p = 0.0039, and p = 0.0191, respectively) Figure 2E. For colonies, an

increase in the absolute count was observed after 3 days of

incubation across all evaluated groups. A significant effect of both

cell density and time on colony number was detected, though there

was no significant interaction between these factors (pcell density <

0.0001, ptime < 0.0001, and pinteraction = 0.0547) Figure 2C. At the

final time point, although the mean number of colonies in the

25,000 cells/ml group was lower than in the other groups, it was

only significantly different from the 100,000 and 150,000 cells/ml

groups (p = 0.0419, and p = 0.0003, respectively). Similarly, while

the mean number of colonies in the 150,000 cells/ml group was

higher than in the other groups, it was only significantly different

from the 50,000 cells/ml group (p = 0.0017) Figure 2F. Finally, no

significant differences were observed in PE among the groups tested

(p = 0.8931) Figure 2G. As a result, the key criterion for selecting the
FIGURE 3

IC50 determination using data generated by the AI software. Sigmoidal curves using a 4-parameter nonlinear model for (A) JQ1 and (B) PRDL and
linear regression for (C) The total number of colonies and clusters was normalized to the DMSO control and the concentrations were represented in
logarithmic scale. Results are presented as the mean ± SEM from three independent experiments.
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optimal seeding density was based on colony visualization and

ensuring adequate space for cells to grow. Based on the findings, we

determined that 100,000 cells per well is the optimal seeding density

for future experiments. Manual colony counting would yield only a

final count for each density, making the process both time-

consuming and labor-intensive. The implementation of AI-

assisted CFA reduced the time and effort required to analyze a

large number of samples, while also providing deeper insights into

colony formation dynamics, including single-cell and cluster counts

over time.
3.4 AI-assisted CFA for IC50 determination

The applicability of the AI-assisted CFA developed was further

evaluated by assessing the ability of B-ALL cells to form colonies

and clusters after treatment and determining the IC50 for different

drugs. Furthermore, the effects of the individual drugs on the

number of cells, clusters, and colonies over time provide insights

into the effectiveness of the treatments. To begin, IC50 values for

JQ1, DNR, and PRDL were established using the traditional CFA

with manual colony counting as a reference (data not shown). Based

on these values, five concentrations within the upper and lower IC50

range were selected to evaluate the performance of the detection

model to detect and track single cells, clusters, and colonies over

time. The AI software accurately detected the three categories

generating raw data that included the absolute number of single

cells, clusters, and colonies for each ROI, time point, and Z-plane

across all wells. Consequently, single-cell, cluster, and colony counts

were analyzed over time for all tested drug concentrations and

control groups. The absolute cell count followed a consistent
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pattern, remaining stable over time across all evaluated groups,

including those treated with JQ1, PRDL, and DNR, as well as the

control groups (DMSO and UT) (Figure 7). Regarding cluster

formation, the absolute cluster count remained constant over

time in cells treated with higher concentrations of JQ1 (500 nM

and 100 nM), PRDL (125 nM, 25 nM, and 5 nM), and DNR (25

nM), whereas it increased over time in cells treated with lower

concentrations of JQ1 (20 nM, 4 nM, and 0.8 nM), PRDL (1 nM and

0.2 nM), and DNR (5 nM, 1 nM, 0.2 nM, and 0.04 nM)

(Figures 8A–C, respectively). In the control groups, both UT and

DMSO-treated cells showed a steady increase in the absolute cluster

count, following a similar pattern Figure 8D. In terms of colony

formation, it was completely inhibited in cells treated with higher

concentrations of JQ1 (500 nM and 100 nM), PRDL (125 nM, 25

nM, and 5 nM), and DNR (25 nM), as the absolute colony count

remained at zero over time. In contrast, the absolute colony count

increased after approximately 60 h of incubation in cells treated

with lower concentrations of JQ1 (20 nM, 4 nM, and 0.8 nM),

PRDL (1 nM and 0.2 nM), and DNR (5 nM, 1 nM, 0.2 nM, and 0.04

nM) (Figures 9A–C, respectively). Similarly, for the control groups

(both UT and DMSO-treated cells), colonies began to form after

approximately 60 h of incubation, with the absolute colony count

steadily increasing over time Figure 9D.

For the determination of IC50, absolute counts for each ROI and

Z-plane at the final time point across all conditions were estimated

using the presented AI-detection model. In this context, the total

number of colonies and clusters was considered to optimize the

model’s fit and accurately estimate the IC50, thereby reducing the

standard deviation and improving the r2 value. The estimated IC50

values were 90.71 nM for JQ1, 4 nM for PRDL, and for DNR 13,22

nM (Figure 3).
FIGURE 4

Demonstration of focus-related challenges for the detection and tracking mechanism. Boxes in red show ground truth annotations, and blue display
model predictions. The text represents the class provided by ground truth and model, respectively. (Col, colony; clus, cluster). As the focal plane
progresses along z (left to right), specific parts of the colony are detected and tracked which leads to rapid changes in the (center-) location of
the object.
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4 Discussion

Transitioning from a traditional CFA approach to an AI-

assisted automated assay offers numerous advantages, including
Frontiers in Oncology 10
the reduction of labor-intensive manual counting tasks, elimination

of human error, increased throughput, real-time monitoring, and

automated analysis. CFA has long been a foundational technique

for evaluating the effects of various drugs in ALL. In this study,

together with our collaborators, we aimed to transform the

traditional approach of CFA for a certain type of murine E2A-

PBX1 B- ALL cells to a more efficient AI-assisted CFA approach

coupled with time-lapse microscopy.

Our first approach was to scale down from a 6-well plate format

to a 15-well slide format, thereby enhancing throughput even with

limited sample quantities. This miniaturization, reducing the

traditional 3 ml requirement in CFA to just 60 µl, not only

preserves the ability of B-ALL cells to grow and form colonies

effectively but also offers a major economic advantage. While not

the primary focus of this study, the reduced volume requirement

could greatly benefit research groups enabling them to conduct

many more tests with the same amount of resources. Moreover, the

small volumes required make it particularly advantageous when

working with limited patient samples, maximizing the use of

precious biological material. This scalability and compatibility

with microfluidic platforms make this method an attractive

option for wider adoption in various experimental setups.

Secondly, we aimed to integrate microfluidics-based approaches

for automated drug application. Therefore, we focused on finding

an alternative to methylcellulose as a semi-solid medium as we

found it to be unsuitable for perfusion-based assays. We tested and

found rat tail collagen to be a good alternative for methylcellulose as

it did not dissolve during perfusion-based assays. Subsequently, we

validated that the scaling down approach and switching to collagen

did not show any significant differences in colony formation. The
FIGURE 5

Example output of the analysis pipeline. Box colors represent
classification output at the current z-index, and text inside the box
represents the unique track ID assigned. Colors represent class (red:
candidate, green: single cell, blue: cluster, yellow: colony).
TABLE 1 Detection & tracking results.

Dataset Class # Objects Mostly tracked Partially tracked Mostly lost idf1 idp idr

Average all 124 76 35 13.25 0.752 0.739 0.770

Average cluster 97 61 23 13.00 0.728 0.692 0.768

Average colony 28 15 12 1.50 0.805 0.850 0.772

123 cluster 91 49 24 18 0.682 0.670 0.695

123 colony 28 15 12 1 0.831 0.927 0.752

123 all 119 64 36 19 0.730 0.746 0.715

124 cluster 103 78 14 11 0.764 0.696 0.847

124 colony 14 14 0 0 0.887 0.839 0.940

124 all 117 93 14 10 0.788 0.719 0.872

125 cluster 80 51 17 12 0.749 0.713 0.789

125 colony 31 10 17 4 0.704 0.800 0.629

125 all 111 62 36 13 0.744 0.751 0.738

127 cluster 112 64 37 11 0.715 0.690 0.739

127 colony 39 21 17 1 0.799 0.835 0.766

127 all 150 85 54 11 0.748 0.739 0.753
fr
MOT scores of the analysis pipeline were evaluated on four MOT datasets after being optimized on a separate dataset using Optuna.
# Objects represent the number of unique objects and their trajectories present in the dataset. The “Average” dataset represents the averaged scores across the four datasets. Mostly and Partially
tracked are considered a successful recognition while Mostly lost indicates untracked objects.
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strategy behind developing an automated CFA involved leveraging

automated time-lapse microscopy to continuously record cell

colony formation over time. These images were then used to train

an AI detection model capable of accurately identifying single cells,

clusters, and colonies, and providing comprehensive analysis of

critical parameters such as PE, which is essential for effective drug

screening. Furthermore, tracking single-cell and cluster counts at

multiple time points, rather than relying solely on endpoint colony

counts as in traditional CFAs, provides a deeper understanding of

cell behavior dynamics, such as differential proliferation rates and

resistance mechanisms. Investigating single cells that persist after
Frontiers in Oncology 11
drug exposure and evade apoptosis could also offer critical insights

for evaluating the efficacy of different therapeutic agents. Given that

time-lapse microscopy enables prolonged observation of cells, it

naturally generates an enormous amount of data. To manage this,

we strategically limited imaging to 2 to 4 ROIs within each well.

Additionally, because the cells are embedded in collagen and grow

in a three-dimensional manner, Z-stacks were employed to capture

the Z-plane, ensuring that the full depth and structure of the

colonies were accurately recorded and analyzed. Roboflow and

CVAT software were used to annotate the images using various

classes including colony and cluster candidates. To ensure accurate
FIGURE 6

YOLOv8 confusion matrix. The confusion matrix of the final object detector was evaluated on 29 test images after hyperparameter optimization was
performed on the tracking datasets. Rows represent class predictions while columns represent true ground truth annotations. Diagonal elements
represent correct predictions while off-diagonal elements represent misclassifications. The number in each entry corresponds to the number of
times this combination of prediction vs. ground truth occurred.
TABLE 2 Object detection evaluation results.

Class Images Instances Precision Recall mAP50 mAP50-95

all 29 1423 0.722 0.594 0.668 0.451

candidate 18 165 0.565 0.236 0.392 0.27

cell 27 742 0.819 0.58 0.697 0.356

cluster 28 431 0.647 0.724 0.722 0.492

colony 22 85 0.855 0.835 0.861 0.685
Evaluation results of the YOLOv8 object detector on the 29 manually annotated test images, separated by class. mAP is the mean Average Precision and represents the average precision between
ground truth and prediction boxes at different overlap thresholds (50%, 50-95%).
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AI model training, it was essential to label all visible objects in the

images, including blurry colonies or clusters that were only in focus

on a different plane.

Our proposed pipeline combines a YOLOv8 object detector

with the BOTSort tracking algorithm to analyze colony formation

in 3D cell cultures. The detector achieves good performance for the

main classes of interest - colonies (mAP50 0.861) and clusters

(mAP50 0.722). Lower performance on candidate objects and

individual cells can be attributed to annotation inconsistencies or

ambiguities rather than model limitations. Our tracker successfully

maintains object identities across focal planes with IDF1 scores of

0.805 for colonies and 0.728 for clusters, with notably zero identity

switches. This indicates that our adaptation of temporal tracking

algorithms to the spatial domain of Z-stacks is effective. The system

shows particular strength in tracking colonies, with on average 95%

of colonies being either mostly or partially tracked.

Colony formation is not purely determined by the number of

cells seeded; it also depends on the proximity and interactions

between cells. This means that simply increasing the number of cells

seeded does not necessarily lead to a proportionate increase in the

number of colonies. Cooperative behavior disrupts the expected

linear relationship between cell seeding and colony formation,

making the clonogenic assay less predictable (34). To determine

the optimal seeding density, various initial densities must be tested,

which increases manual labor. Therefore, we tested the AI detection

model to assess colony formation across different seeding densities

to streamline the process and help identify the ideal conditions for
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accurate results. The preliminary results generated by the AI

software served as a baseline for further downstream analysis.

To further validate the AI model, we performed IC50 as a part of

a drug screening process. Traditionally, this is a cumbersome

process, where the cells are treated with varying concentrations of

drugs and monitored for colony formation and the colonies are

counted manually at the endpoint to provide a relative colony count

between treated and non-treated control samples. We utilized our

automated microscopy and multiplexing approach to screen five

different concentrations of three drugs, alongside a control chip.

This innovative method allowed us to conduct a drug screening that

differs from traditional techniques by enabling the tracking of

individual cells to observe their dynamic responses to the drugs.

Through this approach, we were able to capture the formation of

colonies over time allowing us to capture crucial insights such as

volume, size, and shape of the colonies, that are often overlooked

when using conventional methods that only count colonies at

the endpoint.

Our evaluation of the colony counting software against manual

counts demonstrated Mean Absolute Errors (MAE) of 24 for single

cells, 12 for clusters, and 1 for colonies. These findings align with the

higher performance of the AI detection model in identifying

colonies and lower performance in identifying single cells. The

detection model occasionally misclassified larger single cells as

clusters, leading to a slight overestimation in cluster counts.

Additionally, colonies that were correctly classified at earlier time

points were sometimes reclassified as clusters at later time points.
FIGURE 7

Cell dynamics for different drugs and concentrations in collagen-based CFA over time. Absolute cell counts for m159 cells treated with different
concentrations of (A) JQ1 (500 nM, 100 nM, 20 nM, 4 nM, and 0.8 nM), (B) PRDL (125 nM, 25 nM, 5 nM, 1 nM, and 0.2 nM), (C) DNR (25 nM, 5 nM, 1
nM, 0.2 nM, and 0.04 nM), and (D) control groups, including untreated (UT) and DMSO-treated cells enumerated by the AI-software. Results are
presented as the mean ± SEM from three independent experiments.
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FIGURE 8

Cluster dynamics for different drugs and concentrations in collagen-based CFA over time. Absolute cluster counts for m159 cells treated with
different concentrations of (A) JQ1 (500 nM, 100 nM, 20 nM, 4 nM, and 0.8 nM), (B) PRDL (125 nM, 25 nM, 5 nM, 1 nM, and 0.2 nM), (C) DNR (25 nM,
5 nM, 1 nM, 0.2 nM, and 0.04 nM), and (D) control groups, including untreated (UT) and DMSO-treated cells enumerated by the AI-software. Results
are presented as the mean ± SEM from three independent experiments.
FIGURE 9

Colony dynamics for different drugs and concentrations in collagen-based CFA over time. Absolute colony counts for m159 cells treated with
different concentrations of (A) JQ1 (500 nM, 100 nM, 20 nM, 4 nM, and 0.8 nM), (B) PRDL (125 nM, 25 nM, 5 nM, 1 nM, and 0.2 nM), (C) DNR (25 nM,
5 nM, 1 nM, 0.2 nM, and 0.04 nM), and (D) control groups, including untreated (UT) and DMSO-treated cells enumerated by the AI-software. Results
are presented as the mean ± SEM from three independent experiments.
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The detection model also missed several single cells, leading to

undercounts in this category. These discrepancies may reflect

limitations in our training annotations and variations in manual

counting. By minimizing these sources of human error such as

creating a curated dataset that has been validated by multiple

experts, the AI pipeline holds promise for standardized

reproducible, and unbiased CFA.

Microfluidic devices are advanced platforms that are used as a

way to deliver nutrients or compounds to cells closely mimicking

physiological conditions (35–37). Although they have not fully

replaced animal models, advancements in organoid or 3D cell

culture are paving the way for more sophisticated in-vitro models

to mimic drug treatments in vivo. Microfluidic devices enable

continuous or intermittent perfusion of media containing

nutrients, cytokines, or drugs at a constant flow rate.

In our system, we integrated a microfluidic device with

automated nutrient and drug delivery, using Ibidi perfusion-based

chips that allow cells to be embedded in collagen. Although we were

able to successfully integrate the system, there are still parameters that

need to be optimized to ensure the appropriate microenvironment for

colony growth and formation. Our goal is to validate this approach in

future studies. We expect to demonstrate that, once fully optimized

and combined with AI-assisted colony-forming assays, in vitro

microfluidics-based screening has the potential to revolutionize

therapeutic approaches and advance personalized medicine.

The transition from traditional static assays tomicrofluidic systems

presents significant opportunities but also several challenges that need

to be addressed. One critical aspect is the establishment of microfluidic

conditions, particularly in determining the appropriate drug

concentrations and application frequency. Unlike traditional assays

where the drug remains in a static environment, microfluidic systems

continuously flush out drugs, which can lead to wastage and non-

circulatory dynamics. This necessitates precise calibration to ensure

that drug concentrations are effective while minimizing wastage.

Moreover, the AI detection model we currently employ is capable

of generating raw data, but there is untapped potential in automating

the subsequent analysis and data visualization steps. This

advancement would not only streamline workflows but also enable

more comprehensive, real-time insights into cell behavior during drug

screening. Another advantage of software could be to predict the

colony behavior and suggest an earlier or later endpoint to evaluate the

effect of drugs or provide cell seeding density suggestions.

To date, our efforts have been focused on murine E2A-PBX1 B-

ALL cells and cell lines, but an important future direction involves

expanding the application to patient-derived samples. This would

provide a more clinically relevant understanding of how therapies

function in human cancer cells. Additionally, exploring combination

therapies using this platform could uncover synergies between

different drugs, which are often critical in complex diseases like

cancer. Another area interesting for exploration is the biological

underpinnings of why certain cells fail to form colonies.

Understanding the heterogeneity in colony formation and why

some cells behave differently could provide important insights into

mechanisms of cancer relapse and resistance, offering new targets for

therapeutic intervention.
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5 Conclusions

In conclusion, transitioning from traditional colony formation

assays to an AI-assisted, automated approach offers substantial

advantages in terms of reducing manual labor, increasing accuracy,

and enabling real-time monitoring. This study successfully

demonstrated the feasibility of integrating automated time-lapse

microscopy with AI-driven colony analysis for murine E2A-PBX1

B-ALL cells. By scaling down to a chip format and switching to

collagen as a medium, we achieved comparable results to

conventional methods while enhancing throughput and efficiency.

The AI-assisted system not only automates colony counting but also

provides dynamic insights into cell behavior during drug screening,

capturing critical events like colony splitting. Overall, this innovative

approach has the potential to significantly advance therapeutic

development and personalized medicine, offering a more efficient,

precise, and scalable method for evaluating treatment efficacy. Some

limitations remain, particularly regarding annotation consistency and

edge cases involving overlapping objects or ambiguous class

definitions. In addition, cluster recognition and tracking could be

further improved using additional subclasses or a more consistent

single-cell detection, alleviating the need to combine smaller groups

of individual cells into clusters. Nevertheless, the overall system

demonstrates promising results for automated analysis of colony

formation experiments.
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