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study by using contrast-
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1Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University,
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Chinese Medicine, Nanning, China, 3Department of Ultrasonography, The First Affiliated Hospital of
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Background: The cervical node with necrosis (CNN) is an important poor

prognostic factor for nasopharyngeal carcinoma (NPC) patients. The tumor

microenvironment of the CNN has severely insufficient blood perfusion, thus

leading to hypoxia and reducing the effect of radiotherapy (RT) and

chemotherapy. By using contrast-enhanced ultrasound (CEUS) as a monitoring

method, we conducted this study to assess whether antiangiogenic therapy (AT)

with recombinant human endostatin (RHES) may improve blood perfusion of

the CNN.

Materials and methods: Fifteen NPC patients with CNN were enrolled and

underwent CEUS the day before and day 5 after AT with RHES initiation,

respectively. By analyzing the variations of CEUS parameters of CNN, such as

peak intensity (PI), time to peak (TTP), and mean transit time (MTT) at different

time points, we evaluate the impact of AT with RHES on blood perfusion of CNN.

Results: The PI of day 5 after AT was significantly enhanced compared to the PI of

the day before AT [−44.94 ± 4.72 (dB) vs. −50.33 ± 6.85 (dB), p < 0.001]. The TTP

of day 5 after AT became dramatically shorter than the TTP of the day before AT

[19.48 ± 3.63 (s) vs. 24.19 ± 6.93 (s), p = 0.031]. The MTT of day 5 after AT became

obviously shorter than the MTT of the day before AT [28.08 ± 3.03 (s) vs. 33.76 ±

6.20 (s), p = 0.001].
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Conclusion: These results revealed that the blood volume and the blood flow

velocity in themicrovessels of the CNN increased after AT, indicating that AT with

RHES may improve blood perfusion in the CNN of NPC, thus providing valuable

insights for the clinical application of AT combined with RT and/or chemotherapy

in NPC patients with CNN. Moreover, CEUS as a noninvasive and real-time

monitoring method may be suitable for clinically evaluating tumor blood

perfusion changes.
KEYWORDS
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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common

malignant tumors in East Asia, Southeast Asia, and North Africa

(1). For NPC, intensity modulated radiotherapy (IMRT) combined

with chemotherapy is the primary and most effective treatment,

resulting in significant improvements of the therapeutic effect

compared with the era of two-dimensional radiotherapy (RT) (2).

However, local recurrence and/or distant metastasis after IMRT

occurs in a subset of NPC patients. The risk factors include

advanced clinical staging and not receiving chemotherapy (3). In

addition, the metastatic cervical node with necrosis (CNN) is also a

poor prognostic factor that should be nonnegligible. Recently, Luo

(4) essentially generalized the complex relationship between NPC

cells and the tumor microenvironment (TME), advocating a novel

perspective that NPC should be considered as a complex ecological

disease—a multidimensional spatiotemporal pathological

ecosystem rather than a genetic disease. Through the “Mulberry-

fish-ponds” ecological model, Luo explained the dynamic

interaction and co-evolution between tumor cells and TME. The

pathological ecosystem of NPC, especially the TME of the CNN, has

severely insufficient blood perfusion, thus leading to hypoxia,

making the tumor more aggressive and antagonizing the effect of

RT and chemotherapy, and leading to negative impacts on the

prognosis of NPC (5–7). Several clinical studies have shown that the

addition of antiangiogenic therapy (AT) to RT and chemotherapy

was an effective regimen for advanced NPC (8–10), and the

“vascular normalization” plays a crucial role in optimizing the

synergistic effect of such combination therapy (11, 12).

In a previous study using contrast-enhanced ultrasound (CEUS),

Yang et al. (13) reported that AT with recombinant human

endostatin (RHES) had a vascular normalization effect on NPC

patients and improved the blood perfusion of the primary tumors

in nasopharynx within 5 days. Nevertheless, the CNN had worse

vascular abnormality, whether AT with RHES can improve blood

perfusion of the CNN and alleviate hypoxia, thereby enhancing the

therapeutic effect of NPC patients with CNN, thus necessitating

further research. Consequently, this study aims to utilize CEUS to

observe and analyze the variations in CEUS parameters of the CNN
02
before and after AT with RHES and then explore the impact of AT on

blood perfusion of the CNN and provide evidence supporting AT

treatment in NPC patients with CNN.
Material and methods

Patients

A total of 15 NPC patients diagnosed by histopathology in the First

Affiliated Hospital of Guangxi Medical University from August 2019 to

August 2020 were enrolled in this study. The inclusion criteria were as

follows (1): diagnosed with histopathology-confirmed NPC (2);

without any previous anti-tumor treatment; (3) stage III–IVA NPC

according to the 8th edition of the UICC/AJCC staging system; (4)

metastasis of CNN diagnosed by magnetic resonance imaging (MRI);

(5) Karnofsky scores ≥70; and (6) signed informed consent.

The exclusion criteria were as follows: (1) age <18 years or >70

years; (2) allergic to SonoVue (Bracco, Milan, Italy); (3) not suitable

for MRI; (4) cervical vertebra injury; (5) infection or rupture in neck

skin; (6) cardiovascular right to left shunt; (7) severe cardiac

arrhythmias; (8) myocardial infarction; (9) severe pulmonary

hypertension; (10) hemorrhagic tendency; (11) pregnancy or

lactation; and (12) mental disorder.

This study was carried out in accordance with the Declaration

of Helsinki of 1975, revised in 2008. Ethical approval (no. 2018[KY-

E-042]) was obtained from the medical ethics committees of the

First Affiliated Hospital of Guangxi Medical University. All patients

signed informed consent and all patient details were de-identified.
Selecting the target CNN

Each patient enrolled in this study underwent dynamic contrast-

enhanced MRI of the nasopharynx and neck prior to the treatment,

and some specific lymph nodes were selected as the target CNN

(tCNN). The MRI features of CNN were as follows (14): The central

region of the lymph node showed high signal on the T2-weighted

sequence and low signal on the T1 enhancement sequence, with or
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without marginal reinforcement (Figures 1A, B). If multiple CNNs

were present in the same patient, the one with the largest proportion

of necrotic area (i.e., on the axial T2 sequence, the long diameter of

the necrotic area divided by the long diameter of the TLNs) should be

selected (Figures 2A, B).
AT with RHES

All patients received AT with RHES (solubilized in 250 mL of

0.9% normal saline) intravenously with a dosage of 7.5 mg/m2 per

day for 5 days prior to RT or chemotherapy.
CEUS and parametric analysis

All patients underwent CEUS the day before and day 5 after AT

with RHES initiation, respectively. To ensure the accuracy and

consistency of CEUS, the following principles were adhered to (1):

all examinations were performed by a single sonographer with over

5 years of experience in CEUS; (2) all examinations were conducted

using a single Aplio 500 Ultrasound System (Toshiba, Tokyo,

Japan); and (3) SonoVue (Bracco, Milan, Italy) was used as the

ultrasound contrast agent.

The procedural steps for CEUS were as follows: (1) body position:

the patient was positioned supine on the examination bed with hands

resting naturally at their sides, and the head turned towards the

opposite side of the TLN, ensuring that the opposite auricle was in

close proximity to the bed surface. (2) Localization of tCNN: utilizing

MRI images as a reference, two-dimensional ultrasound was
Frontiers in Oncology 03
performed to accurately locate the tCNN (Figures 3A, B). (3)

Recording of parameters: detailed documentation of body position,

probe angle, initial location, and depth of tCNN during first CEUS

procedure, along with other relevant technical parameters of the

ultrasound examination system for future reference during

subsequent CEUS procedures. (4) Preparation and administration

of contrast agent: SonoVue solution was prepared by dissolving one

bottle in 5 mL of normal saline, which was then thoroughly mixed

before injecting 2.4 mL into an indwelling needle inserted into the left

median cubital vein at a rate of 1 mL/s. Following injection, an

additional 5 mL of normal saline flush was administered through the

same tube. (5) Image recording and storage: Simultaneously with

contrast agent administration, continuous video recording capturing

CEUS images lasting at least 60 s took place; these recordings were

saved in audio–video interactive (AVI) format. (6) Second CEUS

procedure: on day 5 after initiation of RHES treatment, a second

round of CEUS imaging was conducted following identical protocols

used during initial procedure regarding patient positioning, probe

angle, and other recorded parameters.

Finally, the AVI of each CEUS was quantitatively analyzed

using CHI-Q software. The procedure involved setting each tCNN

as a region of interest (ROI) individually (Figure 4A). Subsequently,

the ROI was analyzed to obtain the time/intensity curve (TIC)

(Figure 4B), and various parameters such as peak intensity (PI),

time to peak (TTP) and mean transit time (MTT) of each tCNN,

respectively. According to relevant guidelines (15), two senior

ultrasound physicians with over 5 years of CEUS experience,

along with an engineer, were responsible for ensuring quality

control (QC) and quality assurance (QA) during CEUS imaging

and subsequent quantitative analysis.
FIGURE 1

MRI images of the CNN (as indicated by the red arrow). (A) The central region of the CNN showed high signal on the T2-weighted sequence.
(B) The central region of the CNN showed low signal on the T1 enhancement sequence.
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Statistical analysis

All statistical analyses were performed by using SPSS 23.0 (IBM

Corporation, Armonk, NY, USA). The measurement data were

expressed as mean ± standard deviation (SD) and analyzed by using

the paired-samples t-test. Statistical significance was set at p < 0.05.
Results

Baseline characteristics of patients

Among the 15 patients enrolled, there were 10 male (66.7%) and

5 female patients (33.3%). The median age of these patients was 46
Frontiers in Oncology 04
years (range: 34–67 years). The median height was 170 cm (range:

149–179 cm). The median weight was 70 kg (range: 45–79 kg).

WHO type IIa and IIb were identified in 1 (6.7%) and 14 (93.3%)

patients, respectively. According to the 8th edition of the AJCC

staging system, the stage distributions were as follows: stage III, 10

(66.7%); stage IVA, 5 (33.3%) (Table 1).
Characteristics of tCNN

Of the 15 tCNN, 3 (20%) were in left neck level II, 9 (60%) were in

right neck level II, 1 (6.7%) was in left neck level III, and 2 (13.3%) were

in right neck level III. The median long diameter of the tCNN was

26.5 mm (range: 13.9–40.6 mm). The median long diameter of the
FIGURE 2

Principle of selecting the tCNN. If multiple CNNs were present in the same patient, the one with the largest proportion of necrotic area, as indicated
by the red arrow rather than the green arrow, should be selected. (A) MRI images of the tCNN on the axial T2 sequence. (B) MRI images of the tCNN
on the axial T1 enhancement sequence.
FIGURE 3

The method of locating the tCNN. In a 37-year-old male NPC patient, by referring to (A) MRI images, the (B) two-dimensional ultrasound was
performed to locate the tCNN, as indicated by the red arrow.
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necrotic areas was 13.4mm (range: 8.2–29.1mm). Themedian necrosis

proportion of the TLN was 54.4% (range: 30.2%–93.3%) (Table 2).
Variations of CEUS parameters

The blood flow signal of the tCNN, particularly in the central

region, exhibited a significant increase on day 5 (d5) following

initiation of RHES treatment when compared to the day before

RHES treatment (Figures 5A–D). The PI of the tCNN increased in

most patients after RHES treatment initiation, with only one patient

demonstrating a decrease (Figure 6A). A total of eight patients

experienced a PI increase exceeding 10% in comparison to the

initiation of RHES treatment (Figure 7A). The mean ± SD of PI of

the tCNN on d5 and the day before (dBef) RHES treatment initiation

were −44.94 ± 4.72 (dB) and −50.33 ± 6.85 (dB), respectively.

Obviously, PId5 was significantly higher in comparison with PIdBef
(p < 0.001; Table 3). After RHES treatment initiation, the TTP of the

tCNN decreased in most patients, but increased in only two patients

(Figure 6B). The TTP in six patients decreased by more than 20%

(Figure 7B). The mean ± SD of TTPd5 became dramatically shorter,

compared with TTPdBef [19.48 ± 3.63 (s) vs. 24.19 ± 6.93 (s), p = 0.031;

Table 3]. Moreover, all but one patient had a decrease in MTT

(Figure 6C). MTT in six patients decreased by more than 15%

(Figure 7C). The mean ± SD of MTT dramatically decreased after

RHES treatment initiation; MTTd5 and MTTdBef were 28.08 ± 3.03 (s)

and 33.76 ± 6.20 (s), respectively (p = 0.001; Table 3). Overall, these

results revealed that the blood volume and the blood flow velocity in

the microvessels of the CNN increased after AT with RHES, indicating

that AT may improve blood perfusion of CNN in NPC patients.
Adverse effect

No adverse effect related to RHES, such as allergy, headache,

arrhythmia, nausea, and fever, was observed in all 15 patients.
Frontiers in Oncology 05
Discussion

The CNN is an important risk factor for treatment failure of NPC

(5–7). Severe lack of blood perfusion and oxygen in the TME of the

CNN reduces the sensitivity of radiation, decreases drug transportation,

increases the aggressiveness of the tumor, and weakens the therapeutic

effect of RT as well as chemotherapy, ultimately leading to treatment

failure. Notably, several clinical studies have demonstrated that

combining AT to RT and chemotherapy was effective for NPC (8,

10, 16). According to the theories proposed by Jain (11, 17) and

Winkler et al. (12), AT aims not only to inhibit the formation of tumor

new blood vessels but also to increase the tumor blood perfusion and

remodel the TME by reconstructing the aberrant blood vessels within a

specific time frame after the medication initiation, so as to relieve

hypoxia and improve drug transportation. This is the so-called

“vascular normalization” effect and the concept of “window”, which

is a key mechanism to exert the synergistic effect of AT combined with

RT and chemotherapy.

As one of the representative drugs of AT, RHES exhibits an

anti-tumor effect by inhibiting the migratory capacity of endothelial

cells involved in neovascularization and has gained extensive

clinical application for various malignant tumors, including NPC,

demonstrating remarkable efficacy and safety (18–20). Yin et al.

(10) analyzed the efficacy and safe ty of concurrent

chemoradiotherapy (CCRT) plus RHES versus CCRT alone in

locally advanced nasopharyngeal carcinoma (LANPC), and the

survival data of the CCRT + RHES and CCRT groups were as

follows: the 3-year progression-free survival (PFS) rates were 81.4%

and 63.6% (p = 0.034); the 3-year distant metastasis-free survival

(DMFS) rates were 88.3% and 77.3% (p = 0.049); the corresponding

complete remission rates were 100% and 80.0% for lymph node

necrosis (p = 0.001). These results reveal that CCRT + RHES

significantly prolonged 3-year PFS and DMFS in LANPC, and the

addition of RHES can enhance the regression of lymph node with

necrosis. Moreover, the combined therapy of CCRT + RHES did not

increase adverse effect.
FIGURE 4

Analyzing the AVI of CEUS by using the CHI-Q software. In a 50-year-old male NPC patient, (A) the tCNN was set as the ROI, (B) then the ROI was
analyzed to obtain the time/intensity curve.
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In an A549 lung adenocarcinoma xenograft murine model, Li

et al. (21) found that RHES induced “vascular normalization” effect in

the tumor, which occurred within a specific time window from the

4th to the 10th day post-administration. Peng et al. (22) reported that

RHES may normalize tumor vessels in xenografted human NPC

models, with the “vascular normalization window” occurring

approximately 3 to 7 days after administration. These researchers

suggested that the mechanism underlying vascular normalization

may be associated with the equilibrium between pro-angiogenic

factors and anti-angiogenic factors, which is regulated by RHES.

Currently, histopathological criteria such as microvascular

density (MVD), basal membrane thickness, and pericyte coverage

rate remain the gold standards for evaluating tumor angiogenesis

and tumor vascular normalization (23, 24). However, owing to its

invasive nature, over-reliance on accurate sampling, and one-

sidedness, evaluating vascular normalization through

histopathology poses significant challenges for clinicians. With

the advancement of functional imaging techniques, an increasing
Frontiers in Oncology 06
number of clinicians are inclined to utilize noninvasive and

repeatable methods such as computed tomography perfusion

imaging (CTPI), CEUS, MRI, and PET to indirectly assess tumor

vascular normalization (25). Jiang et al. (26) utilized CTPI

combined with 99MTCHL91 hypoxic SPECT/CT to assess the

vascular normalization effect induced by RHES in non-small cell

lung cancer (NSCLC). The results showed that, among the 10

NSCLC patients who received RHES treatment, capillary

permeability surface initially decreased and then increased after

treatment initiation, reaching its lowest point on the fifth day.

Similarly, as a key marker of hypoxic imaging using SPECT/CT, the

tumor-to-normal tissue radioactivity ratio revealed a similar trend.

In contrast, tumor blood flow initially increased and subsequently

decreased following treatment initiation, with the highest value

observed on the fifth day. However, in the five patients without

RHES treatment, these parameters remained unchanged. Therefore,

Jiang et al. concluded that RHES had a normalizing effect on tumor

blood vessels in NSCLC patients and that this “window” of vascular

normalization appeared immediately upon starting RHES

treatment and lasted for approximately 1 week, during which

tumor blood perfusion increased and hypoxia improved.

Compared to other imaging methods, CEUS has several

advantages: it does not involve radiation, offers good repeatability

and real-time capability, and is cost-effective. The most significant

advantage of CEUS lies in its utilization of a contrast agent composed

of microbubbles with a diameter ranging from 3 to 5 µm. Unlike the

iodinated and gadolinium contrast agents used in MRI and CT scans,

these microbubbles are similar in size to red blood cells and belong to

pure blood pool contrast agents. Consequently, they can be

specifically confined within microvessels without diffusing into

tissue space. This characteristic allows for the avoidance of

interference caused by extravasation of the contrast agent while
TABLE 1 Baseline characteristics of patients.

Characteristic Number of patients (%)

Sex

Male 10 (66.7)

Female 5 (33.3)

Age (years)

Median 46

Range 34–67

Height (cm)

Median 170

Range 149–179

Weight (kg)

Median 70

Range 45–79

Histopathology

WHO IIa 1 (6.7)

WHO IIb 14 (93.3)

T stage

T3 12 (80)

T4 3 (20)

N stage

N1 4 (26.7)

N2 7 (46.7)

N3 4 (26.7)

Clinical stage

III 10 (66.7)

IVA 5 (33.3)
TABLE 2 Characteristics of tCNN.

Characteristic Number (%)

Neck node levels

Left II 3 (20)

Right II 9 (60)

Left III 1 (6.7)

Right III 2 (13.3)

Long diameter of the tCNNs (mm)

Median 26.5

Range 13.9–40.6

Long diameter of the necrotic area (mm)

Median 13.4

Range 8.2–29.1

Necrosis proportion of the tCNNs (%)

Median 54.4

Range 30.2–93.3
tCNN, target cervical node with necrosis.
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enabling clear and sensitive monitoring of low-speed

microcirculation blood perfusion (27).

According to the introduction provided by the European

Federation of Societies for Ultrasound in Medicine and Biology

(EFSUMB) (28), PI, MTT, and TTP are all listed as hemodynamic

parameters. PI is defined as the maximum value of ultrasonic signal

intensity, which is closely associated with the number of microbubbles

in the blood vessel and reflects the blood volume of the microvessels

within the ROI. TTP is defined as the time taken for the signal to reach

its maximum value from its base value. MTT is defined as the average

time it takes for all ultrasound contrast agents to pass through ROI.

Both TTP and MTT indirectly reflect the blood flow velocity within

microvessels in ROI. A comprehensive analysis of these three

parameters’ dynamic changes can aid in understanding the

alterations in tumor blood perfusion. Liang et al. (29) reported that

CEUS parameters indirectly reflect MVD and tumor volume using a

subcutaneous transplanted NPC model in nude mice, providing

valuable information on angiogenesis and tumor growth. VEGF may

play a role in promoting angiogenesis of NPC. Furthermore, Ling et al.

(30) conducted a clinical study reporting that imaging perfusion

patterns along with quantitative parameters obtained from CEUS,
Frontiers in Oncology 07
such as PI and TTP, provide high sensitivity and specificity when

distinguishing between benign nodules and metastatic nodules located

within NPC patients’ necks. These aforementioned studies indicate that

CEUS holds significant potential for clinical application in evaluating

tumor angiogenesis and blood perfusion.

In a previous study, CEUS was utilized for continuous monitoring

of ultrasonic signal variations in the primary tumors located in the

nasopharynx of NPC patients before and after AT with RHES. By

analyzing the dynamic changes in CEUS parameters, significant

alterations were observed within 5 days following initiation of RHES

treatment, including an initial increase followed by attenuation in PI,

as well as shortening and subsequent prolongation of TTP and MTT

in the primary nasopharyngeal tumors. Conversely, no changes were

noted in these parameters among the control group. These findings

indicated that RHES induces vascular normalization within a specific

period following treatment initiation, leading to increased blood

perfusion in nasopharyngeal primary tumors. The underlying

mechanisms through which RHES induced dynamic changes in

CEUS parameters are as follows (31): upon initiation of RHES

treatment, VEGF signaling is suppressed, resulting in remodeling of

abnormal tumor blood vessels. This leads to thickening of the
FIGURE 5

Variations of CEUS parameters before and after AT with RHES. In a 37-year-old male NPC patient, (A) the blood flow signal of the tCNN, especially in
the central region, was dramatically increased on day 5 in comparison with (B) the day before RHES treatment. Furthermore, (C) PI on day 5 was
significantly increased compared to (D) the day before RHES treatment.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1521762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1521762
FIGURE 6

Line charts of variations of CEUS parameters of the tCNN before and after AT with RHES. In most patients, (A) PId5 of the tCCN was enhanced
compared to PIdBef. Meanwhile, (B, C) TTPd5 and MTTd5 of the tCNN were shorter than TTPdBef and MTTdBef, respectively.
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FIGURE 7

Waterfall plots of percent change in CEUS parameters of the tCNN. In comparison with the day before AT with RHES, (A) more than half of the
patients had PI increases of more than 10%. Meanwhile, (B) more than a third of patients had a reduction in TTP of more than 20%. Furthermore,
(C) nearly half of the patients had a reduction in MTT of more than 15%.
TABLE 3 Variations of the CEUS parameters.

Parameters Time t p

dBef d5

PI (dB) Mean ± SD −50.33 ± 6.85 −44.94 ± 4.72 −4.707 <0.001

TTP (s) Mean ± SD 24.19 ± 6.93 19.48 ± 3.63 2.404 0.031

MTT (s) Mean ± SD 33.76 ± 6.20 28.08 ± 3.03 4.467 0.001
F
rontiers in Oncology
 09
CEUS, contrast-enhanced ultrasound; RHES, recombinant human endostatin; dBef, the day before; RHES, treatment initiation; d5, day 5 after RHES treatment initiation; PI, peak intensity; TTP,
time to peak; MTT, mean transit time; s, second.
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basement membrane and increased pericyte coverage. Consequently,

blood vessel function improves, thereby reducing surface permeability

and resistance to fluid and macromolecule flow. As a result, there is an

increase in blood perfusion and volume within the neck tCNN along

with accelerated blood flow velocity. These morphological and

functional vascular changes are reflected accordingly on CEUS as

enhanced PI accompanied by reduced TTP and MTT.

Does AT with RHES improve the blood perfusion of the CNN?

The answer to this question may be the key to exert the synergistic

effect of AT combined with RT and chemotherapy in NPC patients

with CNN and improve their outcomes. However, the lack of blood

perfusion is the hallmark pathological feature of the metastatic CNN,

and the degree of vascular abnormality is necessarily much worse

than that of primary tumors in the nasopharynx (5, 6). Therefore, on

the basis of previous studies, we conducted this current study.

In this current study, compared to the day before AT with

RHES, it was observed that the CEUS parameters (PI, TTP, and

MTT) of the tCNN exhibited significant changes on day 5 after

treatment initiation. In most patients, PI of the tCNN showed a

significant increase, while TTP and MTT demonstrated significant

decreases. These results indicate an augmentation in blood volume

and blood flow velocity within the microvessels of CNN following

AT, suggesting that RHES may normalize the abnormal vessels and

improve blood perfusion in CNN of NPC patients, thereby

alleviating hypoxia and increasing drug delivery efficiency.

Furthermore, according to previous reports, the common adverse

effects of RHES include allergy, headache, arrhythmia, nausea, and

fever. However, no adverse effect occurred in this study, which may

be related to the limited sample size and short observation time.

As a preliminary study, it has limitations such as a small sample

size, the lack of external control, a short observation time, and the

lack of long-term efficacy data. Because of these limitations, the

results of this research must be interpreted with caution. Further

prospective randomized controlled trials with a large sample size

and long-term follow-up data are warranted to verify our findings.
Conclusions

In conclusion, the results of this study suggest that AT with

RHES may improve blood perfusion in the CNN of NPC, thus

providing valuable insights for the clinical application of AT

combined with RT and/or chemotherapy in NPC patients with

CNN. Moreover, CEUS as a noninvasive and real-time monitoring

method may be suitable for clinically evaluating tumor blood

perfusion changes.
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