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supervision and an attention gate
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1Center of Radiation Oncology, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China, 2State Key
Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering,
Chongqing Medical University, Chongqing, China, 3Department of Radiology, The First Affiliated
Hospital of Chongqing Medical University, Chongqing, China
Introduction: The segmentation of uterine fibroids is very important for the

treatment of patients. However, uterine fibroids are small and have low contrast

with surrounding tissue, making this task very challenging. To solve these

problems, this paper proposes a 3D DA- VNet automatic segmentation

method based on deep supervision and attention gate.

Methods: This method can accurately segment uterine fibroids in MRI images by

convolutional information. We used 3DVnet as the underlying network structure

and added a deep monitoring mechanism in the hidden layer. We introduce

attention gates during the upsampling process to enhance focus on areas of

interest. The network structure is composed of VNet, deep supervision module

and attention gate module. The dataset contained 245 cases of uterine fibroids

and was divided into a training set, a validation set, and a test set in a ratio of 6:2:2.

A total of 147 patients' T2-weighted magnetic resonance (T2WI) images were

used for training, 49 for validation, and 49 patients' MR Images were used for

algorithm testing.

Results: Experimental results show that the proposed method achieves

satisfactory segmentation results. Dice similarity coefficient (DSC), intersection

ratio (IOU), sensitivity, precision and Hausdorff distance (HD) were 0.878, 0.784,

0.879, 0.885 and 11.180 mm, respectively.

Discussion: This shows that our proposed method can improve the automatic

segmentation accuracy of magnetic resonance image (MRI) data of uterine

fibroids to a certain extent
KEYWORDS

uterine fibroid, MRI segmentation, deep supervision, attention gate, deep learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1522399/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1522399/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1522399/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1522399&domain=pdf&date_stamp=2025-03-13
mailto:fajinlv@163.com
https://doi.org/10.3389/fonc.2025.1522399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1522399
https://www.frontiersin.org/journals/oncology


Liu et al. 10.3389/fonc.2025.1522399
1 Introduction

Uterine fibroids are one of the most common benign tumors in

women, with an incidence of 20-40% in women during their

reproductive period (1). Uterine fibroids can lead to serious

morbidity, such as heavy menstrual bleeding and pelvic pressure (2).

In addition, they pose a serious threat to women’s health and affect

women’s quality of life. Traditional treatment for fibroids is

hysterectomy, which can cause physical and emotional pain in

women. In recent years, high-intensity focused ultrasound (HIFU)

has been widely used and successfully in the treatment of uterine

fibroids due to its noninvasive characteristics (3–5). However, whether

a fibroids patient is treated with traditional surgery or HIFU, fibroids

magnetic resonance image (MRI) segmentation is required before

surgery, as MRI is currently considered to be the most accurate

imaging technique for detecting and locating fibroids (6). T2-

weighted imaging (T2WI) is very important for the diagnosis of

gynecological diseases, and examined images can clearly show

diseased tissue of the uterus, such as uterine fibroids and evidence of

cervical cancer and endometrial cancer. T1-weighted images (T1WIs)

enable better observation of anatomical structures. Segmentation of

uterine fibroids is usually performed on T2WIMRI images. This needs

to be done manually by one or two experienced physicians; manual

segmentation of uterine fibroids takes a lot of time, and the

segmentation results obtained by doctors vary from person to

person, so uterine fibroid MRI segmentation is still a challenging

task. The reasons are as follows: (1) The contrast between uterine

fibroids and other surrounding tissue is low and the boundary is

difficult to distinguish. (2) The area of uterine fibroids on MRI is small,

with little available information. (3) The positions of the uterine

fibroids are not fixed and it is difficult to segment them.

In recent years, deep learning has become very popular. An

increasing number of researchers have begun to use deep learning to

classify, recognize and segment medical images, including performing

segmentation of uterine fibroids. Regarding deep neural networks,

Kurata et al. (7) proposed an improved UNet to segment MRI images

of uterine fibroids, replacing the ReLU in each layer in the original

UNet with leaky ReLU. A dropout layer was added, batch_size was set

to 15, 8 layers of downsampling were used, and finally the Dice

similarity coefficient of all uterine fibroids was determined to be

0.820. Tang et al. (8) proposed AR-UNet, which used the ResNet101

deep neural network as the front end of feature extraction to extract

semantic information from the image, reducing the number of layers

and improving the precision of segmentation. They also introduced an

attention gate module between up-sampling and down-sampling and

incorporated UNet to build a network structure. Finally, the Dice

similarity coefficient of MRI segmentation of uterine fibroids reached

0.904. Zhang et al. (9) proposed HIFUnet, a network with a ResNet101

backbone, global convolutional network (GCN) module, deep multiple

atrous convolutions (DMAC) module, sampling, a cascading layer and

an output layer. It was used for accurate segmentation of the uterus,

uterine fibroids and spine onMRI, and the Dice similarity coefficient of

segmentation of uterine fibroids was 0.835. However, these methods

have common shortcomings. First, they cannot directly process 3D

images, and second, the segmentation accuracy is not high. The
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existing methods usually convert 3D data into 2D slices through

dimensionality reduction or image slicing before training the deep

learning model, thus losing considerable image spatial information,

which is not conducive to the effective segmentation of 3D images, so

the segmentation accuracy is not high. Maike et al (10)proposed a

method of automatic segmentation of uterus and uterine fibroids on

MRI with 3D nn Unet, and achieved good segmentation results.

Therefore, to obtain more in-depth information and better meet the

needs of clinical diagnosis, it is necessary to propose amore effective 3D

image processing method.

The purpose of this study was to explore the feasibility of

automatic 3D VNet segmentation of uterine fibroids based on deep

supervision and an attention gate. We applied a 3D deep

supervision attention VNet (3D DA-VNet) and optimized some

hyperparameters to achieve automatic segmentation. The

contributions of this paper are as follows.
1. Compared to existing segmentation methods, we propose a

3D segmentation method to segment uterine fibroids.

2. To solve the problem of disappearance of the gradient and

slow convergence, a deep supervision mechanism

is introduced.

3. Deep supervision and an attention gate are integrated to

improve segmentation accuracy.
The structure of this paper is as follows. Section 2 details the

proposed materials and methods, including data preprocessing and

model description. Section 3 is mainly about the results and

discussion, including parameter settings and evaluation

indicators. The conclusion is given in Section 4.
2 Materials and methods

2.1 Dataset

Data from January 2013 to December 2018 in the first affiliated

hospital of the Haifu Minimally Invasive and Non-invasive

Treatment Center of the Chongqing Medical University for the
TABLE 1 Imaging parameters of MRI T2WI.

parameters T2WI

TR(ms) 3740

TE(ms) 106.6

FOV(cm) 98.1 �38

Matrix 512 �512

Slices 22

Slice thickness(mm) 6

Slice gap(mm) 8

Nex 2
TR, Repetition time; TE, Echo time; FOV, Field of view; Nex, Number of excitations.
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ablation treatment of 245 patients with uterine fibroids. The image

data parameters are shown in Table 1.
2.2 Experimental parameters

The experiment was carried out on a TensorFlow 8G NVIDIA

GeForce RTX 3070 graphics card, CUDA version 11.3.1.

Furthermore, the initial learning rate was set at 2e-4, and the

epoch was set at 600. As the epoch increased, the learning rate

decreased exponentially at a rate of 0.999. Due to large 3D data and

the limitation of device memory, the batch size could only be set to

1; the loss function was Dice (Dice Loss) (11), Adam (12) was used

as optimizer, the momentum was 0.9, and PReLU (13) was used as

activation function.
2.3 Preprocessing

The labels were manually delineated by a physician with 3 years

of experience using ITK-SNAP on axial T2WI. The obtained

regions of interest were used as the gold standard for

segmentation of uterine fibroids. Image preprocessing included

normalization, resampling, filling, cropping and random noise.

The purpose of normalization was to make the grey values of

each image in the training set have the same distribution.

Resampling was performed to normalize the voxels of different

sizes in the image to the same size. The actual spatial size

represented by a single voxel in different images was inconsistent.

Because the convolutional neural network only operates in the voxel

space, it ignores the size information in the actual physical space. To

address this difference, it was necessary to resize different image

data in the voxel space to ensure that the actual physical space

represented by each voxel was consistent across different image

data. The image was then filled and cut to an input size

of 128x128x48.
2.4 Deep surpervision module

Deep supervision is also called relay supervision. As shown in

Figure 1, auxiliary loss functions are added to some intermediate

hidden layers of the deep neural network as network branches to

supervise the trunk network. Moreover, additional loss functions are

added to the middle part of the network, and loss functions at different

positions are summed by coefficients. The purpose is to train the

features more fully and solve the problems of gradient disappearance

and slow convergence of the deep neural network. As a training

strategy, deep supervision was proposed in 2014 through deep

supervision nets (DSNs) (14), which can improve the directness and

transparency of the hidden layer learning process. To reduce the

adverse effects of unstable gradient changes, we propose using display

supervision to train the hidden layers in 3D DA-VNet. Specifically, we

first use additional deconvolution steps to amplify some low-level and

middle-level features. We then use softmax functions on these full-size
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characteristic volumes and obtain improved predictions. For these

branch prediction results, we calculate their errors from the manual

segmentation results. These auxiliary losses are integrated with the

losses of the last layer to stimulate the backpropagation of gradients for

more efficient parameter updates with each iteration.

We connect the volume features directly through the path to the

last output layer as the primary network. Let Wl be the weight of

layer L of the primary network. Using W=(W1,  W2, …, Wl),

priority is given to the network weight set, and P(ti| xi;w)

represents the probability prediction of voxel xi after the softmax

function in the last output layer. The negative log-likelihood loss

function is expressed as:

p(tijxi;w) =
ewxi

Sie
wxi

L(x;w) = −oxi∈x log p(ti xi;w) :j

where x represents the training data, ti   represents the target

label of xi, and xi belongs to x. Additionally, we create an auxiliary

intensive prediction layer called the branch network. Deep

supervision is introduced through the branch network. When

deep supervision is introduced in the m-th hidden layer, wm   is

used to represent the weight of the first m layers in the main

network, and the weight of intensive prediction can be connected to

the characteristic volume of the m-th layer through cwm. Then, the

auxiliary loss function of deep supervision can be expressed as

follows:

Lm = (x;wm, cwm) = −oxi∈x log p(ti xi;wm, cwm)j

Finally, we learn the weight w   and all cwm using the

backpropagation algorithm by minimizing the following objective

function:

L = L(x;w) +om∈MhmLm(x;wm, cwm)

where hm represents the balance weight of Lm, which decays

during learning. M is the division of all the hidden layers with a

deep supervision function. The first term corresponds to the

prediction of the output in the last output layer, and the second

term represents deep supervision. In each training iteration, the

network’s input is the large-capacity data, and simultaneously, the

error is backpropagated from these different weight losses.

The effectiveness of deep supervision can be proven through the

following considerations. First, Qi et al. (15), in a liver segmentation

challenge and a heart and large vessel segmentation challenge, used a

deep supervision network to achieve a higher speed than the most

advanced methods of competitive segmentation, thus proving the

effectiveness of the deep supervision network. Zeng et al. (16)

proposed a 3D UNet fully convolutional network with deep

supervision for the segmentation of the proximal femur in 3D

magnetic resonance (MR) images, and the experimental results

proved the effectiveness of deep supervision. Zhu et al. (17), Yang

et al. (18) and Bo et al. (19) applied deep supervision modules in

different network structures to automatically segment the prostate

gland. The final results proved that the deep supervision module
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could effectively address the optimization problem of gradient

disappearance or explosion when training the 3D model, accelerate

the convergence speed and improve the recognition ability.
2.5 Attention gate module

The attention gate (20) is shown in Figure 2, where g represents

the feature map of the upward sampling and xl represents the

feature map of the downwards sampling of the same layer. The two

feature maps are adjusted to the same size and added together. The

attention coefficient a can be obtained through ReLU, 1×1×1

convolution, a sigmoid function and resampling, and then

through multiplication by xl , x̂ l can be obtained. The attention

gate module can better ensure that attention is given to the
Frontiers in Oncology 04
prominent area and suppress the irrelevant background area, and

it can be effectively embedded in the VNet network.
2.6 Network framework

VNet (21) usually consists of an input layer, a convolution layer,

a lower sampling layer, an upper sampling layer and an output

layer. The convolutional layer in the structure is used to learn image

features, and local connections and weight sharing are used to

reduce the number of parameters and the computational

complexity. With the deepening of the network, layer-by-layer

convolution can extract more abstract image features. As one of

the key steps of pattern recognition, the quality of feature extraction

directly affects the accuracy of image recognition. Through the
FIGURE 2

Attention gate module.
FIGURE 1

Deep supervision module.
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study of VNet, we propose the 3D DA-VNet structure, which is

more suitable for the 3D segmentation of MRI data of uterine

fibroids. The overall framework of 3D DA-VNet is shown in

Figure 3. In the upsampling stage, we combine the upsampling

features with the downsampling features to introduce an attention

gate. The attention gate module can better ensure that attention is

given to the prominent area and suppress the irrelevant background

area, and it can be effectively embedded in the VNet network. At the

same time, in the upsampling stage, a deep supervision module is

introduced to continuously upsample the output of each layer until

the outputs are the same size as the training image. Then, a softmax

function can be chosen to generate the contour probability maps

followed by labelling each voxel. Accordingly, the losses of these

intermediate layers together with that of the final output layer are

combined for gradient backpropagation, which is used to identify

more effective parameters with each iteration.

The parameter details of 3D DA-VNet are provided in Table 2. In

the input layer, we input an image with a size of 128 × 128 × 48 and

then convolve it with a 3 x 3 x 3 convolution kernel and activate it with

PReLU. On this basis, standardization and a dropout rate of 0.01 are

applied. The subsequent convolution operation is the same. Then,

through downsampling, the stride of the convolution kernel is set to

(1,2,2,2,1), and the deep features of the images are extracted. After

continuous convolution and downsampling, the fifth layer is obtained,

and its size is 8 × 8 × 3. After the deconvolution operation, the stride of

the deconvolution kernel is (1,2,2,2,1), and the node is processed using

the PReLU activation function. Therefore, the structure of the

processing model retains the compatibility of the original network

and lays the foundation for rapid iterative optimization. In the

upsampling stage, the concatenation calculation is performed after

each deconvolution operation. With this operation, the last layer uses
Frontiers in Oncology 05
softmax to predict values 0 and 1 for each pixel. Finally, the size of the

image is recovered at 128 × 128 × 48.
2.7 Evaluation metrics

We divided the data of 245 cases of uterine fibroids into a

training set, testing set, and validation set at a ratio of 6:2:2, among

which 147 cases were used for training, 49 cases were used for

testing, and 49 cases were used for validation. Training and testing

were carried out at the same time. After the model training was

completed, it was verified by the validation set. The output of 3D

DA-Vet was the prediction result of uterine fibroids. We used a

single case as the input data to evaluate the performance of

the model.

Before high-intensity focused ultrasound treatment of uterine

fibroids, it is necessary to accurately locate uterine fibroids, so the

accuracy of segmentation directly influences the therapeutic effect.

However, for a pelvic image, the fibroid region only accounts for a

very small part of the image, which often causes the segmented part

to be neglected by the network, the output of the network being

biased towards the background, and learning falling into a local

extremum; ultimately, accurate results cannot be obtained. To avoid

this problem, Spatial overlap was quantified using the Dice

Similarity Coefficient (DSC) (22, 23). However, it’s important to

note that DSC lacks a clear definition in cases where both compared

volumes contain zero positive voxels, resulting in division by zero.

The DSC calculation is as follows:

precision =
TP

TP + FP
FIGURE 3

The framework of 3D DA-VNet.
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recall =
TP

TP + FN

DSC = 2 ∗
precision ∗ recall
precision + recall

The IOU score is a standard performance measure for

segmentation problems. Given an image, the IOU score gives the

similarity between the predicted regions and ground-truth regions

presented in the image, and it is defined by the following equation:

IOU =
TP

FP + TP + FN

Sensitivity (24) measures the positive part of the voxel in the

real background, which measures the ability to segment the fibroid

region of the uterus:

Sensitivity =
TP

TP + FN

Precision (25), also known as positive predictive value, refers to

the accuracy of the segmentation of uterine fibroids:

Precision =
TP

TP + FN

where TP, FP and FN are the probabilities of true positives, false

positives and false negatives, respectively. These evaluation
Frontiers in Oncology 06
indicators are all based on area and are sensitive to the divided

internal filling area, while the Hausdorff distance (HD) (26) is based

on distance and is sensitive to the divided boundary. The Hausdorff

distance is a measurement used to describe the degree of similarity

between two sets of points. Here, we use it to evaluate the

relationship between the segmentation results and the real fibroid

boundary distance.

HD = max max min
a∈gt   b∈seg

d(a, b),max min
a∈gt   b∈seg

d(b, a)

� �

where gt represents the ground truth, seg represents the

segmentation result, A and B represent the voxels of the ground

truth and the segmentation result, respectively, and D(a, b)

represents the Euclidean distance between A and B.
3 Results and discussion

3.1 Effect of different convolution kernels
and model structure

The convolution kernel is one of the most important concepts

in deep learning. It has the advantage of weight sharing and

translational invariance, and Yao Jin et al. (27) proposed that its

size affects the number of model parameters and the information of

extracted images. Therefore, we designed 3 × 3 × 3 and 5 × 5 × 5

convolution kernels. In addition, minor adjustments to the overall

structure will affect the final result, including the number of

convolutions for each layer. We evaluated our proposed 3D DA-

VNet on datasets using DSC, IOU, sensitivity, precision, and HD,

and present the results of the 6 experiments in Table 3.
3.2 The influence of different network
training on the results

To validate the proposed method, we tested T2WI MRI of 49

patients and segmented different shapes of uterine fibroids. To

compare the segmentation results with the ground truth, we

calculated DSC, IOU, sensitivity, accuracy, and HD, and Table 4

shows the results of comparing the algorithm proposed in this paper

with 2D UNet, 2D VNet, 3D UNet, 3D VNet, 3D deep supervision
TABLE 3 Quantitative evaluation results of the dataset.

the Model Structure Convolution Kernel Size DSC IOU sensitivity precision HD(mm)

(1,2,3,3,3,3,3,2,1) 3*3*3 0.876 ±0.038 0.781 ±0.059 0.867 ±0.070 0.893 ±0.070 11.34 ±7.216

5*5*5 0.858 ±0.040 0.754 ±0.060 0.858 ±0.074 0.870 ±0.082 12.01 ±6.842

(1,2,2,2,2,2,2,2,1) 3*3*3 0.870 ±0.039 0.772 ±0.060 0.863 ±0.076 0.888 ±0.075 12.07 ±7.650

5*5*5 0.862 ±0.053 0.773 ±0.066 0.875 ±0.077 0.875 ±0.075 11.45 ±7.163

(1,2,3,3,2,2,2,2,2) 3*3*3 0.878 ±0.037 0.784 ±0.057 0.879 ±0.072 0.885 ±0.067 11.18 ±7.181

5*5*5 0.857 ±0.037 0.752 ±0.057 0.863 ±0.085 0.865 ±0.080 12.36 ±7.840
Bold numbers indicate the best results.
TABLE 2 Parameter details of the proposed 3D DA-VNet.

Layer Input Size Components

Left-S 1 128*128*48 3*3*3,16, stride (1, 2, 2, 2, 1)

Left-S 2 64*64*24 3*3*3,32, stride (1, 2, 2, 2, 1)

Left-S 3 32*32*12 3*3*3,64, stride (1, 2, 2, 2, 1)

Left-S 4 16*16*6 3*3*3,128, stride (1, 2, 2, 2, 1)

Left-S 5 8*8*3 3*3*3,256, stride (1, 2, 2, 2, 1)

Right-S 4 16*16*6 3*3*3,128, stride (1, 2, 2, 2, 1)

Right-S 3 32*32*12 3*3*3,64, stride (1, 2, 2, 2, 1)

Right-S 2 64*64*24 3*3*3,32, stride (1, 2, 2, 2, 1)

Right-S 1 128*128*48 3*3*3,16, stride (1, 2, 2, 2, 1)

output 128*128*48 3*3*3,16, stride (1, 1, 1, 1, 1)
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VNet (3D DS-VNet) and 3D attention VNet. The DSC of our

proposed method reached 0.878. The IOU was 0.784, the sensitivity

was 0.879, the precision was 0.885, and the HD was 11.18 mm. Due

to the large amount of 3D MRI segmentation data, the average

segmentation time of a uterine fibroid was 7 seconds. Figure 4

compares the segments that result in the segmentation. As seen

from Figure 4, compared to 3D DS-VNet and 3D attention VNet,

3D DA-VNet has a better segmentation effect at the fibroids’

boundary and has a more accurate segmentation of uterine

fibroids, which gives it advantages in the image processing of

uterine fibroids. For fibroids with irregular shapes and small sizes,

the segmentation effect is better.
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3.3 Discussion

We compared the size and number of different convolution

kernels, as shown in Table 3. From the final results, we chose the

size of the convolution kernel as 3x3x3, with (1, 2, 3, 3, 2, 2, 2, 2, 2)

as the structure. We also compared different 2D and 3D networks,

as well as UNet and VNet networks. The final results in Table 4

show that the segmentation effect of our proposed 3D DA-VNet is

the best, and they also prove that the deep supervision module and

the attention gate module are effective. Additionally, Figure 4

confirms that our predicted target regions have a good overlap

with the standard manual segmentation results given. To better
FIGURE 4

From left to right are the comparison graphs of the segmentation results of ground truth and 3D VNet, 3D DS-VNet, 3D attention VNet, and 3D DA-
VNet, where the white area is ground truth and the red area is the segmentation result.
TABLE 4 Testing results of uterine fibroids segmentation on different networks.

Method DSC IOU Sensitivity Precision HD(mm)

2D Unet 0.725 ±0.162 0.614 ±0.133 0.724 ±0.141 0.789 ±0.153 28.38 ±12.760

3D Unet 0.740 ±0.089 0.626 ±0.115 0.739 ±0.080 0.805 ±0.143 27.90 ±10.496

2D Vnet 0.783 ±0.140 0.697 ±0.129 0.787 ±0.148 0.857 ±0.163 20.85 ±11.014

3D Vnet 0.833 ±0.062 0.740 ±0.074 0.848 ±0.084 0.866 ±0.106 13.70 ±7.164

3D DS-Vnet 0.846 ±0.051 0.750 ±0.070 0.863 ±0.076 0.862 ±0.096 12.55 ±7.218

3D attention Vnet 0.862 ±0.043 0.772 ±0.058 0.873 ±0.073 0.878 ±0.075 12.23 ±7.767

3D DA-Vnet 0.878 ±0.037 0.784 ±0.057 0.879 ±0.072 0.885 ±0.067 11.18 ±7.181
The best results (expressed as mean ± standard deviation) are shown in bold.
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understand the results of our segmentation, we compared the

results of the segmentation of uterine fibroid MRI data with those

of other studies. The corresponding comparisons are shown in

Table 5. These are traditional segmentation methods, including the

fuzzy C-means algorithm, split-and-merge, level set segmentation,

etc. Their segmentation results are also good, but these traditional

methods require complex preprocessing and postprocessing of the

data. Segmentation is not performed synchronously, which makes

the segmentation process inefficient. In conclusion, although these

conventional methods have some merits in terms of performance,

they show some practical limits in a clinical setting. Table 6 gives a

comparison with some deep learning segmentation methods. The

existing deep learning methods for segmenting uterine fibroids all

segment 2D slice data, which loses considerable image spatial

information and is not conducive to the effective segmentation of

3D images, so the segmentation accuracy is not high. To obtain

more in-depth information, to better meet the needs of clinical

diagnosis, and to propose a more effective 3D image processing

method, we propose the automatic segmentation of uterine fibroids
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using 3D DA-VNet based on deep supervision and attention gates.

The deep supervision module allows features to be more fully

trained by deep feature supervision, thus improving the

segmentation performance. The attention gate module improves

segmentation performance by ensuring that more attention is given

to the region of interest while suppressing irrelevant background

regions, and the final DSC value in the testing set is 0.878.

However, we can see from Table 6 that compared with AR-Unet

and nn-Unet results, our results are not outstanding. The main

reason for our analysis lies in the difference of images. We used

transverse magnetic resonance images, while Tang (8) and Wang

(37) used sagittal magnetic resonance images. In anatomy, sagittal

images can more clearly show the long axis of the uterus and the

uterine lumen-fibroid interface, while the transverse section is easy

to truncate the fibroid shape, and the boundary of the transverse

expanded fibroids is blurred, making segmentation difficult. Our

study mainly focuses on the efficacy of HIFU ablation in the

treatment of uterine fibroids. We will use different MRI

sequences, which will all have transverse images, but not
TABLE 5 Comparison of traditional methods for segmenting uterine fibroids.

Authors Year Dataset
size

Dataset
source

Algorithm Evaluation
metrics

N. Ben-Zadok et al (28) 2009 4 private Level set segmentation,
User feedback

TPE=0.999

A. Fallahi et al (29) 2010 5 private fuzzy C-means algorithm and
morphological operations,modified possibilistic fuzzy c-mean

SI=0.799

A. Fallahi et al (30) 2011 10 private Fuzzy C-Mean (FCM) method and morphological operations SI=0.800

H. Khotanlou et al (31) 2014 15 private Chan–Vese level set method
geometric shape prior model

SI=0.877

Xu M et al (32) 2015 42 private split-and-merge SI=0.876

Militello C et al (33) 2015 15 private Unsupervised Fuzzy C-Means clustering and iterative optimal
threshold selection algorithms

SI=0.887

Rundo L et al (34) 2016 14 private Dataset normalization
Region splitting and merging
Seed-region refinements

SI=0.876

Rundo L et al (35) 2019 18 private Iterative Optimal Threshold Selection (IOTS)
Split-and-Merge(SM),Region Growing(RG)

DSC=0.873
DSC=0.875

Ning G et al (36) 2020 320 private CNN, encoder and decoder paths DSC=0.812
TABLE 6 Comparison of methods for deep learning segmentation of uterine fibroids.

Authors Year Dataset
size

Dataset
source

Network DSC IOU Precision Recall
(Sensitivity)

Ours 2022 249 private 3D DA-Vnet 0.878 0.784 0.885 0.879

Kurata Y et al (7) 2019 122 private U-net 0.820 — — —

Tang et al (8) 2020 93 private AR-Unet 0.904 0.844 — 0.886

Zhang et al (9) 2020 297 private HIFUNet 0.835 — 0.845 0.837

Wang et al (37) 2024 550 private nn-Unet 0.956 — — —
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necessarily sagittal images. Therefore, we choose to develop a model

for segmenting transverse images, so as to better combine clinical

treatment in our subsequent studies. On the other hand, the lack of

data is also a factor that makes the results low.

Judging from the results, the algorithm we proposed

demonstrates a certain efficacy in the segmentation of uterine

fibroids. However, our study is not without limitations that may

impact the generalizability and accuracy of the findings. Firstly, the

sample size of our data is relatively small; specifically, 245 MRI

images may be insufficient for training deep learning models given

the complexity inherent in MRI data. The ability to generalize this

model to larger and more diverse datasets remains uncertain.

Secondly, our magnetic resonance imaging (MRI) dataset is

limited to a single series; this study relies solely on T2-weighted

imaging. Uterine fibroids may exhibit different characteristics

across other MRI sequences or imaging modalities, which

constrains the clinical applicability of this model when applied

under varying imaging conditions. Finally, this study does not

compare with current state-of-the-art segmentation techniques

and may underestimate the performance advantages or

limitations of these techniques. While the methods employed in

this study perform well under certain conditions, more room for

improvement and potential challenges may be found compared to

the latest techniques. Therefore, future research will incorporate

these into the research scope to ensure the advanced nature and

optimization potential of the method. Additionally, due to the

presence of significant surrounding tissue around uterine fibroids,

caution must be exercised when utilizing high-intensity focused

ultrasound for ablation procedures so as not to damage adjacent

structures. Therefore, multi-organ segmentation encompassing

uterine fibroids along with related anatomical structures such as

the uterus and spine represents a more aligned approach with actual

clinical needs—this also constitutes a promising direction for future

research endeavors.
4 Conclusions

This study uses deep learning to achieve automatic

segmentation of uterine fibroids magnetic resonance data. Most

of the previously proposed deep learning models first convert 3D

MRI data into 2D image slices and then use them to train and

optimize the network, which wastes considerable time and does not

accord with the 3D characteristics of the images themselves. For the

3D DA-VNet proposed in this paper, the input layer is a 3D matrix,

which can speed up training progress and improve training

efficiency. In addition, this paper introduces a deep supervision

module and attention gate. The use of the deep supervision module

allows the layers to be more fully trained and addresses the depth

gradient disappearance and the slow convergence speed of the

neural network, and integration of the attention gate can better
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ensure focus on the area of interest and suppression of irrelevant

background regions. The experimental results for the same data set

and platform show that the accuracy of the proposed method is

significantly improved compared to other segmentation methods. It

is believed that with improvement in segmentation accuracy,

automatic segmentation of uterine fibroids can help doctors make

more accurate judgments, improve work efficiency, and reduce the

rate of misdiagnosis.
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