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Bioinformatics and experimental
approach reveal potential
prognostic and immunological
roles of key mitochondrial
metabolism-related genes in
cervical cancer
Qing Huang1, Yang-feng Xu1, Hui-ping Li1 and Ting Zhang2*

1Gynecology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China,
2Orthopedics Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
Background: Metabolic remodeling is the hallmark of cancer. In recent years,

mitochondrial metabolism (MM) has been considered essential in tumorigenesis

and cancer progression. Understanding the role of MM in cervical cancer (CC)

can provide insights into disease progression and potential therapeutic targets.

Methods: Clinical data of CC patients was downloaded from the UCSC Xena

dataset, and differentially expressed genes (DEGs) were identified between tumor

and normal samples. MM-related genes (MMRGs) were screened from the

MSigDB database. DEGs and MMRGs were then intersected to identify

differentially expressed MMRGs. A prognostic risk model was constructed

based on these intersecting genes through Cox regression analysis, and its

association with the tumor microenvironment and immune checkpoint-related

genes was evaluated. Hub genes’ expression was evaluated in cells through qRT-

PCR. Additionally, drug sensitivity analysis was conducted to explore potential

therapeutic drugs.

Results: We identified 259 overlapping genes between DEGs and MMRGs, with

55 being prognosis-related. Two molecular clusters were revealed, with C1

exhibiting poorer prognosis. A prognostic risk model comprising five genes

(BDH1, MIR210, MSMO1, POLA1, and STARD3NL) was established, showing

significant associations with survival outcomes of CC patients. Functional

enrichment analysis revealed that DEGs between high- and low-risk groups

were tightly associated with the immune system. Analysis of the immune

microenvironment showed significant differences between different risk

groups, with higher immune and ESTIMATE scores observed in the low-risk
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group. Additionally, expression levels of immune checkpoint-related genes were

significantly correlated with the risk score. Drug sensitivity analysis identified

potential therapeutic agents correlated with the expression of the five

prognostic genes.

Conclusion: Our findings underscore the importance of MM in CC progression

and provide potential therapeutic targets for CC.
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1 Introduction

Cervical cancer (CC) is one of the most prevalent gynecologic

cancers, with an incidence of approximately 6.5% of all female cancer

cases worldwide (1, 2). It is primarily caused by persistent infection

with high-risk human papillomavirus (HPV) types (3). Despite

advancements in screening programs and HPV vaccination efforts,

CC remains a leading cause of cancer-related deaths among women

globally (4). For patients with early or locally advanced CC, the 5-year

survival rate exceeds 50% following surgical or chemoradiotherapy

interventions (5, 6). However, the metastasis or recurrence

significantly reduces survival rates, with a 5-year survival rate of

only 10% for patients under such circumstances (4, 5). Therefore, it is

urgent to delve deeper into the biological mechanisms of CC

progression and identify novel prognostic biomarkers to enhance

therapeutic strategies and patient outcomes.

Mitochondria, responsible for cellular energy generation, provide

energy through the tricarboxylic acid (TCA) cycle and oxidative

phosphorylation (OXPHOS) (7). Cellular energy imbalance is a

recognized hallmark of cancer (8). In the 1920s, Otto Warburg

postulated that cancer cells preferentially utilize glycolysis over

OXPHOS for ATP production (9). For a long time, the major

metabolic feature of tumor cells was considered to be the Warburg

effect (10). However, in recent years, increasing evidence suggests that

mitochondrial metabolism (MM) and function play a crucial role in

tumorigenesis and cancer progression. Dysregulated mitochondrial

function in cancer cells leads to alterations in energy production,

metabolism, and redox balance, facilitating their proliferation, survival,

and metastasis (11, 12). Moreover, mitochondria actively regulate

apoptosis, allowing cancer cells to evade cell death signals and

promote resistance to therapy (13–15). Therapeutic methods that

target diverse pathways within MM, such as inhibiting cellular

constituents engaged in mitochondrial synthesis, decreasing

metabolite accumulation, or preventing energy production within

mitochondria, have demonstrated therapeutic efficacy in various

cancers (16–18). Several regents have been reported to alleviate CC

by modulating MM. For example, Ginsenoside Rh2 induces CC cell

apoptosis by suppressing mitochondrial electron transfer chain
02
complex (19). Butyrate inhibited mitochondria-dependent apoptosis

in CC cells (20). Therefore, MM could be a new therapeutic strategy for

CC. Understanding the intricate interplay between MM and cancer

biology holds promise for identifying novel therapeutic targets and

developing personalized treatment strategies to combat CC.

This study aimed to elucidate the role of MM in CC progression

and prognosis. Differentially expressed mitochondrial metabolism-

related genes (MMRGs) in CC patients were identified and a

prognostic risk model based on these genes was constructed.

Through comprehensive bioinformatics analyses, we explored the

clinical significance of MMRGs, as well as their association with

tumor immune microenvironment and drug sensitivity, providing

insights into potential therapeutic strategies for CC.
2 Methods

2.1 Acquirement of differentially
expressed MMRGs

CC cohort was downloaded from the TCGA-UCSC Xena

(http://xena.ucsc.edu). DEGs were identified between tumor

samples (n = 305) and normal samples (n = 4) using the “limma”

package in R software (version 4.1.3), with the criterion of |log2 fold

change (FC)| > 1 and adjust p-value < 0.05. These DEGs were

visualized in a volcano plot using “ggplot2”. MMRGs were acquired

from the MSigDB database (gsea-msigdb.org). Overlap genes in the

DEGs and MMRGs were visualized through “upsetR” and

“VennDiagram” packages.
2.2 Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed using the

“clusterProfiler”, with a criterion of p < 0.05. The results of GO and

KEGG were visualized through the “Goplots” package in R.
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2.3 Consensus clustering analysis

The MMRGs underwent univariate Cox regression analysis

using the SPSS (p < 0.05). Consensus clustering analysis was then

performed using R package ConsensusClusterPlus.
2.4 Establishment and evaluation of
prognostic risk model

To mitigate overfitting, LASSO regression analysis was

conducted on genes selected through univariate Cox regression

utilizing the R package “glmnet”, with the penalty function lambda

(0.5765) employed via cross-validation to identify and eliminate

overfitting genes. Finally, a multivariate Cox regression analysis was

performed on the retained genes using SPSS to establish a

prognostic risk model for MMRGs in CC. The risk score was

calculated using the obtained regression coefficients from the

multivariate Cox regression analysis, with a formula as follows:

risk score =o
n

i=1
expRNAi  ∗  CoefRNAi

Subsequently, the risk score for each sample in the TCGA

dataset was calculated. Based on their RiskScore values, samples

were categorized into high- and low-risk groups, with the median

RiskScore serving as the threshold. Kaplan-Meier (K-M) curves

and receiver operating characteristic (ROC) curves were then

generated for both groups using the R packages “survival” and

“survminer” to assess the predictive performance of the model.

The area under the ROC curve (AUC) for 1-, 3-, and 5-years

overall survival was calculated. The expression of prognostic

biomarkers in each sample was visualized in a heatmap using

the “ggplot2” package in R.
2.5 Construction of nomogram

Clinical characteristics encompass age, TNM stage, and

pathology stage. A nomogram was established based on these

clinical features and risk scores. The calibration curve depicted

the 45-degree dashed lines representing the best predictions of the

nomogram. The nomogram and calibration curve was constructed

using “rms”, “regplot”, and “survival” packages.
2.6 Evaluation of tumor immune
microenvironment landscape

The stromal score, immune score, ESTIMATE score, and tumor

purity were acquired using the ESTIMATE algorithm. They were

then compared between different risk groups using the Wilcoxon

rank-sum test. Immune cell abundance in the high- and low-risk

groups was detected using the MCPcounter algorithm.
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2.7 Immune checkpoint and
immunotherapy response analysis

Immune checkpoint-related genes in CC were searched from

the Checkpoint Therapeutic Target Database (CKTTD) (21).

Expression levels of these genes in different risk groups were

explored, and the correlation of them with risk score was

visualized using the R package “ggplot2”. Tumor immune

dysfunction and exclusion (TIDE) score was determined using

the TIDE algorithm. p < 0.05 indicates statistical significance.
2.8 Drug sensitivity analysis

CellMiner (https://discover.nci.nih.gov/cellminer) encompasses

60 distinct cell lines originating from 9 types of malignancies,

serving as essential screens in the development of novel anti-

tumor medications. It includes 262 drugs, either FDA-approved

or undergoing clinical trials (22). NCI60 drug response data were

acquired from the CellMiner tool. Drug sensitivity between different

risk groups was evaluated, and the association between drug

sensitivity and prognostic gene expression was assessed using

Pearson’s test.
2.9 Cell culture

Human cervical epithelial cells (Cat NO.: CP-H059) and

cervical cancer cells Hela S3 (Cat NO.: CL-0350) were purchased

fromWuhan Pricella Biotechnology Co., Ltd. All cells were cultured

in a specialized medium containing Ham’s F-12K supplemented

with 10% FBS and 1% P/S in an incubator at 37°C with 5% CO2. The

medium was changed every 2–3 days.
2.10 Quantitative real-time (qRT)-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen)

according to the manufacturer’s protocol. The concentration and

purity of the extracted RNA were assessed using a NanoDrop

spectrophotometer (Thermo Fisher Scientific, CA, USA). The

isolated RNA was then reverse-transcribed into cDNA with the

PrimeScript RT reagent kit (Takara, Dalian, China). The reaction

conditions were as follows: 42°C for 15 min and 95°C for 3 min. For

quantification, qRT-PCR was performed using the Hieff UNICON

Universal Blue qPCR SYBR Green Master Mix (Yeasen, Shanghai,

China) on the ABI7900HT System. The thermocycling program

was set as follows: initial denaturation at 95°C for 30 s, followed by

40 cycles of 95°C for 3 s and 60°C for 20 s. The relative mRNA

expression levels were determined using the 2-DDCt method, with

GAPDH serving as the internal control. The primer sequences were

designed by Gene Creat Bioengineering CO. (Wuhan, China) and

were shown in Supplementary Table S1.
frontiersin.org

https://discover.nci.nih.gov/cellminer
https://doi.org/10.3389/fonc.2025.1522910
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2025.1522910
2.11 Statistical analysis

Statistical analyses were conducted using R software version

4.2.0 and GraphPad Prism 8.0.2. Student t-test was used to

compare the differences between the two groups, and the

Pearson method was used for correlation analysis. All

experiments were performed in triplicate, and data were

analyzed using GraphPad Prism software. Statistical significance

was determined using a Student’s t-test. Statistical significance was

defined as p < 0.05.
Frontiers in Oncology 04
3 Results

3.1 Identification of prognosis-related
differentially expressed MMRGs in patients
with CC

Based on the TCGA dataset, 4353 DEGs were identified

between the tumor and normal samples. Volcano plot showed

1976 upregulated genes and 2377 downregulated genes in the

tumor group (Figure 1A). Additionally, 1234 MMRGs were
FIGURE 1

Identification of prognosis-related differentially expressed MMRGs in patients with CC. (A) Volcano plot of DEGs between tumor and normal samples
in the TCGA database. The blue dots represent downregulated genes and the red dots represent upregulated genes. (B) A total of 4353 DEGs and
1234 MMRGs were screened from public databases, and 259 intersecting genes were identified between the DEGs and MMRGs using the Venn
diagram. (C) Prognostic features were selected using the univariate Cox regression based on 259 differentially expressed MMRGs; p < 0.05. (D, E) GO
and KEGG enrichment analysis was performed on the genes identified by univariate Cox regression analysis. CC, cervical cancer; DEG, differentially
expressed gene; MMRG, mitochondrial metabolism-related gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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screened from the MsigDB database (Figure 1B). Venn diagram

revealed 259 overlapping genes in the DEGs and MMRGs

(Figure 1B). Then, the overlapping genes were seeded on the

univariate Cox regression, identifying 55 prognosis-related

MMRGs (Figure 1C). GO enrichment analysis showed that these

genes were associated with biological process, such as regulation of

small GTPase mediated signal transduction, small molecule

metabolic process, cellular lipid metabolic process, and small

molecule catabolic process. They were also related to cellular

components, including AP-type membrane coat adaptor complex,

cytosol, and membrane coat. As for molecular functions,

metallopeptidase activity, metalloendopeptidase activity, and

catalytic activity were enriched (Figure 1D). The enriched KEGG

pathways were related to environmental information processing,

metabolism, and organismal systems, such as ABC transporters,

fatty acid degradation, and bile secretion (Figure 1E).
3.2 Identification of two CC
molecular subtypes

Subsequently, consensus clustering analysis was performed on

the 55 prognosis-related MMRGs. The CDF curve showed that k =

2 is the optimal number of clusters (Figures 2A, B). Figure 2C

displayed the consensus values for different k values, with the
Frontiers in Oncology 05
highest consensus value at k = 2. Therefore, all samples were

clustered into two subtypes. The heatmap showed that the

samples were well separated, with a clear distinction between the

two subtypes (Figure 2D). K-M curves revealed that patients in C1

had significantly poorer OS than those in C2 (Figure 2E). Compared

to C2, patients in C1 had higher pathological stages (Table 1). These

results suggest that patients in C1 may have a worse prognosis and a

higher degree of malignancy.

We then compared the expression levels of 55 prognosis-related

MMRGs between C1 and C2. As shown in Figure 3A, 17MMRGs were

significantly overexpressed and 25MMRGs were downregulated in C1.

KEGG pathways analysis revealed that both overexpressed genes and

downregulated genes in C1 were associated with metabolic pathways

(Figures 3B, C). These results indicated that metabolic pathways may

be involved in the imbalance of these differentially expressed prognosis-

related genes to regulate the CC tumor microenvironment

and progression.
3.3 Establishment of the MM-related risk
model for patients with CC

To further explore the role of 55 MMRGs in CC prognosis, lasso

regression was performed on these genes, and 10 MMRGs were

identified (Figure 4A). The 10-round cross-validation was used to
FIGURE 2

Two molecular subtypes of CC were identified. (A) Consensus CDF curves for different values of k (k = 2 to 10). (B) Relative change in the area under
the CDF curve for different k values, indicating the optimal number of clusters. (C) Bar plot showing consensus values for different k values, with
different colors representing varying cluster numbers. (D) Consensus clustering heatmap showing the division of samples into two clusters (C1 and
C2) based on consensus matrix values. (E) K-M curve showed the overall survival time of CC patients between C1 and C2. CDF, cumulative
distribution function; CC, cervical cancer; K-M, Kaplan-Meier; HR, hazard ratio; CI, confidence interval; OS, overall survival.
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TABLE 1 Differences in stages and grades between two different subtypes.

Variables Missing Category Total (n=293) C1 (n=143) C2 (n=150) p

Stage, n(%) 6 I 158(55.052) 66(47.482) 92(62.162) 0.029

II 65(22.648) 35(25.180) 30(20.270)

III 42(14.634) 22(15.827) 20(13.514)

IV 22(7.666) 16(11.511) 6(4.054)

Grade, n(%) 28 1 19(7.170) 9(7.317) 10(7.042) 0.709

2 129(48.679) 63(51.220) 66(46.479)

3 117(44.151) 51(41.463) 66(46.479)

Huang et al. 10.3389/fonc.2025.1522910
determine the optimal values of the penalty parameter (Figure 4B).

Finally, using multivariate Cox regression, five genes, including BDH1,

MIR210, MSMO1, POLA1, and STARD3NL were identified (p < 0.05,

Figure 4C). Results revealed that BDH1 (HR = 0.71, 95%CI: 0.530-

0.951) and POLA1 (HR = 0.581, 95%CI: 0.357-0.946) were protective
Frontiers in Oncology 06
features, while MIR210 (HR = 1.702, 95%CI: 1.326-2.186), MSMO1

(HR = 1.592, 95%CI: 1.158-2.189), and STARD3NL (HR = 1.776, 95%

CI: 1.199-2.631) were harmful features (Figure 4C).

Furthermore, based on the expression levels of the above 5

prognostic genes, the risk score of each sample in the TCGA dataset
FIGURE 3

Expression and functions of prognosis-related genes in C1 and C2. (A) Expression levels of 55 prognosis-related genes in C1 and C2. (B) KEGG
pathways related to overexpressed genes in C1. (C) KEGG pathways related to downregulated genes in C1. *p < 0.05, **p < 0.01, ***p < 0.001,
“-”means no significant.
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was calculated as follows: risk score = -0.343*BDH1 + 0.532*MIR20

+ 0.465*MSMO1 + -0.543*POLA1 + 0.575*STARD3NL. CC

patients in the TCGA dataset were divided into high- and low-

risk groups based on the median risk score. The risk score

distribution of patients was visualized in Figure 5A. Our data

indicated that patients with high risk scores had worse prognoses

(Figure 5A). The expression of BDH1 and POLA1 was higher in the

low-risk group, while the expression of MIR210, MSMO1, and

STARD3NL was higher in the high-risk group (Figure 5A). The K-

M survival curve demonstrated superior survival outcomes for the

low-risk group compared to the high-risk group (Figure 5B). The

AUCs of the enrolled patients at 1-, 3-, and 5-year were 0.78, 0.77,

and 0.75, respectively (Figure 5C).

A nomogram was then constructed to show the performance of

risk score and clinical features on CC prognosis. As shown in

Figure 5D, the M stage, pathology stage, and risk score ranked in the

top three in terms of contribution to predicting CC, followed by T

stage, G stage, N stage, and age. The calibration curves of the

nomogram for the probability at 3- and 5-year indicated a good

clinical value (Figure 5E).
3.4 Functional enrichment analysis of DEGs
between high-risk and low-risk groups

Subsequently, DEGs between high- and low-risk groups were

identified, and the function of these genes was explored using GO

and KEGG enrichment analyses. The top five enriched GO

biological process terms were immune system process, response
Frontiers in Oncology 07
to stress, regulation of response to stimulus, response to chemical,

and system development (Figure 6A). The top five GO cellular

component terms included extracellular region, vesicle,

endomembrane system, intrinsic component of membrane, and

integral component of membrane (Figure 6B). The GO molecular

function terms were mainly enriched in signaling receptor binding,

protein-containing complex binding, molecular function regulator,

anion binding, and small molecule binding (Figure 6C). The KEGG

pathways were major enriched in cell adhesion molecules, Th17 cell

differentiation, IL-17 signaling pathway, T cell receptor signaling

pathway, and MAPK signaling pathway (Figure 6D). These results

revealed that DEGs between high- and low-risk cohorts were tightly

associated with tumor immune microenvironment.
3.5 Tumor immune
microenvironment analysis

Given the above results that differentially expressed prognosis-

related genes were related to metabolic pathways and that DEGs in

high risk vs. low risk were related to the immune system process, we

then explore the immune microenvironment between different risk

groups. Our data showed that immune and ESTIMATE scores in

the low-risk group were significantly higher than those in the high-

risk group (p < 0.05, Figure 7A), and the high-risk group had a

higher tumor purity (Figure 7B). Additionally, we observed five

immune cells were significantly infiltrated in the low-risk group,

including T cells, CD8 T cells, cytotoxic lymphocytes, B lineage, and

myeloid dendritic cells (Figure 7C).
FIGURE 4

Identification of prognostic genes in CC. (A, B) Lasso Cox regression identified 10 genes related to the prognosis of patients with CC, and 10-round
cross-validation was performed to detect the optimal values of the penalty parameter. (C) Multivariate Cox regression identified 5 prognostic genes
based on the above 10 genes; p < 0.05. CC, cervical cancer; MMRG, mitochondrial metabolism-related gene.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1522910
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2025.1522910
The effector function of CD8 T cells is regulated by immune

checkpoints. Due to the differences in the levels of CD8 T cells

between high and low risk groups, we further analyzed the

differences in immune checkpoint gene expression between high

and low risk groups. Among 13 checkpoint-related genes, 7 genes

were observed to be significantly correlated to the risk score, and all

of them were downregulated in the high-risk group, including

CDK1, EZH2, ICOS, IDO1, PLK1, TIGIT, and TLR8 (p < 0.05,

Figure 8A). Further research showed that the high-risk group had a

higher TIDE score and exclusion score than the low-risk group

(Figure 8B). These results suggest that the high risk group is

associated with an immunosuppressive environment.
Frontiers in Oncology 08
3.6 Expression of hub genes

To further explore whether the differences in themicroenvironment

between different groups are related to the hub genes, we examined the

expression of these hub genes among different groups. Compared to the

low-risk group, BDH1 and POLA1 were downregulated in the high-risk

group, while MIR210, MSMO1, and STARD3NL were upregulated

(Figure 9A). Similarly, in the C1 group, BDH1 and POLA1 were

downregulated, while MIR210, MSMO1, and STARD3NL were

upregulated (Figure 9B). These results are consistent with previous

findings, indicating a higher mortality risk and therefore a poorer

prognosis in the C1 group. Furthermore, we conducted cell
FIGURE 5

Assessment of MM-related risk model for CC. (A) Risk score distribution, OS time of each patient in the TCGA cohort, and heatmap of the five
prognostic genes. (B) Kaplan-Meier curve revealed the survival probability of patients in different risk groups. (C) The ROC curve of the risk model at
1-, 3-, and 5-year. Red represents 1-year, green represents 3-year, and blue represents 5-year. (D) Nomogram for predicting 1-, 3-, and 5-year OS
time for CC patients in the TCGA database. (E) Calibration curves of the nomogram observed 1-, 3-, and 5-year outcomes. MM, mitochondrial
metabolism; CC, cervical cancer; OS, overall survival; ROC, receiver operating characteristic.
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experiments to validate the expression of these genes. Compared to

human cervical epithelial cells, BDH1 and POLA1 were downregulated,

while MIR210, MSMO1, and STARD3NL were upregulated in the CC

cell line Hela S3 cells (Figure 9C). These findings suggest that the

expression of these five hub genes may be closely related to tumor

immune-metabolic regulation.
3.7 Drug sensitivity analysis

The correlation between the expression levels of 5 prognostic

genes and drug sensitivity was further investigated utilizing the

CellMiner database. The top three drugs significantly correlated

with the expression of each gene are shown in Supplementary

Figure S1. BDH1 is positively associated with ciclosporin,

Raloxifene, and Tamoxifen (Supplementary Figure S1A). MIR210

was positively associated with Cediranib, ergenyl, and Motesanib

(Supplementary Figure S1B). Similarly, MSMO1 displayed a

positive correlation with Amiodarone, uridin, and Zoledronate

(Supplementary Figure S1C), and POLA1 was positively

associated with Methylprednisolone, PX-316, and ZM-336372

(Supplementary Figure S1D). STARD3NL showed a positive

association with JNJ-38877605 and Lovastatin while displaying a

negative association with Fluorouracil (Supplementary Figure S1E).

Among these drugs, the high-risk group was significantly sensitized

to certain drugs, including ciclosporin, Raloxifene, Tamoxifen,

Zoledronate, and Lovastatin (Supplementary Figure S2).
Frontiers in Oncology 09
4 Discussion

Although advances in the treatment of CC have been made, its

poor prognosis still poses a significant threat to women’s health (4).

Recent studies suggest that MM is essential for tumor growth, and

some clinical trials have demonstrated the feasibility of modulating

MM to treat cancer (23). The bioinformatic research on MM in CC

is limited. Therefore, this study constructed a prognostic model

based on five MMRGs for CC and explored their association with

the immune microenvironment.

Metabolic remodeling is one of the hallmarks of cancer. Current

evidence indicates that MM-related pathways are reprogrammed in

cancer, playing crucial roles in bioenergetics, biosynthesis, and

redox homeostasis (24). The regulation of redox balance in tumor

cells is influenced by their significantly increased glucose uptake,

which produces TCA cycle metabolites. These metabolites supply

electrons to the mitochondrial electron transport chain (ETC) (25).

Inhibiting ETC-related genes could heighten the vulnerability of

cancer cells to glucose depletion, consequently impeding tumor

progression (26). MMRGs have been considered prognostic

markers for various cancers, including breast cancer (27),

osteosarcoma (28), and ovarian cancer (29). Based on the

MMRGs. the present study identified two molecular subtypes of

CC, and C1 showed shorter OS time than C2. Additionally, 5 key

prognostic MMRGs in CC were identified, including BDH1,

MIR210, MSMO1, POLA1, and STARD3NL. BDH1 is a key

catalytic enzyme in ketogenesis, catalyzing the reversible
FIGURE 6

Functions of DEGs between high and low risk groups. (A–C) GO enrichment analysis was performed on DEGs in high and low risk groups, including
biological process (A), cellular component (B), and molecular function (C). (D) KEGG pathways related to DEGs in high and low risk groups. DEG,
differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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conversion of acetoacetate to beta-hydroxybutyrate (30). Within the

mitochondria, ketone bodies undergo oxidation via the TCA cycle,

leading to the generation of acetyl-CoA and NADH.

Downregulat ion of BDH1 is a prognost ic marker in

hepatocellular carcinoma (31). POLA1 encodes DNA polymerase,

which facilitates DNA replication and repair, ensuring the

maintenance of mitochondrial genome integrity. POLA1 has

antitumor activity in inhibiting cancer cell proliferation and

inducing apoptosis (32). A previous study demonstrates that

POLA overexpression is associated with the poor prognosis of CC

patients (33). MIR210 originates from mitochondria, its expression

correlates with hypoxia gene signatures, and it could reduce the
Frontiers in Oncology 10
activity of proteins controlling MM (34). Nakada et al. points out

that MIR210 induces energy metabolism shift from OXPHOS to

glycolysis via acting on the mitochondrial inner membrane (35).

MSMO1 catalyzes the demethylation of C4-methyl sterol, a critical

step in cholesterol biosynthesis within mitochondria. Abnormal

expression of MSMO1 would lead to CC (36). STARD3NL is

involved in MM by mediating the transfer of cholesterol between

membranes, potentially contributing to lipid metabolism and

homeostasis within mitochondria (37). The risk score constructed

using these five MMRGs exhibits good prognostic function for

patients with CC. Patients within the low-risk group have longer

survival time.
FIGURE 7

Different immune profiles between different risk groups in the TCGA dataset. (A) Stromal, immune, and ESTIMATE scores between the low- and
high-risk groups. (B) Tumor purity between the low- and high-risk groups. (C) Cell fraction between the low- and high-risk groups. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significant.
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Furthermore, KEGG analysis of DEGs in the normal and tumor

groups was enriched for several metabolic pathways. Overexpressed

genes and downregulated genes in C1 were also associated with

metabolic pathways. Metabolism and immunity are usually

inextricably linked. After further analyzing the function of DEGs in

high- and low-risk populations, we found that these DEGs are primarily

associated with the immune system, including the Th17 cell differential,

IL-17 signaling pathway, andMAPK signaling pathway. Th17 cells are a

subset of T-helper cells that produce IL-17, a pro-inflammatory cytokine

(38). IL-17 acts on tumor cells and various components of the tumor

microenvironment to promote tumor growth, angiogenesis, and

metastasis (39). It can also induce the production of other pro-

inflammatory cytokines and chemokines, creating a pro-tumor

inflammatory environment (40). The MAPK signaling pathway is a

crucial intracellular signaling cascade involved in cell proliferation,

survival, and differentiation (41). Activation of MAPK signaling can

occur downstream of IL-17 receptor engagement. In breast cancer, the

Th17/IL-17/MAPK cascade signaling pathway plays a multifaceted role

in cancer progression (42). Previous studies have indicated that MM

abnormalities can influence tumor cell antigen presentation and

processing, thereby aiding tumor cells in evading recognition and

attack by the immune system (43). Activation of the IL-17/MAPK

signaling pathway can lead to an increase in immunosuppressive cells

such as regulatory T cells and myeloid-derived suppressor cells

(MDSCs), thereby inhibiting the anti-tumor immune response.

Additionally, activation of the IL-17/MAPK signaling pathway may
Frontiers in Oncology 11
result in changes in tumor cell surface antigens, making tumor cells less

recognizable and susceptible to clearance by the immune system (44).

Th17 and theMAPK signaling pathway have been demonstrated to play

a pro-econogenic role in promoting CC (45, 46). Therefore, we

hypothesize that MMRGs may enhance tumor immune evasion by

modulating the IL-17/MAPK signaling pathway in cervical cancer.

Given the crucial role of the immune microenvironment in

cancer progression, we further investigated differences in immune

cell infiltration and immune scores among individuals at different

risk groups. The results indicated that individuals at low risk had

higher immune scores, and correspondingly, we observed more

immune cell infiltration in the low-risk group, including T cells,

CD8 T cells, cytotoxic lymphocytes, B lineage cells, and myeloid

dendritic cells. These findings demonstrate the correlation between

MM-related prognostic models and immune infiltration in CC. To

regulate immune responses, PD-L1 was expressed in these immune

cells to maintain immune homeostasis and protect the body from

foreign pathogens (47). Furthermore, analysis of immune

checkpoint-related genes revealed higher expression of immune

checkpoints in the low-risk group, suggesting better efficacy of

immune therapy in this group compared to the high-risk group.

Among the identified immune checkpoint genes, TIGIT showed the

most significant difference between the two groups. TIGIT is a

crucial target in tumor immunotherapy, as it can prevent NK cells

from releasing tumor antigens, impair dendritic cell-induced T cell

priming, or inhibit CD8+ T cell-mediated killing of cancer cells
FIGURE 8

Analysis of immune checkpoints between the low- and high-risk groups. (A) Expression levels of immune checkpoint-related genes between the
low- and high-risk groups. (B) TIDE score between the low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. TIDE, tumor immune
dysfunction and exclusion; MSI, microsatellite instability.
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(48). This is consistent with the findings of Han et al., suggesting

that TIGIT may kill cancer cells in the low-risk group by reducing

dendritic cell-triggered T-cell priming (49). However, the specific

mechanism of action of TIGIT in cervical cancer remains to be

further elucidated. Additionally, Our results revealed that BDH1

expression is positively related to ciclosporin, a typical

immunosuppressive drug with an anti-tumor effect (50).

Importantly, the drug sensitivity of ciclosporin is higher in the

high-risk group, indicating that CC patients have better outcomes

with this drug. Research suggests that alterations in MM within

cancer cells may also modulate drug sensitivity and resistance

through the MAPK signaling pathway (51). Whether MM-
Frontiers in Oncology 12
modulated MAPK signaling influences the drug sensitivity of

ciclosporin needs further research.
5 Conclusion

In conclusion, this study elucidated the significance of MM in CC

progression and its interplay with the immune microenvironment. By

constructing a prognostic model based on five MMRGs (BDH1,

MIR210, MSMO1, POLA1, and STARD3NL) and exploring their

association with immune infiltration, significant insights were gained

into CC treatment. Furthermore, the study highlighted the potential
FIGURE 9

Expression levels of 5 MMRGs in different groups. (A) Expression levels of 5 prognostic genes in the low- and high-risk groups. (B) Expression levels
of 5 prognostic genes in C1 and C2. (C) Expression levels of 5 prognostic genes in human cervical epithelial cells and CC cells. *p < 0.05, **p < 0.01,
***p < 0.001. MMRG, mitochondrial metabolism-related gene; CC, cervical cancer.
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involvement of the Th17/IL-17/MAPK signaling pathway in mediating

immune escape in CC, possibly influenced by MMRGs. Additionally,

the analysis of immune checkpoint-related genes suggested a potential

for improved efficacy of immune therapy in the low-risk group, with

TIGIT emerging as a significant target. These findings underscore the

intricate relationship between MM, immune regulation, and

therapeutic outcomes in CC, providing valuable insights for the

development of novel prognostic markers and therapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Correlation between predicted drugs and prognostic genes. (A) Correlation
of BDH1 with ciclosporin, Raloxifene, and Tamoxifen. (B) Correlation of

MIR210 with Cediranib, ergenyl, and Motesanib. (C) Correlation of MSMO1

with Amiodarone, uridin, and Zoledronate. (D) Correlation of POLA1 with
Methylprednisolone, PX-316, and ZM-336372. (E) Correlation of STARD3NL

with JNJ-38877605, Lovastatin, and Fluorouracil.

SUPPLEMENTARY FIGURE 2

Drug sensitivity between different risk groups. *p < 0.05, **p < 0.01, ns,

no significant.
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