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radiomics and heterogeneity
analysis in predicting
luminal and non-luminal
subtypes of breast cancer
Ming Yao1, Dingli Ye1, Yuchong Wang2, Tongxu Shen1,
Jieqiong Yan1, Da Zou3 and Shuangyan Sun1*

1Department of Radiology, Jilin Cancer Hospital, Changchun, China, 2Department of Radiology,
The First Hospital of Jilin University, Changchun, China, 3Department of Radiology, Pharmaceuticals
Division, Bayer Healthcare Co. Ltd, Beijing, China
Purpose: The aim of this study was to explore the application value of dynamic

contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics and

heterogeneity analysis in the differentiation of molecular subtypes of luminal

and non-luminal breast cancer.

Methods: In this retrospective study, 388 female breast cancer patients (48.37 ±

9.41 years) with luminal (n = 190) and non-luminal (n = 198) molecular subtypes

who received surgical treatment at Jilin Cancer Hospital were recruited from

January 2019 to June 2023. All patients underwent breast MRI scan and DCE

scan before surgery. The patients were then divided into a training set (n = 272)

and a validation set (n = 116) in a 7:3 ratio. The three-dimensional texture feature

parameters of the breast lesion areas were extracted. Four tumor heterogeneity

parameters, including type I curve proportion, type II curve proportion, type III

curve proportion and tumor heterogeneity values were calculated and

normalized. Five machine learning (ML) models, including the logistic

regression, naive Bayes algorithm (NB), k-nearest neighbor (KNN), decision tree

algorithm (DT) and extreme gradient boosting (XGBoost) model were used to

process the training data and were further validated. The best ML model was

selected according to the performance in the validation set.

Results: In luminal subtype breast lesions, type III curve proportion and

heterogeneity index were significantly lower than the corresponding

parameters of the non-luminal subtype lesions both in the training set and

validation set. Eight features together with four heterogeneity-related

parameters with significant differences between luminal and non-luminal

groups were retained as radiomics signatures for constructing the prediction

model. The logistic regression ML model achieved the best performance in the

validation set with the highest area under the curve value (0.93), highest accuracy

(86.94%), sensitivity (87.55%) and specificity (86.25%).
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Conclusion: The radiomics and heterogeneity analysis based on the DCE-MRI

exhibit good application value in discriminating luminal and non-luminal subtype

breast cancer. The logistic regression model demonstrates the best predictive

performance among various machine learning models.
KEYWORDS

radiomics, heterogeneity analysis, molecular subtype, breast cancer, magnetic
resonance imaging
1 Introduction

Breast cancer is the most common malignant tumor in women

in China and worldwide (1). According to global cancer statistics in

2020, breast cancer accounts for 30% of female cancer cases and it is

the second leading cause of cancer deaths in female (2). Breast

cancer is a highly heterogeneous neoplasm, with different molecular

subtypes exhibiting distinct biological behaviors. According to the

St. Gallen consensus, breast cancer can be divided into luminal and

non-luminal subtypes based on the expression levels of hormone

receptors, which are estrogen receptor (ER), progesterone receptor

(PR) and human epidermal growth factor receptor (HER2) (3).

Specifically, the luminal subtype can be further subdivided into

luminal A and luminal B subtypes (4).

The treatment strategies and prognosis of luminal and non-

luminal breast cancer differ significantly. Therefore, the accurate

differentiation of breast cancer subtypes preoperatively is important

in the establishment of clinical treatment plans and prognostic

evaluations. Conventionally, the immunohistochemistry (IHC)

method was used to determine the molecular subtypes. However,

the invasive biopsy or surgical surgery procedure is required for

IHCmeasurements, which makes it very inconvenient, burdensome

and may cause infection for breast cancer patients.

Heterogeneity analysis refers to the quantitative assessment of

tissues or lesion areas in medical images to reveal the complexity and

diversity of their internal structures. This study conducted a

comparative analysis of dynamic enhanced breast cancer MRI

images, quantitatively evaluating the contrast agent enhancement

patterns within lesions at the voxel level, and calculating the

heterogeneity of the lesions through a heterogeneity quantification

formula. Medical image heterogeneity analysis plays a significant role

in disease diagnosis, prognosis evaluation, treatment response

monitoring, and research into disease pathogenesis. In the

diagnosis of lung cancer, heterogeneity analysis of PET-CT images

can assess the metabolic activity of tumors, providing a basis for

tumor staging and prognosis evaluation. In the treatment of breast

cancer, heterogeneity analysis of MRI images can monitor the

tumor’s response to chemotherapy drugs and timely adjust

treatment plans (5, 6). However, substantial evidence has been

reported on treatment failure and disease relapse originating from

intratumor heterogeneity (ITH) (7–9). Radiomics can be used to
02
extract high-throughput quantitative imaging features that depict

gray-level distribution and texture variation patterns (10, 11). To the

best of our knowledge, characterization and prediction of molecular

subtypes of breast cancer using combined radiomics and

heterogeneity analysis have not been studied. In this study,

radiomics and heterogeneity analysis is applied in dynamic

contrast-enhanced magnetic resonance imaging (DCE-MRI)

examinations to explore its feasibility in the prediction of molecular

subtypes of luminal and non-luminal breast cancer non-invasively

and quantitatively.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the ethics committee

of Jilin Cancer Hospital, and the requirement for informed consent

was waived. This retrospective study was conducted based on the

pathological and imaging data of 388 female breast cancer patients

who underwent surgeries at Jilin Cancer Hospital from January

2019 to June 2023. The ages of the patients were ranging from 24 to

74 years old, with a mean age of (48.37 ± 9.41) years. Most of the

patients had undergone ultrasound and breast X-ray

mammography examinations prior to MRI examinations. The

inclusion criteria were: (1) all the recruited female patients

diagnosed with breast cancer underwent surgeries; (2) all patients

underwent breast MRI examination within two weeks before

surgery; (3) there were pathological results that could diagnose

the molecular subtypes of breast cancer. The exclusion criteria were

as follows: (1) history of other malignant tumors in the body; (2)

presence of significant metal artifacts or motion artifacts in MRI

images. The flowchart of patient inclusion and exclusion criteria are

shown in Figure 1.
2.2 MRI image acquisition

All breast MRI examinations were carried out on a Siemens

Espree 1.5-T and a Philips Ingenia 3.0-T MRI scanner with a

dedicated 16-channel breast MRI coil with patients in prone
frontiersin.org
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position. Patients’ both arms were raised with the head entering the

scanner first. The intravenous bolus injection of gadolinium-based

contrast agent was performed by an injector with total volume of 15

mL and a flow rate of 2.5 mL/s. It is followed by a 15 mL of saline

chaser with the same flow rate.

The T1-weighted fat-suppressed sequence was performed 90

seconds after the onset of injection of contrast agent to obtain the

most prominent enhancement of the tumor. The sequence was

conducted with the following parameters: For the Siemens Espree

1.5-T scanner, TR = 4.65 ms, TE = 1.44 ms, flip angle = 6°, field of

view (FOV) = 340 × 340 mm2, matrix size = 448 × 336, slice

thickness = 0.9 mm, slice gap = 0.18 mm; For the Philips Ingenia

3.0-T scanner, TR = 4.6 ms, TE = 2.0 ms, flip angle = 12°, FOV =

300 × 380 mm2, matrix size = 300 × 380, slice thickness = 1 mm,

with no slice gap.
2.3 Lesion segmentation, extraction of
radiomics features and heterogeneity
analysis

Patients were divided into two groups based on their

pathological results. One group consists of luminal-type breast

cancer patients, and the other group consists of non-luminal-type

breast cancer patients. Since the retrospectively recruited patients

were examined on two different MRI scanners, it is necessary that

all acquired images were standardized and preprocessed before the

feature extraction stage to eliminate the influence of inconsistent

imaging parameters between two scanners. Specifically, all images
Frontiers in Oncology 03
were resampled using 1 mm × 1 mm × 1 mm voxels to generate

standardized images with consistent slice thickness and spacing.

Two physicians with more than 5 years of experience in breast MRI

diagnosis analyzed the preprocessed images and determined the

lesion boundaries. Both physicians were blinded to patients’

clinical characteristics.

For breast tumor segmentation, the contrast-enhanced breast

images with the most intense enhancement were analyzed by two

radiologists with more than 5 years of experience who were blinded

to the clinical outcomes to determine the lesions boundaries of each

slice. The lesions region of interest (ROI) should include as much

solid area as possible, while avoiding areas of vessels, cystic changes,

necrosis, haemorrhage, and oedema. The ITK-SNAP software

(version 3.6.0) was used to manually delineate and segment the

lesions ROI along the tumor boundary of each consecutive slice

covering the whole tumor (12). Thus, a three-dimensional volume

of interest (VOI) of the breast tumor was obtained, as shown in

Figure 2. For extraction of radiomics features, the AK software

(Artificial Intelligence Kit, GE Healthcare, USA) was then employed

to extract three-dimensional (3D) texture feature parameters from

the lesion area, followed by normalization using the Min-Max

scaling algorithm.

Dynamic enhanced MRI heterogeneity analysis utilizes image

information from different time points in the lesion area to assess

the heterogeneity of the lesion area. This method not only reveals

the complexity of the internal structure of the lesion but also

provides important information about the distribution of lesion

vasculature and hemodynamics. For heterogeneity analysis, the

MITK software (The Medical Imaging Interaction Toolkit) was
FIGURE 1

Flow chart of patient inclusion and exclusion criteria.
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used to calculate the signal value of each voxel in the lesion area in

MRI images (13). The data from the enhanced phase, initial 90-

second phase, final phase together with mask of segmented lesion

ROI area were imported into the MITK software. Four

heterogeneity feature parameters were calculated, which were type

I curve proportion, type II curve proportion, type III curve

proportion and tumor heterogeneity values. Different types of

DCE-MRI curves can reflect the metabolic and heterogeneous

status of the tumor. The fourth parameter is calculated by the

following Equation 1. The flowchart of radiomics and heterogeneity

analysis was shown in Figure 3.

H = −o3
k=1Pk · logðPkÞ (1)
2.4 Radiomics feature selection and
machine learning models

The calculated radiomics feature data, heterogeneous analysis

data and clinical information were standardized by Standard Scaler

algorithm as depicted in Equation 2. Then, for each feature, the

multiple logistic regression analysis was performed. The cutoff value

was set as 0.05. The values were retained when P < 0.05.The

radiomics features with significant differences in feature values

were used to develop prediction models for discriminating

luminal and non-luminal breast cancer. The heat maps of the

multivariate logistic regression analysis in the training and

validation sets were shown in Figure 4.

X* =
X − m
s

(2)
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The dataset was then divided into the training set and validation

set in a 7:3 ratio, which was 272 patients in the training set and 116

patients in the validation set. During the ML model training stage,

five ML algorithms were employed to process the data, including

the logistic regression, naive Bayes (NB), k-nearest neighbor

(KNN), decision tree (DT), and extreme gradient boosting

(XGBoost) models. The results of the validation set were used to

evaluate the performance of the ML classifiers. The best classifier

model was selected according to the accuracy of the validation set.
2.5 Statistical analysis

Statistical analysis was performed using SPSS software (version

25.0, IBM Corp., Armonk, NY, USA). Continuous data were expressed

as mean ± standard deviation while categorical data were presented as

frequencies. The differences in breast cancer molecular subtypes

between two groups were compared using the c2 test. Regarding the

radiomics feature consistency, inter-observer reliability was evaluated

by interclass correlation coefficient (ICC) tests. The ICC is a value

between 0 and 1. An ICC value below 0.5 indicates poor reliability,

while value in the range 0.5-0.75 indicating moderate reliability, 0.75-

0.9 demonstrating good reliability, and value above 0.9 indicating

excellent reliability. Predictive performance of the machine learning

models on validation sets was evaluated and compared using the area

under the curve (AUC) values through receiver operating characteristic

(ROC) analysis. In addition, the accuracy, sensitivity and specificity

were calculated from the confusion matrices for assessments. The

differences in age between the two groups were compared using

student’s t-test. A significance level of P < 0.05 was considered

statistically significant.
FIGURE 2

Segmentation of tumor area on DCE-MRI images of a 28-year-old female patient diagnosed with luminal type breast cancer (A-E) and a 52-year-old
female patient diagnosed with non-luminal type breast cancer (F-J). (A, F) The largest slice of the lesion in axial T1WI fat-suppressed images of initial
90-seconds phase. (B, G) Delineated and then segmented lesion ROI. (C, H) Segmented lesion ROI in coronal T1WI fat-suppressed images.
(D, I) Segmented lesion ROI in sagittal T1WI fat-suppressed images. (E, J) 3D view of the segmented lesion ROI.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1523507
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yao et al. 10.3389/fonc.2025.1523507
FIGURE 4

Heat maps of multivariate logistic regression analysis of machine learning model in training set (A) and validation set (B).
FIGURE 3

Flowchart of radiomics and heterogeneity analysis.
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3 Results

A total of 388 female breast cancer patients were enrolled in this

study. In the luminal breast cancer group, there were 190 patients

ranging from 25 to 74 years old with an average age of 47.11 ± 8.74

years old. In the non-luminal group, there were 198 patients

ranging from 24 to 74 years old with an average age of 48.96 ±

9.66 years old. The age difference between the two groups was not

statistically significant (P = 0.074).

The enrolled patients were then divided into a training set and a

validation set in a 7:3 ratio, which were 272 patients in the training

set (mean age: 46.65 ± 9.64 years; range: 25-74 years) and 116

patients (mean age: 45.60 ± 8.77 years; range: 24-74 years) in the

validation set. For the luminal subtype breast cancer group, type III

curve proportion and heterogeneity index were significantly lower

than the corresponding parameters of the non-luminal subtype

group both in the training set and validation set (type III curve

proportion: 0.38 ± 0.31 vs. 0.45 ± 0.32, *P = 0.033, in training set;

0.39 ± 0.18 vs. 0.46 ± 0.22, *P = 0.041, in validation set;

heterogeneity index: 0.52 ± 0.26 vs. 0.65 ± 0.30, *P = 0.015, in

training set; 0.53 ± 0.23 vs. 0.63 ± 0.29, *P = 0.010, in validation set).

The clinical information of the patients, conventional imaging

characteristics and heterogeneity analysis values of the lesions in

the training and validation sets are shown in Table 1.

A total of 396 texture features as well as 4 heterogeneous indices

were extracted from the 3D region of the lesions. Finally, 8 features

with significant differences between luminal and non-luminal breast

cancer groups were retained for the prediction model, as presented

in Table 2. For 8 texture features selected for the prediction model

to differentiate luminal and non-luminal breast lesions, the ICC

values of the inter-observer reliability of our research were 0.88-

0.92, which suggested good consistency of radiomics features
Frontiers in Oncology 06
between two readers and the reliability of VOI delineation. The

correlation heatmaps of the 8 selected features in the training and

validation sets were shown in Figure 5.

The ROC analysis of the variousMLmodels applied in the training

and validation sets are shown in Figure 6. The best performance was

achieved by the logistic regression model in discrimination of luminal

and non-luminal breast cancer. The logistic regression ML model in

the training set had the mean AUC value of 0.92 with a 95% confidence

interval (CI) of 0.90 to 0.95, accuracy of 86.17%, sensitivity of 83.54%

and specificity 88.73%. In the validation set, the logistic regression ML

model achieved the best performance with the highest AUC value (0.93

with a 95% CI of 0.91 to 0.94), highest accuracy (86.94%), highest

sensitivity (87.55%) and the highest specificity (86.25%), as shown in

Table 3. The precision, recall and F1 score of each MLmodel were also

calculated and shown in Table 3. A total of 45 breast cancer patients

from Jilin Cancer Hospital were used as the external validation set.

There were 25 patients with luminal type breast cancer and 20 non-

luminal type breast cancer patients. The ROC analysis of the 5machine

learning models applied in the external validation set were conducted.

The logistic regression ML model also achieved the best diagnostic

performance with the highest AUC value of 0.88 and accuracy of 0.84.

The practicability of logistic regression ML model is confirmed by

external validation.

The ROC curve and nomogram of the logistic regression model

in the training and validation sets were shown in Figure 7.

According to the results shown in Figure 7, if the total point is

less than 210 points, the patient is categorized as low risk patient

(luminal subtype); whereas if the total point is greater than 210

points, the patient is categorized as high risk patient (non-luminal

subtype). The decision curves of logistic regression model for

discriminating luminal and non-luminal breast cancer in training

and validation sets were demonstrated in Figure 8. When the
TABLE 1 Clinical information of the patients, conventional imaging characteristics and heterogeneity analysis values of the lesions.

Feature

Training set Validation set

PLuminal
group (n=133)

Non-luminal
group (n=139)

P Luminal
group (n=57)

Non-luminal
group (n=59)

P

Age 45.6 ± 9.03 47.7 ± 10.25 0.043 44.3 ± 9.44 46.9 ± 8.10 0.051 0.858

Long diameter of the lesion 1.21 ± 0.65 1.40 ± 0.57 0.046 1.20 ± 0.59 1.50 ± 0.66 0.109 0.096

Number of lesions 0.861 0.788 0.806

Single shot 110 (82.7%) 105 (75.5%) 47 (82.5%) 49 (83.1%)

Pilosity 23 (17.3%) 34 (24.5%) 10 (17.5%) 10 (16.9%)

Calcium state 0.851 0.886 0.861

Calcification 56 (42.1%) 64 (46.0%) 22 (38.6%) 23 (39.0%)

Without calcification 77 (57.9%) 75 (54.0%) 35 (61.4%) 36 (61.0%)

Type I curve proportion 0.09 ± 0.09 0.07 ± 0.07 0.524 0.10 ± 0.09 0.08 ± 0.08 0.812 0.613

Type II curve proportion 0.53 ± 0.27 0.51 ± 0.28 0.591 0.52 ± 0.29 0.54 ± 0.30 0.701 0.688

Type III curve proportion 0.38 ± 0.31 0.45 ± 0.32 0.033 0.39 ± 0.18 0.46 ± 0.22 0.041 0.039

Heterogeneity quantification value 0.52 ± 0.26 0.65 ± 0.30 0.015 0.53 ± 0.23 0.63 ± 0.29 0.010 0.012
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threshold was set in the range of 0.13 to 0.61, the net benefit curve

was above the reference line, indicating a positive effect of the model

on clinical decision making.
4 Discussion

In this retrospective study, we validated the application value of

DCE-MRI radiomics and heterogeneity analysis in the

differentiation of molecular subtypes of luminal and non-luminal

breast cancer. Five machine learning models were used to process

the data during the model training stage. The logistic regression

model demonstrated the best predictive performance among

various machine learning models. It showed the capability in

distinguishing luminal and non-luminal subtypes with satisfactory

reproducibility and reliability.

Different molecular subtypes of breast cancer demonstrate

different biological behaviours, including significant differences in
Frontiers in Oncology 07
pathological histotype, immunophenotype, treatment response,

lymph node metastasis and prognosis (14, 15). Recent studies

have found that ER and PR status are important markers for

determination of breast cancer subtypes, and they are of great

value in the evaluation of the response to endocrine therapy and

prognosis of breast tumors (16). According to the expression of ER

and PR, breast cancer can be divided into the luminal and non-

luminal subtypes. The luminal subtype breast cancer is with lower

malignancy and recurrence risks, and it is more likely to benefit

from endocrine therapy and targeted therapy. Generally, patients

with luminal subtype breast cancer have a good prognosis (17, 18).

The non-luminal subtype breast cancer demonstrates worse

prognosis and are with a tendency for axillary lymph node

metastasis. It has a higher malignancy and recurrence rate than the

luminal subtype. Also, the non-luminal subtype breast cancer is

relatively insensitive to endocrine therapy or targeted therapy, and

it is generally associated with poor prognosis (19–22). Zuo et al.

followed 4531 breast cancer patients in 4 hospitals in Beijing and

found that the 5-year survival rates of non-luminal subtype breast

cancer patients were significantly lower than those of luminal patients

(23). Therefore, accurately and preoperatively determination of the

molecular subtype of breast cancer is critical to the precise and

effective treatment planning and prognosis management.

At present, the determination of the subtypes of breast cancer

mainly relies on the IHC measurement of biopsy specimens.

However, the conventional biopsy method is invasive, time-

consuming and there is a risk of causing subsequent

inflammation. Moreover, due to the heterogeneity within the

tumor, in the biopsy process only a small portion of lesion area is

sampled and examined. Thus it may not be able represent the whole

lesion and may bring error and uncertainty (24–26). The ultrasound

and breast X-ray photography are common imaging methods for

preoperative evaluation of breast cancer. However, for ultrasound
FIGURE 5

The correlation heatmaps of the 8 selected features in the training set (A) and validation set (B).
TABLE 2 The eight selected features for the prediction model with
significance values.

No. Feature Name P

1 HaralickCorrelation_angle0_offset1 0.0

2 Correlation_angle90_offset1 0.0

3 GLCMEntropy_AllDirection_offset4 0.0

4 ClusterShade_angle45_offset4 0.033

5 HaralickCorrelation_AllDirection_offset7_SD 0.013

6 ClusterShade_AllDirection_offset1_SD 0.007

7 Heterogeneity 0.012

8 Washout 0.039
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examination method, the specificity is low, and it mainly relies on

operator’s experience (27). As a consequence, there are high false

positive rates in ultrasound breast imaging. For breast X-ray

photography, there is low sensitivity for dense breast patients. As

a result, these two examination methods are limited in clinical

applications. With the development of radiomics and artificial

intelligence (AI) in the medical field, the MRI plays a more and

more important role in the diagnosis and treatment of breast

cancer. The MRI radiomics can provide histopathological

information non-invasively with the help of radiomics. The

radiomics method can also eliminate the influence of observers’

subjective interpretations of diagnostic results (28).

The DCE-MRI is an effective method in diagnosis of breast

cancer by assessing tumor morphology and hemodynamics, which
Frontiers in Oncology 08
can provide images with high temporal resolution, high spatial

resolution and signal-to-noise (SNR) ratio. Recently, the study of

radiomic prediction model based on breast DCE-MRI in

determination of molecular subtypes of breast cancer is becoming

more and more popular (29). Sheng et al. studied 190 Chinese

women with invasive ductal breast cancer, the results showed that

the combination of radiomics characteristics based on DCE-MRI

and clinical data was able to predict molecular subtypes of invasive

ductal breast cancer (30). Song et al. studied a machine learning-

based prediction model for 300 breast cancer patients (31). The

results showed good diagnostic performance in the prediction of the

Ki-67 index and histological grade of luminal breast cancer.

Previous study has shown that tumor heterogeneity, including

temporal heterogeneity and spatial heterogeneity differs in different
TABLE 3 The diagnostic efficacy of 5 machine learning models in the training set and validation set.

Index AUC* Accuracy Sensitivity Specificity Precision Recall F1

Training set

DT 1 (0.99, 1.00) 0.96 0.76 0.66 0.85 0.86 0.81

Logistic 0.92 (0.90, 0.95) 0.86 0.84 0.89 0.78 0.75 0.77

XGBoost 1 (0.99, 1.00) 0.97 0.82 0.79 0.91 0.89 0.87

KNN 0.93 (0.92, 0.95) 0.86 0.88 0.75 0.75 0.46 0.62

NB 0.91 (0.90, 0.93) 0.83 0.70 0.56 0.69 0.56 0.62

Validation set

DT 0.79 (0.78, 0.81) 0.80 0.83 0.62 0.53 0.45 0.48

Logistic 0.93 (0.91, 0.94) 0.87 0.88 0.86 0.76 0.75 0.67

XGBoost 0.91 (0.90, 0.92) 0.80 0.87 0.79 0.58 0.58 0.58

KNN 0.92 (0.90, 0.93) 0.83 0.86 0.71 0.75 0.38 0.52

NB 0.89 (0.87, 0.90) 0.82 0.61 0.51 0.61 0.45 0.51
*Data in parentheses are 95% confidence intervals.
FIGURE 6

The ROC analysis of the various ML models applied in training set (A) and validation set (B) for prediction of luminal and non-luminal breast cancer.
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subtypes of breast cancer (32). The heterogeneity may be the result of

tumor proliferation and interactions of tumor microenvironment

factors. It is also suggested that the heterogeneity of breast cancer

exists at the level of genomics, proteomics and morphology, finally

leading to the different tumor microenvironment (33). The

development of a non-invasive tool based on DCE-MRI radiomics

and heterogeneous information for the prediction of molecular

subtypes of breast cancer is of clinical importance for the next-step

accurate and individualized treatment plan.
Frontiers in Oncology 09
FiveMLmodels were used in this study to process the training data

between luminal and non-luminal subtype breast cancer and were

further validated. The best performance was achieved by the logistic

regression model with the highest AUC, accuracy, sensitivity and

specificity in discriminating luminal and non-luminal subtype breast

cancer in the training and validation set. For logistic regression model,

the core is to combine a linear model with a logistic function. The

logistic function is depicted in Equation 3. The linear output is

transformed into a probability value (0-1), and then the classification
FIGURE 8

The decision curves of logistic regression model for predicting luminal and non-luminal breast cancer in training set (A) and validation set (B).
FIGURE 7

The ROC curves (A) and nomograms (B) of the logistic regression model in the training and validation sets.
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is made based on this probability.

f (x) =
1

1 + e−x
(3)

Logistic regression model has several advantages, including the

simple structure, easy to interpret, easy to implement and good

robustness. Specifically, when there is a linear relationship between

the input features and the target variables, the logistic regression model

is able to capture the linear relationship well and achieve higher

predictive performance. It learns a linear relationship from the given

dataset and performs well when the dataset is linearly separable.

In this study, 8 continuous variable features which are the 1)

Heterogeneity, 2) Correlation_angle90_offset1, 3) GLCMEntropy_

AllDirection_offset4, 4) Washout, 5) HC_angle0_offset1, 6)

HC_AllD_offset7_SD, 7) CS_ angle45_offset4 and 8)

CS_AllD_offset1_SD were screened and retained for constructing

the machine learning model. The results of point-biserial correlation

analysis (PBCA) between the 8 features and the target variables were

-0.77, 0.55, 0.49, -0.46, -0.71, 0.32, -0.51 and -0.47, respectively. The

results of t-test were 0.019, 0.037, 0.032, 0.098, 0.023, 0.151, 0.015 and

0.036, respectively. The results showed that there are linear

relationships with significance between the features and the target

variables. The logistic regression model based on linear regression

analysis is more suitable for dealing with data of linear type. For other

machine learning models, they need to introduce more parameters

that make the model too complex when dealing with data with a linear

relationship. Generally, it results in overfitting or low

computational efficiency.

Therefore, the logistic regression model is particularly suited for

datasets where there is a linear relationship between variables and

features. Thus, in this study, the logistic regression model

demonstrated the best prediction performance. The precision,

recall and F1 score of each machine learning model were also

calculated and shown in Table 3. In the validation set, the logistic

regression model demonstrated higher precision, recall and F1

score. It further proves the applicability and superiority of the

logistic regression model with the dataset of this study.

In the field of machine learning, evaluating model performance

based on the validation set is to avoid overfitting. By assessing the

model on the validation set, we can more accurately understand the

model’s generalization ability on new data. At the same time, using

the validation set to evaluate model performance ensures the

robustness of the model. The validation set can reveal the stability

of the model across different datasets. A model that performs well

only on the training set may fail when encountering slightly

different data. With the validation set, we can evaluate the

model’s adaptability to different data distributions.

There are a number of reasons for the different prediction

performances using various ML models, including the differences in

data characteristics, model complexity and different parameter

settings. Different datasets exhibit various distributions,

correlations, noise levels and other characteristics. Different ML

models demonstrate distinct processing capabilities to handle the

data. The ML model complexity needs to match the complexity of

the data. If the model is too simple, it may not capture the
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complexity of the data, while an over-complex model may lead to

overfitting. In addition, for most ML models, some parameters need

to be tuned and optimized. Adjustment of parameters in ML modes

can significantly impact performance outcomes. The variation in

diagnostic efficacy among the ML models in this study may be

attributed to the combined influence of these aforementioned

factors. In this study, calculated radiomics data may have a linear

characteristic, which makes the logical regression model

demonstrating better training effect. The reason why logistic

regression models often perform better is typically due to their

concise linear form, which can capture the core relationships in the

data. Techniques such as regularization can effectively prevent

overfitting, allowing them to maintain high predictive accuracy

while also retaining good generalization capabilities when dealing

with complex data. Moreover, the results of the models are easy to

understand and interpret. Through the pre-processing step of

normalization, overfitting can be prevented. Also, the

generalization of the model is improved to further obtain better

validation results.

Nomograms visualize the process of working with the

regression model as a point scale to predict the occurrence

probability of an event. The nomogram maps the scoring of each

variable in the model at different values, as well as an overall point

scale. Using the nomogram, the clinician can conveniently integrate

the points of each variable in the model to obtain a total point, and

then predict the probability of an event occurring based on the total

point. In this study, the corresponding points can be found in the

column-line diagrams in nomogram based on the patient’s

histology and heterogeneity characteristics. Then the total point

can be calculated and thus the patient’s subtypes of luminal and

non-luminal breast cancer can be predicted and differentiated. In

clinical applications, patients’ total points will be calculated

according to the points of individual radiomics related factors as

well as the heterogeneity analysis results. In this way the application

of nomogram help the clinician and doctors to predict the

molecular subtypes of a breast cancer patient fast, directly

and accurately.

For decision curve analysis (DCA), the clinical significance is

that it can transform a complex statistical model into an intuitive

visual tool, which helps clinicians to understand and apply the

model results more easily. Thus the DCA can help clinicians make

more accurate prognostic predictions and guide treatment

decisions. The decision curve is used to evaluate the performance

of the predictive model at different thresholds. It judges the value of

the model in clinical decisions by comparing the net gains. The

performance of the model was evaluated by comparing the net

benefit of the model at different thresholds. Based on the results of

the decision curve, the doctor can assess the net benefits of a certain

treatment strategy at different thresholds to make a more accurate

treatment decision. In this study, when the threshold was set in the

range of 0.13 to 0.61, the net benefit curve was above the reference

line, indicating a positive effect and clinical benefit of the model on

clinical decision making.

In this study, the differences in age, menopausal status, and

lymph node metastasis among breast cancer patients of different
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molecular subtypes are not statistically significant. This is consistent

with the findings of Li Wei et al (34). In the heterogeneity analysis,

tumor heterogeneity indices and type III curve proportion in non-

luminal subtype group were significantly higher than those

parameters of luminal group. In non-luminal patients, the tumor

is highly malignant with poor differentiation. There may be necrosis

inside the lesion, thus the tumor heterogeneity values are higher.

Also, there may be neovascularization in highly heterogeneous

tumor, which may induce high perfusion and early-stage

enhancement during the injection of contrast agent. It may be the

main reason of the significantly higher type III curve proportion in

non-luminal breast cancer patients. For comparison, for luminal

subtype breast cancer patients, the tumor malignancy and

heterogeneity index are lower. Thus the plateau patterned type II

curve proportion is relatively higher than that of non-luminal

patients due to comparatively less neovascularization and less

malignant degree. The heterogeneity analysis together with

radiomics could provide valuable information in differentiating

non-luminal and luminal breast cancer patients.

This study had several limitations. Firstly, the ROI of breast

lesions were manually drawn by radiologists, thus the delineation of

lesion boundaries may be greatly influenced by individual

experience. Secondly, the number of recruited patients with

luminal and non-luminal breast cancer is limited. Most of the

recruited patients have undergone ultrasound and breast X-ray

mammography examinations prior to MRI scans, but a small

number of patients are not done in our hospital. We plan to

enroll more breast cancer patients and make sure all patients

have undergone standard initial ultrasound and breast X-ray

examinations. Thirdly, this study did not conduct further analysis

of subdivided molecular subtypes of breast cancer, such as luminal

A, luminal B, HER2 and triple negative (TN) type. Future research

will include more molecular subtypes of breast cancer and further

explore the predictive value of combined radiomics features and

heterogeneity analysis.

In conclusion, radiomics and heterogeneity analysis based on

DCE-MRI have good application potential and value in the

prediction of luminal and non-luminal subtypes of breast cancer,

with the logistic regression ML model demonstrating the best

prediction performance.
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