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Objectives: To develop a magnetic resonance imaging (MRI)-based radiomics

model for predicting the severity of radiation proctitis (RP) in cervical cancer

patients’ post-radiotherapy.

Methods: We retrospectively analyzed clinical data and MRI images from 126

cervical squamous cell carcinoma patients treated with concurrent

chemoradiotherapy. Logistic regression (LR), Pearson correlation coefficient, and

least absolute shrinkage and selection operator (LASSO) methods were utilized to

select optimal imaging features, leading to a combined predictionmodel developed

using a random forest (RF) algorithm. Model performance was assessed using the

area under the curve (AUC), DeLong test, calibration curve, and decision curve

analysis (DCA), with Shapley Additive exPlanations (SHAP) values for interpretation.

Results: The samples were split into training (70%) and validation (30%) sets. The

delta-radiomics model, comprising 10 delta features, showed strong predictive

performance (AUC: 0.92 for training and 0.90 for validation sets). A comprehensive

model combining delta-radiomics with clinical features outperformed this,

achieving AUCs of 0.99 and 0.98. DeLong’s test confirmed the comprehensive

model’s statistical superiority, and both calibration curves and DCA indicated good

calibration and high net benefit. Key features associated with RP included D1cc,

T1_wavelet-LLL_glcm_MCC, D2cc, and T2_original_firstorder_90 Percentile.

Conclusions: The MRI-based delta radiomics model shows significant promise in

predicting RP severity in cervical cancer patients following radiotherapy, with

enhanced predictive performance when combined with clinical features.
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1 Introduction

According to the 2022 Global Cancer Statistics Report, there

were 661,000 new cases of cervical cancer globally (3.3% of all

cancer cases), and 348,200 deaths (3.6%), making cervical cancer

the fourth most common malignancy among women worldwide,

highlighting its significant impact on global public health (1, 2).

Radiotherapy is indicated for patients at all stages, particularly

those with contraindications to surgery or those in advanced

stages of the disease. While radiotherapy is effective in treating

cervical cancer, its side effects, particularly radiation proctitis

(RP), pose a significant threat to patients’ quality of life. It is

estimated that more than 75% of patients receiving pelvic

radiotherapy experience symptoms of RP (3). RP is typically

diagnosed based on clinical manifestations and endoscopic

findings. The current treatment outcomes are suboptimal, with

symptoms that may recur and severely impact quality of life.

Therefore, there is an urgent need for a non-invasive, accurate

diagnostic tool to effectively assess and manage RP, thereby

improving patients’ quality of life.

In recent years, radiomics has gained significant attention in the

academic community as a novel research approach. Radiomics

enables the extraction of numerous quantitative features from

medical images, allowing for the mining of latent pathological

information to achieve a more precise assessment of disease status.

Le et al. developed a risk-scoring model based on 10 CT-based

radiomics signatures for predicting overall survival in non-small cell

lung cancer patients and achieved significant results (4). Building on

this foundation, they further extended their study to explore the

prediction of overall survival for different organs and cancer types,

and similarly achieved excellent predictive performance (5). Similarly,

in the area of radiation-induced adverse effects, Bao et al. successfully

developed a predictive model for radiation encephalitis based on pre-

treatment imaging features, further validating the potential of

radiomics in clinical practice (6, 7). It is worth noting that the

effect of tumor volume reduction before and after radiotherapy on

adjacent organs at risk should not be overlooked. Consequently,

recent studies have introduced a temporal dimension in the analysis

of medical imaging data to better understand and predict disease
Abbreviations: MRI, magnetic resonance imaging; RP, radiation proctitis; LR,

logistic regression; LASSO, least absolute shrinkage and selection operator; RF,

random forest; AUC, the area under the curve; ROC, the receiver operating

characteristic; DCA, the decision curve analysis; SHAP, the Shapley Additive

Explanations; RTOG/EORTC, the European Organization for Research and

Treatment of Cancer-Radiation Therapy Oncology Group; EBRT, external

beam radiotherapy; BT, brachytherapy; FIGO, the International Federation of

Gynecology and Obstetrics; BMI, body mass index; Dmax, the maximum dose;

Dmin, the minimum dose; D1cc, D2cc, the dose accepted by the volume of 1cm3

and 2cm3; EQD2, equivalent dose in 2Gy/f; V30, V40, V45, the percentage of the

total volume irradiated by 30Gy, 40Gy and 45Gy; ROI, the region of interest; ICC,

intragroup correlation coefficient; Smote, synthetic minority over-sampling

technique; SVM, support vector machines; T2WI, T2-weighted imaging; T1WI,

T1-weighted imaging; CT, computed tomography; GLCM, grey level

covariance matrix.
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progression. More precise and detailed delta-radiomics techniques

have been explored in predicting radiation esophagitis, pneumonitis,

and other conditions, demonstrating good predictive value (8–11).

Currently, the use of delta-radiomics to predict RP in cervical cancer

patients following radiotherapy remains a novel field.

Thus, in this study, we utilized delta-radiomics to comprehensively

analyze MRI data before and after radiotherapy, in addition, through

integrating these findings with clinical features, we constructed a new

model for early prediction of RP, ultimately enabling early

identification and individualized intervention measures.
2 Materials and methods

2.1 Basic information and grouping
of patients

This study collected cervical cancer patients who received

radiotherapy in Shanxi Bethune Hospital from May 2018 to

October 2023. Inclusion criteria included: (a) patients with a

newly diagnosed diagnosis of cervical squamous cell carcinoma

(IB-IVA) without surgical treatment; (b) all patients were first-time

receiving radiotherapy; (c) the patient has complete pathological,

radiographic, and radiotherapy dose information; (d) patients who

are clinically followed up and diagnosed with concurrent RP; (e) all

patients were in good essential condition and had no apparent

abnormalities in the rectum after MRI examination before

radiotherapy. Some patients were excluded according to the

following criteria: (a) a history of other malignancies; (b) lack of

pathological, radiographic, and radiotherapy dose data of patients;

(c) intolerance to radiotherapy or chemotherapy and failure to

complete the treatment plan due to severe acute toxicity during

treatment. Finally, 126 of the 356 patients met the criteria and were

included in the study.

We followed up the above patients for 1 year and graded the

rectal injury of 126 patients according to the European Organization

for Research and Treatment of Cancer-Radiation Therapy Oncology

Group(RTOG/EORTC) classification criteria (12). We divided the

patients into two groups: proctitis symptoms (grade 2-5), and no

obvious proctitis symptoms (grade 0-1) (Figure 1).
2.2 Treatment options and data collection

All patients received external beam radiotherapy(EBRT)(1.8 ~

2.0Gy/d, 5 times a week) and brachytherapy(BT)(5-7Gy/time, 4-6

times in total).MRI image data and clinical information of the above

patients before radiotherapy and within 12 months after

radiotherapy were collected, including age, the International

Federation of Gynecology and Obstetrics (FIGO) staging of

cervical cancer, minimum lymphocyte count value during

treatment, radiation dosimetry parameters, the body mass index

(BMI) and comorbidity. Among them, the radiation dosimetric

parameters specifically include physical parameters related to

external irradiation: the maximum dose (Dmax), the minimum

dose (Dmin) received by the rectum, and the percentage of the
frontiersin.org
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total volume (V30, V40, V45) irradiated by 30Gy, 40Gy and 45Gy. In

order to solve the problem of calculating the equivalent dose of

different fractionated radiotherapy, the equivalent dose in 2Gy/f

(EQD2) is finally used as the standard equivalent dose (refer to the

following formula):

EQD2 = nd(d + a=b)=(2 + a=b)

Among them, n is the number of treatments, d is the fractional

dose, 10 is the tumor in the a/b value, and 3 is the normal tissue

(13). Finally, the minimum dose (D1cc, D2cc) accepted by the

volume of 1cm3 and 2cm3 rectum after the superposition of

internal and external irradiation is calculated.
2.3 Image acquisition and segmentation

AllMRI images were obtained on a clinical whole-body 3.0TMRI

scanner (GE Signa HDXT 3.0T MRI, GE Healthcare, USA) using a

phased array 8-channel sensitivity coded abdominal coil. The patient

took a supine position to maintain respiratory control. The scanning

range covered the entire pelvis, from the upper edge of the iliac crest

to the lower edge of the pubic symphysis. Sagittal T1 and T2 images

were obtained from the picture archiving and communication system

(PACS, Carestream, Canada) and exported in DICOM format.

Tumor segmentation was performed manually using ITK-SNAP

software, and the entire rectal region on the patient’s MRI image

was defined as the region of interest (ROI). To reduce interfering

information, a radiologist with 20 years of experience manually

outlined the target region to include only structures within the

rectum, excluding peripheral vasculature, peripheral tissues, and

peripheral organs. Pelvic MRI images of 30 randomly selected

patients were re-segmented by another radiologist with 20 years of

experience. 2 weeks later, the first radiologist again re-outlined these

randomly selected 30 images. Both radiologists were unaware of the

patient’s clinical history and pathological information. The
Frontiers in Oncology 03
repeatability of segmentation was assessed using the intragroup

correlation coefficient (ICC), and an ICC >0.8 was considered a

good segmentation agreement (14).
2.4 Delta-radiomics features extraction
and selection

Prior to feature extraction, the images were preprocessed to

minimize variations due to different MRI scanners. All images were

Z-value normalized to ensure that the images had a standard

normal distribution, and then the images were resampled to a

voxel size of 1 x 1 x 1 mm. Before the analysis, we first use the

synthetic minority over-sampling technique (Smote) to preprocess

the training set data so that the proportion of cases with different

labels in the training set is 1:1. Then the variables with zero variance

are excluded from the analysis, and the median is used to replace the

missing values. Finally, the data is standardized. The pyradiomics in

Python is used to extract imaging features, including first order

features, shape features, texture features and transform features.

After the feature extraction is completed, the patient label of ≥ 2

level is set to ‘ 1 ‘, and the patient label of < 2 level is set to ‘ 0 ‘. Then,

the following formula is used to calculate the absolute change of

features on the image after and before radiotherapy: delta-radiomics

features represented by△RF. The calculation formula is as follows:

△RF = RFMRI2 − RFMRI1

RFMRI2 represents the radiomics features of MRI images within

12 months after radiotherapy, and RFMRI1 represents the radiomics

features of MRI images before radiotherapy.

Statistical analyses of the extracted raw features were performed

using Python, starting with feature dimensionality reduction using

logistic regression (LR) analysis to select features that were significantly

different between the two groups. The p-value is usually set at p < 0.2

but can also be set at p < 0.05 or p < 0.1. This requires the researcher to
FIGURE 1

Flow diagram of the study enrolment patients. RTOG, Radiation Therapy Oncology Group.
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adjust the p-value according to the sample size (15). Due to the limited

amount of data in this study, we set p < 0.05 as the threshold. This was

then filtered using pairwise Pearson correlation analysis, which sets the

Pearson correlation coefficient to 0.7, i.e., any two features were

correlated. When their correlation coefficient is greater than 0.7, a

feature is removed (16). Finally, to further reduce overfitting and

selection bias, the least absolute shrinkage and selection operator

(LASSO) was chosen to reduce the coefficients of most of the

uncorrelated D RFs to zero once the optimal l had been determined

by 5-fold cross-validation, where the maximum area under the curve is

the final value of l. The coefficients of the D RFs were then reduced to

zero (17).The process of generating and selecting radiomic features was

illustrated in Figure 2.
2.5 Machine learning modeling

Random forest (RF) was used to construct the traditional

radiomics model and delta-radiomics model. A clinical model was

constructed based on the selected clinical features. Finally,

statistically significant clinical indicators were included in the
Frontiers in Oncology 04
radiomics and delta-radiomics models, and the imaging + clinical

joint model was constructed, respectively.
2.6 Statistical analysis

SPSS 26.0 software was used for statistical analysis. Quantitative

data conforming to normal distribution were expressed as �x ± s. T

validation was used to compare the differences between groups.

Qualitative data were expressed as frequency (%), and the c2
validation was used to compare the differences between groups.

Python 3.10 was used for feature screening and RF model

establishment. The receiver operating characteristic (ROC) curve

was used to judge the performance of the machine learning model,

and the area under the curve (AUC), sensitivity and specificity were

calculated. The DeLong validation is used to evaluate the

performance differences of different models in the classification

task, and the prediction model’s calibration curve and decision

curve analysis (DCA) are constructed. Finally, the Shapley Additive

Explanations (SHAP) values are used to analyze the prediction

results of the model. P < 0.05 was considered statistically significant.
FIGURE 2

Workflow of the radiomic model development and model analysis process. LASSO, least absolute shrinkage and selection operator.
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3 Results

3.1 Baseline information of patients

All samples were randomly divided into training and validation

sets in a 7:3 ratio. After processing the training set data using the

SMOTE method, 16 samples labeled as ‘1’ were added. The final

training set included 104 cases (52 cases in the ‘1’ group and 52 cases

in the ‘0’ group), while the validation set contained 32 cases (16 cases

in each group). There were no significant differences in baseline

characteristics (e.g., age, BMI, comorbidity, etc.) between the two

groups (all p-values > 0.05), indicating that the groups were well-

balanced at the start of the study (Table 1).

To identify characteristics associated with the severity of RP, we

conducted t-tests and c² tests. The results indicated significant

differences in dosimetric parameters, including V40, V45, Dmax, D1cc,

D2cc, and the minimum lymphocyte count, across different severity

groups (p < 0.05). Specifically, a lower minimum lymphocyte count

correlated with increased severity of RP, while lower values of

parameters such as V40 and Dmax were associated with milder RP.

Notably, V30, Dmin, age, FIGO stage, BMI, and comorbidity did not

demonstrate statistically significant differences (Table 2).
3.2 Feature selection and
machine establishment

A total of 1072 features were extracted from the T1 and T2

sequences before radiotherapy, with 12 features ultimately selected
Frontiers in Oncology 05
after a stepwise screening process. Similarly, 1072 features were

extracted from the T1 and T2 sequences after radiotherapy, and 12

features were retained following gradual screening. Using the delta-

radiomics calculation formula, a total of 1702 delta radiomic

features (△RFs) were obtained, and 329 features remained after

logistic regression analysis. Following Pearson correlation analysis,

64 features were retained, and finally, the top 10 radiomics features

were selected using the LASSO.

Subsequently, we used RF to develop six prediction models: the

radiomics models (model 1, combining T1 and T2 sequences before

radiotherapy; model 2, combining T1 and T2 sequences after

radiotherapy; model 3, the delta model), the clinical model

(model 4), the post-radiotherapy T1 and T2 sequences combined

with clinical features (model 5), and the combined clinical and

delta-radiomics models (model 6). In the training set, the predictive

efficiency of the combined model, consisting of clinical indicators

and radiomics features, outperformed the radiomics-only model,

with an AUC, sensitivity, and specificity of 0.99, 0.981, and 1.000,

respectively (Figures 3A, B). Similarly, in the validation set, the

combined model outperformed the other models, and the AUC,

sensitivity, and specificity data are provided in Table 3.
3.3 DeLong validation

We subsequently applied DeLong’s test to compare the

differences in predictive power between the models. In the

validation set, there were statistically significant differences in AUC
TABLE 1 Clinical features in the training and validation sets.

Variables
Training set
(n=104)

Validation set
(n=32)

p-Value

Age(years) 61.38 ± 10.12 59.37 ± 9.79 0.293

FIGO staging (%)

I 8(7.7%) 0(0.0%)

0.273
II 48(46.2%) 19(59.4%)

III 41(39.4%) 12(37.5%)

IV 7(6.7%) 1(3.1%)

Minimum lymphocyte count (x109/L) 0.31 ± 0.15 0.33 ± 0.91 0.053

BMI (kg/m2) 20.90 ± 2.65 20.24 ± 2.38 0.899

Comorbidity (%)
Hypertension 54(51.9%) 15(46.9%) 0.617

Diabetes 61(58.7%) 17(53.1%) 0.580

V30(%) 70.99 ± 13.76 69.91 ± 15.66 0.692

V40(%) 51.26 ± 12.79 55.90 ± 14.73 0.069

V45(%) 16.28 ± 16.34 20.46 ± 21.20 0.276

Dmax(Gy) 52.54 ± 4.46 52.54 ± 4.47 0.998

Dmin(Gy) 13.56 ± 8.97 12.07 ± 8.85 0.381

D1CC(Gy) 81.35 ± 3.66 80.80 ± 4.08 0.441

D2CC(Gy) 77.66 ± 3.59 77.16 ± 4.30 0.487
FIGO, the International Federation of Gynecology and Obstetrics; BMI, body mass index; V30, V40, V50, the percentage of the total volume irradiated by 30Gy, 40Gy and 45Gy; Dmax, the
maximum dose; Dmin, the minimum dose; D1cc, D2cc, the dose accepted by the volume of 1cm3 and 2cm3. p <0.05 was considered statistically significant.
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between model 1, model 2, and model 6, whereas no significant

differences were observed among the remaining models (Table 4).
3.4 Model calibration curve and DCA

In the calibration curve, the Brier score is used to evaluate the

accuracy of the prediction model. It was observed that the Brier

score of model 6 was closest to 0, indicating the highest calibration

(Figure 3C). DCA demonstrated that models 3 and 6 had significant

clinical utility in predicting the severity of RP (Figure 3D).
3.5 Model interpretation results

We calculated and visualized SHAP values for each feature in

the radiomics model. Figure 4A visually illustrates the 20 key

features of the RF model, including 5 dosimetric parameters and

12 imaging features. Unique color dots indicate the impact of each

feature: red indicates higher feature values, and blue indicates lower

wind feature values. The bar chart in Figure 4B illustrates the

average absolute value of the SHAP values for each feature. The

above figure shows that D1cc is the most essential feature for the RF

model in predicting the severity of RP occurrence. The higher the

feature values of D1cc, T1_wavelet-LLL_glcm_MCC, and D2cc,

the greater the positive impact on the model output, while the

lower the feature values T2_original_firstorder_90Percentile and
Frontiers in Oncology 06
T1_wavelet-LHH_firstorder_Maximum, the greater the positive

impact on the model output.
4 Discussion

Early prediction of the severity of adverse reactions following

radiotherapy for cervical cancer is crucial for adjusting treatment

strategies. In this study, we developed and validated an MRI-based

delta radiomics model to effectively predict the severity of RP.

Furthermore, combining delta radiomics with clinical features

enhanced the prediction performance compared to using delta

radiomics alone. Therefore, a comprehensive prediction model

integrating clinical and delta radiomics features provides an

effective and non-invasive tool for guiding clinical decision-making.

In cervical cancer, radiomics has mainly been applied in staging,

diagnosis, prognosis, adverse reactions, and lymph node metastasis

(18, 19). For adverse reactions, researchers have used pre-radiotherapy

computed tomography (CT) to predict the occurrence of RP, but the

AUC of their radiomics model was only 0.71 (20). Subsequent studies

shifted focus toMRI, where T2-weighted imaging (T2WI) sequences of

pre-radiotherapy MRI were used to build a radiomics model with an

AUC of 0.91, but the results were limited due to a small sample size and

a lack of consideration for tumor volume regression (21). Our study

aims to evaluate whether MRI features can effectively predict the

occurrence of RP. Unlike previous studies, we focus on image

information from the rectum, utilizing the commonly used T2WI
TABLE 2 Comparison of the clinical features of different severities of RP.

Variables
<Grade 2
(n=68)

≥Grade 2
(n=68)

p-Value

Age(years) 60.92 ± 10.06 60.94 ± 9.70 0.990

FIGO staging

I 4(5.9%) 4(5.9%)

0.139
II 28(41.2%) 39(57.4%)

III 33(48.5%) 20(29.4%)

IV 3(4.4%) 5(7.4%)

Minimum lymphocyte count (x109/L) 0.74 ± 0.30 0.52 ± 0.25 0.047

BMI (kg/m2) 21.09 ± 2.75 20.65 ± 2.53 0.366

Comorbidity (%)
Hypertension 36(25.9%) 33(48.5%) 0.383

Diabetes 39(57.4%) 29(42.6%) 0.607

V30(%) 69.84 ± 15.15 71.31 ± 12.39 0.563

V40(%) 50.43 ± 16.47 55.87 ± 11.72 0.028

V45(%) 14.52 ± 17.99 22.40 ± 18.20 0.018

Dmax(Gy) 51.33 ± 4.81 54.02 ± 3.32 <0.01

Dmin(Gy) 11.81 ± 8.71 13.74 ± 8.95 0.231

D1CC(Gy) 80.31 ± 3.94 82.21 ± 2.92 <0.01

D2CC(Gy) 76.34 ± 3.90 78.93 ± 2.98 <0.01
RP, radiation proctitis; FIGO, the International Federation of Gynecology and Obstetrics; BMI, body mass index; V30, V40, V50, the percentage of the total volume irradiated by 30Gy, 40Gy and
45Gy; Dmax, the maximum dose; Dmin, the minimum dose; D1cc, D2cc, the dose accepted by the volume of 1cm3 and 2cm3. p <0.05 was considered statistically significant.
Bolding represents p< 0.05, which is considered statistically significant.
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sequence in combination with T1-weighted imaging (T1WI) to

construct a multi-sequence radiomics model. Compared with a

single sequence, this multi-sequence approach allows for a more

comprehensive assessment of rectal edema, chronic inflammation,

and fibrosis. Additionally, we applied delta-radiomics to dynamically

monitor characteristic changes in longitudinal data at different time

points. Although delta-radiomics is widely used for predicting cervical
Frontiers in Oncology 07
cancer prognosis, its use in predicting adverse reactions remains rare

(22, 23). Wei et al. used LR to establish a model for predicting adverse

reactions after radiotherapy for cervical cancer, achieving an AUC

of 0.6855 (15). With advancements in machine learning, Xie et al.

employed support vector machines (SVM), LR, and RF to establish a

model for RP prediction, with RF showing superior performance over

other models (AUC: 1.000, 0.713, 0.820, 0.798) (24, 25). Based on these
TABLE 3 Diagnostic efficacy of different RP prediction models in the training set and validation set.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Training set

AUC 0.840 0.870 0.920 0.770 0.920 0.990

Sensitivity 0.801 0.842 0.925 0.760 0.889 0.981

Specificity 0.872 0.915 0.941 0.808 0.920 1.000

Validation set

AUC 0.810 0.860 0.900 0.760 0.890 0.980

Sensitivity 0.500 0.750 0.750 0.813 0.750 0.813

Specificity 0.909 0.818 0.955 0.739 0.864 0.909
RP, radiation proctitis; AUC, the area under the curve.
FIGURE 3

Model evaluation. (A) ROC curves of the training set; (B) ROC curves of the validation set; (C) Calibration curves of the radiomics models, the clinical
model and the combined models; (D) DCA of the radiomics models, the clinical model and the combined models. ROC, the receiver operating
characteristic; DCA, the decision curve analysis.
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studies, we selected the delta-radiomics model developed using RF,

which achieved good predictive performance (AUC: 0.92, 0.90) and

holds promise as a potential imaging biomarker for RP.

In addition to imaging features, previous studies have shown that

risk factors for RP following radiotherapy for cervical cancer include

patient age, clinical stage, radiotherapy method, and dose (26–28).
Frontiers in Oncology 08
Fang et al. further indicated that vascular conditions, such as

hypertension, diabetes, and atherosclerosis, are also potential risk

factors (29, 30). In our study, we found that traditional clinical

characteristics, such as age, BMI, and comorbidity, were not

statistically significant for RP (p > 0.05), which may be related to

individual variability and post-treatment care (31, 32). In order to

further enrich the clinical model, we obtained parameters from the

DVH map, especially combining the parameters D1cc and D2cc of

internal and external irradiation doses were correlated with the

severity of RP (p < 0.05), which was consistent with the findings of

Y (33–36). For patients receiving conventional radiotherapy,

treatment is often interrupted due to myelosuppression, with lower

radiation doses causing transient suppression and higher doses

potentially leading to irreversible damage, emphasizing the

influence of immunity on prognosis (37–39). At present, most

studies focused on the effect of changes in the immune system on

the prognosis of cervical cancer during radiotherapy (40, 41).

Our study shifted focused to the relationship between the immune

system and the toxic response to cervical cancer after radiotherapy

and found that the minimal lymphocyte count was significantly

correlated with RP (p < 0.05), making it a significant predictor.

It has gradually become one of the important predictors in head,

neck and pelvic malignant tumors (42, 43). Other studies also

incorporated factors such as vitamin D, radiotherapy interval, and

microbial characteristics to enrich the predictive results (44–46),

and the influencing factors of RP can be further explored based on

this in the future.

Neither imaging features nor clinical indicators alone can fully

capture the specific effects of radiotherapy on rectal tissue. Therefore,

in order to more comprehensively understand the changes of patients

during radiotherapy and formulate more accurate intervention

measures, we established a clinically significant feature model

combined with imaging features. The ROC curve demonstrated

that the efficiency of the simple radiomics model was inferior to

that of the combined model. Subsequently, DeLong’s test confirmed
FIGURE 4

Model interpretation. (A) The beeswarm plot used SHAP values to show the distribution of each feature’s impacts. (B) The standard bar plot
demonstrated the mean absolute value of the SHAP values for each feature.
TABLE 4 DeLong validation results between models.

Models
Training set Validation set

Z p-Value Z p-Value

Model 1 vs Model 2 -1.170 0.242(p>0.05) -0.571 0.568(p>0.05)

Model 1 vs Model 3 1.048 0.295(p>0.05) -1.099 0.272(p>0.05)

Model 1 vs Model 4 0.558 0.577(p>0.05) -0.583 0.560(p>0.05)

Model 1 vs Model 5 -0.623 0.534(p>0.05) -0.832 0.405(p>0.05)

Model 1 vs Model 6 0.147 0.883(p>0.05) -2.312 0.021(p<0.05)

Model 2 vs Model 3 1.073 0.283(p>0.05) -0.753 0.452(p>0.05)

Model 2 vs Model 4 0.232 0.816(p>0.05) -0.018 0.986(p>0.05)

Model 2 vs Model 5 0.396 0.692(p>0.05) -0.744 0.457(p>0.05)

Model 2 vs Model 6 -0.527 0.598(p>0.05) -2.095 0.036(p<0.05)

Model 3 vs Model 4 -0.632 0.527(p>0.05) 0.610 0.542(p>0.05)

Model 3 vs Model 5 -1.605 0.101(p>0.05) 0.355 0.723(p>0.05)

Model 3 vs Model 6 -0.827 0.408(p>0.05) -1.658 0.097(p>0.05)

Model 4 vs Model 5 0.398 0.691(p>0.05) -0.291 0.771(p>0.05)

Model 4 vs Model 6 -0.094 0.691(p>0.05) -1.833 0.067(p>0.05)

Model 5 vs model 6 0.907 0.364(p>0.05) -1.896 0.058(p>0.05)
Model 1: the combining T1 and T2 sequences before radiotherapy; Model 2: the combining T1
and T2 sequences after radiotherapy; Model 3: the delta model; Model 4: the clinical model;
Model 5: the post-radiotherapy T1 and T2 sequences combined with clinical features; Model 6:
the combined clinical and delta-radiomicsmodels. p <0.05 was considered statistically significant.
Bolding represents p< 0.05, which is considered statistically significant.
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that the delta-combined clinical radiomics model was statistically

superior to the radiomics model established at a single time point.

Calibration curve and DCA also indicated that the combined model

had superior calibration and net benefit.

Although our models show some advantages, one of the key

factors in determining whether a physician will adopt a machine

learning model to aid in clinical decision-making is their ability to

understand how the model arrived at its conclusions. In order to

improve the transparency and credibility of the models, the

researchers proposed interpretable machine learning models, such

as for predicting mortality from gastrointestinal bleeding, the risk of

new-onset atrial fibrillation in critically ill patients, and long-term

clinical outcomes in patients with recurrent pericarditis (47–49).

Based on the above studies, we plotted standard histograms in this

study and found that texture features extracted by wavelet transform

and grey level covariance matrix (GLCM) contributed the most to the

joint model in imaging features. These texture features are effective in

capturing the microscopic changes in tissues after radiotherapy,

especially the imaging alterations caused by radiation damage.

Zhou et al. showed that wavelet transform extracted texture

features outperformed other features in predicting the response to

neoadjuvant chemotherapy in patients with advanced breast cancer

and that these features have the potential to serve as potential

biomarkers for predicting the response to chemotherapy (50). In

our study, by quantifying these textural features, we found that their

changes were closely associated with pathological changes such as

edema, fibrosis and vascular proliferation of rectal tissue, thus

providing a strong basis for predicting the severity of RP.

There are certain limitations to this study that need to be

addressed. First, the sample size was small and from only a single

research center, which may have led to a selection bias. Therefore,

future studies should consider increasing the sample size, adopting a

multi-center design, and conducting external validation to improve

the generalizability and reliability of the results. Second, this study

used a manual method of outlining ROI. Although this method can

provide more accurate results, the process is time-consuming and

challenging to apply efficiently in large-scale samples. Automated

image segmentation techniques should be explored in the future to

improve analysis efficiency and scalability. Finally, although this study

used traditional machine learning methods for model development,

there is still room for algorithm optimization and accuracy

improvement. More advanced algorithms, such as deep learning,

can be considered in the future to enhance the predictive

performance of the model and avoid the overfitting problem,

especially with the support of multi-center data, which further

optimize the RP prediction model. Currently, our institute has

initiated a related study to validate and optimize these improvements.
5 Conclusion

We developed and validated an MRI-based delta radiomics

model to effectively predict the severity of RP. Furthermore, delta

radiomics combined with clinical features improved predictive

performance compared to delta radiomics alone. This confirms

the important role of radiomics in predicting toxic reactions and
Frontiers in Oncology 09
provides scientific basis for early prediction and intervention in

clinical practice.
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