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Chemokines and their receptors
in the esophageal carcinoma
tumor microenvironment:
key factors for metastasis
and progression
Pan Liu and Zhiqiang Sun*

Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing
Medical University, Changzhou, China
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest

incidence in Eastern Asia. Although treatment modalities for ESCA have

advanced in recent years, the overall prognosis remains poor, as most patients

are diagnosed at an advanced stage of the disease. There is an urgent need to

promote early screening for ESCA to increase survival rates and improve patient

outcomes. The development of ESCA is closely linked to the complex tumor

microenvironment (TME), where chemokines and their receptors play pivotal

roles. Chemokines are a class of small-molecule, secreted proteins and

constitute the largest family of cytokines. They not only directly regulate tumor

growth and proliferation but also influence cell migration and localization

through specific receptor interactions. Consequently, chemokines and their

receptors affect tumor invasion and metastatic spread. Furthermore,

chemokines regulate immune cells, including macrophages and regulatory T

cells, within the TME. The recruitment of these immune cells further leads to

immunosuppression, creating favorable conditions for tumor growth and

metastasis. This review examines the impact of ESCA-associated chemokines

and their receptors on ESCA, emphasizing their critical involvement in the

ESCA TME.
KEYWORDS
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1 Introduction

According to the Global Cancer Statistics 2022, ESCA is the 11th most prevalent cancer

worldwide, with approximately 510,000 new cases (2.6%) and the 7th leading cause of

cancer death, with approximately 440,000 deaths (4.6%). The incidence of ESCA varies

significantly by region, with the highest rates observed in Eastern Asia. In China, both

incidence and mortality trends for ESCA are notably high, and the disease is more common
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in males than in females (1). There are two main histological types

of ESCA: squamous cell carcinoma (ESCC) and adenocarcinoma

(EAC). ESCC is associated with alcohol consumption, smoking, and

poor dietary habits (e.g., preference for pickled, high-temperature,

and hard or rough foods), while EAC is more closely linked to

obesity, metabolic disorders, and gastroesophageal reflux disease

(GERD). Current treatment strategies for ESCA include endoscopic

surgery, surgical interventions, radiation therapy, chemotherapy,

immunotherapy, and targeted therapy. Although treatment options

for ESCA have advanced in recent years, the overall prognosis

remains poor, as most patients are diagnosed at an advanced stage

(2). Nevertheless, the five-year survival rate for patients diagnosed

at an early stage can be markedly improved through endoscopic or

surgical interventions. Consequently, early detection of ESCA is of

paramount importance, and a comprehensive understanding of the

mechanisms underlying ESCA development, along with the

identification of specific regulatory targets, holds immense clinical

promise for improving survival rates among ESCA patients.

Chemokines, also referred to as chemotactic cytokines,

constitute a class of small, secreted proteins. Studies indicate that

there are approximately 50 different types of chemokines and 20

chemokine receptors present in humans, which together represent

the largest family of cytokines. Chemokines can be classified into

four subgroups: C, CC, CXC, and CX3C, based on the arrangement

of cysteine (C) residues in their primary structure. Their

mechanism of action primarily involves binding to G protein-

coupled, seven-transmembrane domain receptors on the cell

surface. Chemokine receptors are named according to the

subfamily of chemokines to which they bind: XCR, CCR, CXCR,
Frontiers in Oncology 02
and CX3CR (Figure 1). The binding of chemokines to their

receptors activates a series of intracellular signaling pathways,

eliciting a range of biological responses, including cell migration,

proliferation, and differentiation. They are essential mediators of

inflammation and are involved in various physiological processes,

including tissue repair and homeostasis. During normal

physiological responses, these chemokines facilitate leukocyte

recruitment, migration, and activation, serving as essential

navigational molecules in immune surveillance and inflammatory

processes. During immune responses, the production of

chemokines and the restricted expression of their receptors

regulate and guide the migration and directed proliferation of

immune cells in vivo. This process is crucial in initiating immune

responses, modulating effector functions, facilitating memory

responses, and influencing immunomodulation. In oncological

contexts, chemokines demonstrate complex and often paradoxical

functions. They can simultaneously promote tumor progression

and modulate anti-tumor immune responses, acting as critical

regulators of the TME. These molecules influence cancer cell

proliferation, metastasis, angiogenesis, and immune cell

infiltration (Supplementary Table 1) (3–6).

ESCA presents a landscape wherein chemokine signaling plays

critical roles in its progression and metastasis. Research has shown

that specific chemokines are significantly upregulated in ESCA

tissues compared to normal tissues. For instance, the CXCL12/

CXCR4 axis is particularly pivotal in ESCC, where it not only

promotes tumor growth but also facilitates lymphatic and vascular

invasion (7). Additionally, the inflammatory microenvironment

fostered by chemokines leads to immune evasion, allowing
FIGURE 1

Chemokines and chemokine receptors.
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tumors to grow and spread unimpeded. The intricate interplay

between specific chemokines and their receptors in esophageal

malignancies offers insights into disease progression and potential

therapeutic targets (8).
2 Chemokine profile influences tumor
physiology and changes in tumor
immune microenvironment with
different grade

Chemokines and their receptors significantly alter tumor

physiology by influencing critical processes such as tumor

metabolism, tumor fibrosis, and the behavior of cancer stem cells.

Chemokines such as CXCL12, CXCL5 and CCL2 regulate tumor

metabolism and promote a metabolic shift toward enhanced

glycolysis and lipid metabolism to support rapid tumor growth,

even under hypoxic conditions (9).

Tumor fibrosis, characterized by excessive extracellular matrix

deposition, is driven by chemokines such as CCL2 and CCL5, which

attract fibroblasts to the TME. These fibroblasts become activated

and contribute to a fibrotic stroma that not only provides structural

support to the tumor but also facilitates immune evasion and

resistance to therapies (10). Cancer stem cells are influenced by

chemokine signaling, particularly through the CXCL12-CXCR4

axis and CXCL8-CXCR1/2 axis, which mediate the maintenance

and self-renewal of these cells within the tumor niche, thereby

contributing to tumor initiation and metastasis. This chemokine-

induced promotion of stemness can lead to increased resistance to

conventional therapies, presenting significant challenges for cancer

treat (11, 12). Together, these interactions underscore the crucial

role of chemokines in shaping the TME, ultimately impacting

tumor development and treatment outcomes (Table 1).

The tumor immune microenvironment (TIME) and the profile

of chemokines play pivotal roles in tumor progression and the

overall immune response. As tumors progress from lower grades

(well-differentiated) to higher grades (poorly differentiated or

anaplastic), there are significant changes in both the immune cell

composition and the chemokine profile. In Grade I tumors, the

immune environment is largely inactive, with few immune cell

infiltrations, retention of regulatory immune cells, and relatively

normal extracellular matrix (ECM) composition. The key

chemokines, including lower levels of inflammatory chemokines,

support immune tolerance, allowing the tumor to grow slowly with

minimal aggression. As tumors transition to Grade II, there is an

increase in immune cell diversity, including activated cytotoxic T

cells and macrophages. The chemokine profile begins to shift to

include higher levels of T-cell-attracting chemokines, suggesting a

transition toward an immune-reactive environment, albeit still

somewhat capable of immune evasion. In Grade III tumors,

characterized by poorly differentiated cells, the TIME becomes

more chaotic, with significant infiltration of various immune cells,

including regulatory T cells (Tregs) and myeloid-derived

suppressor cells (MDSCs). This increasingly hostile environment
Frontiers in Oncology 03
features elevated levels of chemokines such as CCL22 and CXCL1

that attract Tregs and MDSCs while also exhibiting heightened

inflammatory responses (13). Finally, in Grade IV tumors, the

immune microenvironment is dominated by suppressive cells,

with a predominance of TAMs and exhausted CD8+ T cells, with

high levels of chemokines such as CCL2 and CXCL12 promoting

MDSC recruitment, contributing to a profoundly suppressive

environment. These tumors exhibit very high levels of

immunosuppressive chemokines that promote further immune

evasion and facilitate aggressive tumor behavior (14). Ultimately,

as tumor grades escalate, there is a clear transition from an

immunogenic to an immunosuppressive environment,

characterized by progressively altered chemokine dynamics that

hinder effective anti-tumor responses and contribute to the tumors’

overall aggressiveness and treatment resistance.
3 Chemokines and chemokine
receptors in ESCA

3.1 Epithelial−mesenchymal transition and
chemokines in ESCA

Epithelial–mesenchymal transition (EMT) is a critical process

that enables tumors to invade and metastasize. During EMT,

epithelial cells lose their polarity and intercellular adhesion,

undergo morphological changes that align with a mesenchymal

phenotype, and become migratory and invasive. A hallmark of EMT

is the suppression of E-cadherin expression. Different types of EMT

can be triggered by various signaling pathways. A cluster of

transcription factors, including Snail, SNAI2 (Slug), TWIST1

(Twist), TWIST2, ZEB1, and ZEB2 (SIP1), has been identified as

principal regulators of EMT (15, 16).

Several chemokines and receptors activate or participate in the

EMT process through distinct signaling pathways, promoting the

migration and invasion of ESCC cells. In vitro experiments revealed

that CXCL6 stimulated the proliferation, migration, and invasion of

ESCC cells. This conclusion was further validated by studies in nude

mice, which showed that CXCL6 enhanced the growth and

metastasis of ESCC cells in vivo. Additionally, the research

identified that CXCL6 facilitated the transformation of epithelial

cells to a mesenchymal phenotype. This transition was associated

with the increased expression of PD-L1, mediated by the activation

of the STAT3 pathway (17).

Yue et al. demonstrated elevated IL-33 expression in ESCC

tissues through immunohistochemistry (IHC) and quantitative

real-time PCR (qRT-PCR), findings that were subsequently

confirmed in vitro. CCL2, a downstream molecule of IL-33,

recruits Tregs via the NF-kB/CCL2 pathway, promoting EMT

and thereby facilitating tumor development and metastasis.

Moreover, IL-33 regulates CCL2 expression through transforming

growth factor b (TGF-b) in Tregs (18).

Additionally, some researchers have shown that CCL8

produced by M2-type macrophages can activate the NF-kB
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TABLE 1 Impact of main chemokines & receptors on tumor processes.

Chemokine Receptor(s)
Cell Types Secreting

Chemokine
Target Cell Types
with Receptors

Effect on Cancer Physiology Refs

CCL1 CCR8 T cells, macrophages T cells, dendritic cells Activates T cell migration (106)

CCL2 CCR2 Monocytes, macrophages Endothelial cells, tumor cells Promotes tumor growth and metastasis (107)

CCL3 CCR1, CCR5 Macrophages, T cells Monocytes, lymphocytes
Promotes inflammation, activates

immune response
(56, 108)

CCL4 CCR5 T cells, dendritic cells Monocytes, macrophages
Contributes to immunosuppression and

T cell migration
(109)

CCL5
CCR1,

CCR5, CCR3
T cells, platelets Tumor cells, macrophages

Promotes tumor progression,
supports angiogenesis

(27)

CCL7 CCR1, CCR2 Macrophages, fibroblasts Monocytes, dendritic cells Increases inflammation (110)

CCL8 CCR1, CCR5 Monocytes, macrophages Neutrophils, lymphocytes Promotes immune infiltration (111)

CCL11 CCR3 Eosinophils, mast cells Eosinophils, basophils Promotes eosinophilic infiltration (112)

CCL13 CCR2, CCR1 Macrophages Monocytes, eosinophils Influences inflammation (113)

CCL14 CCR1, CCR2 Macrophages Monocytes, lymphocytes
Involved in modulating
immune responses

(114)

CCL15 CCR1 Macrophages Monocytes, T cells Involved in macrophage recruitment (115)

CCL16 CCR1 Macrophages DCs, T cells Contributes to immune modulation (116)

CCL17 CCR4 Th2 cells, activated T cells Th2 cells, DCs Contributes to Th2 immune responses (62)

CCL18 CCR8 Macrophages T cells Involved in immune suppression (117)

CCL19 CCR7 Lymph nodes, DCs T cells, naive B cells Influences T cell migration (118)

CCL20 CCR6 Macrophages, epithelial cells T cells
Promotes immune responses and

tissue infiltration
(61, 119)

CCL21 CCR7 Stromal cells T cells, B cells Attracts lymphocytes to lymph nodes (76, 77)

CCL22 CCR4 Regulatory T cells T cells, dendritic cells Promotes immune evasion (13, 62)

CCL23 CCR1 Macrophages Monocytes, eosinophils Enhances inflammatory responses (120)

CCL24 CCR3 Eosinophils Eosinophils, basophils Involved in allergic responses (121)

CCL25 CCR9 Epithelial cells T cells Involved in T cell trafficking (122)

CCL27 CCR10 Keratinocytes T cells Promotes skin immunology (123)

CCL28 CCR10 Epithelial cells T cells Supports mucosal immunity (124)

CXCL1 CXCR2 Macrophages, fibroblasts Neutrophils, tumor cells Promotes angiogenesis and metastasis (23, 26)

CXCL2 CXCR2 Neutrophils Neutrophils, tumor cells Involved in neutrophil recruitment (125, 126)

CXCL3 CXCR2 Neutrophils Neutrophils, T cells Promotes inflammation (127)

CXCL4 CXCR3 Platelets Endothelial cells Modulates angiogenesis (128)

CXCL5 CXCR2 Neutrophils Epithelial cells Involved in angiogenesis (9)

CXCL6 CXCR1, CXCR2 Macrophages Neutrophils Promotes inflammation (17)

CXCL8 CXCR1, CXCR2 Macrophages, tumor cells Neutrophils, endothelial cells Promotes angiogenesis and inflammation (11, 80)

CXCL9 CXCR3 T cells, macrophages T cells Induces T cell recruitment (129)

CXCL10 CXCR3 Macrophages, dendritic cells T cells Induces Th1 response (90, 130)

CXCL11 CXCR3 Monocytes, NK cells T cells, dendritic cells Promotes T cell migration (131)

CXCL12 CXCR4 Fibroblasts, tumor cells Endothelial cells, tumor cells
Promotes metastasis and

CSC maintenance
(97)

(Continued)
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signaling pathway, induce EMT, and promote ESCC cell migration

and invasion in vitro using a cell co-culture system (19). CCL18

enhances the invasiveness of ESCC cells, while its knockdown

inhibits this effect. Notably, CCL18 expression is positively

correlated with the expression of HOTAIR (a long noncoding

RNA) in ESCC tissues. Furthermore, CCL18 upregulates

HOTAIR expression, and HOTAIR knockdown can reduce

CCL18-induced invasiveness in ESCC cells. Studies indicate that

CCL18 positively regulates ZEB1 by upregulating HOTAIR

expression, thus facilitating EMT and promoting the malignant

progression of ESCA (20).
3.2 Cancer-associated fibroblasts and
chemokines in ESCA

Cancer-associated fibroblasts (CAFs) are significant

components of the TME, capable of secreting extracellular matrix

(ECM) components, cytokines, chemokines, and metabolites. They

facilitate tumor growth, metastasis, and angiogenesis through the

activation of multiple signaling pathways. Furthermore, CAFs

interact with tumor-infiltrating immune cells (TICs), thereby

influencing the antitumor immunological state within the TME

(21, 22). The resulting ECM transformation not only provides

mechanical support for tumor growth but also creates physical

and biochemical barriers that impede therapeutic interventions,

particularly immunotherapies, by restricting drug penetration and

immune cell infiltration.

CXCL1 activates the CXCR2-STAT3 pathway, leading to the

phenotypic transformation of CAFs into inflammatory CAFs

(iCAFs), which secrete interleukin-1 beta (IL-1b), IL-6, leukemia

inhibitory factor (LIF), and granulocyte colony-stimulating factor

(G-CSF), among other factors, to promote tumorigenesis (23). In

ESCC, laminin subunit g1 (LAMC1) enhances the secretion of

CXCL1, stimulating the formation of iCAFs via the CXCR2-

STAT3 pathway (24). Hongfang Zhang et al. discovered that

CXCL1 expression was significantly elevated in CAFs compared

to normal fibroblasts, as shown through a human chemokine array.

Inhibition of CXCL1 expression in CAFs significantly reversed the

radioresistance imparted by these cells in both in vitro and in vivo

models. Additionally, the secretion of CXCL1 by CAFs inhibited the

expression of the reactive oxygen species (ROS)-scavenging enzyme
Frontiers in Oncology 05
superoxide dismutase 1, leading to increased ROS accumulation

following radiation. This accumulation subsequently enhanced

DNA damage repair, contributing to radioresistance. Moreover,

CXCL1 secretion by CAFs mediates radioresistance through the

activation of the Mek/Erk pathway, reinforcing the tumor’s

resistance to radiation. The interaction between CAFs and ESCC

cells induces CXCL1 expression in autocrine/paracrine signaling

loops, further enhancing tumor radioresistance (25). Furthermore,

collagen type 1 (COL1) derived from CAFs induces tumor cells to

secrete CXCL1, establishing a positive feedback loop; notably,

COL1 can also enhance radioresistance by facilitating DNA

repair. Radiosensitization of radioresistant xenografts in vivo can

effectively be restored through inhibition of the CXCL1-CXCR2-

STAT3 pathway (26).

CCL5 secretion increases when ESCC cells are cocultured with

CAFs, and this effect is also observed in EAC cells. The CCL5-CCR5

axis inhibitor Malawijo confirmed that the removal of tumor cell-

derived CCL5 diminished ERK1/2 signaling, leading to the

inhibition of ESCC cell proliferation in vitro and in vivo, as well

as reducing the proportion of CAFs recruited by xenograft tumors

(27). Additionally, NADPH oxidase 5 (NOX5) is overexpressed in

ESCC, activating intratumoral Src/NF-kB signaling, which

stimulates tumor cells to secrete tumor necrosis factor-alpha

(TNF-a), IL-1b, and lactate. These factors subsequently activate

CAFs and promote the secretion of various cytokines, including

CCL5 (28).

FGFR2+ functional CAFs, which have differentiated in ESCC,

can be mobilized by tumor-secreted FGF2 and recruited to the

tumor site through the CXCL12–CXCR4 axis (29). It is plausible to

note that systemic elevation of chemokines like CXCL12/SDF-1,

CCL2 and CCL5, along with cytokines like TGF-b, IL6, IL8
contribute to migration and homing of mesenchymal stem cells

into the tumors, which are believed to be precursors of CAFs.

Hypoxia and HIF-1 expression in tumors further elevates CXCL12

and enhances mesenchymal stem cells (MSCs) recruitment (30–32).

MSCs can be both pro- and anti-tumorigenic and can also act as

delivery vehicles for drugs toward tumors (32–35). While strategies

are being implemented to augment the therapeutic potential of

MSC in cancers, secretome of MSCs are rich in chemokines and

growth factors that are largely immunosuppressive and pro-

angiogenic that facilitate tissue regeneration in response to

radiation induced tissue injury (36). Since radiation can also serve
TABLE 1 Continued

Chemokine Receptor(s)
Cell Types Secreting

Chemokine
Target Cell Types
with Receptors

Effect on Cancer Physiology Refs

CXCL13 CXCR5 Follicular dendritic cells B cells Involved in B cell migration (132)

CXCL14 – Fibroblasts Various immune cells Inhibits invasion (133, 134)

CXCL16 CXCR6 Macrophages T cells, NK cells Promotes tumor invasion (135)

CX3CL1 CX3CR1 Endothelial cells Neutrophils, monocytes Promotes adhesion and migration (136)

XCL1 XCR1 T cells DCs, NK cells Promotes Th1 response (137)

XCL2 XCR1 T cells Neutrophils Enhances immune responses (138)
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as an inducer of MSC-recruitment, paracrine effects exerted by

tissue and TME resident MSCs can be pro-fibrotic and tumor

promoting after administration of primary chemo-radiotherapy,

thereby supporting treatment resistance and tumor recurrence

(36–38).

Furthermore, Higashino et al. conducted coculture experiments

by introducing bone marrow MSCs into systems containing ESCC

cells, resulting in the expression of fibroblast activation protein

(FAP), a marker for CAFs, thereby designating these FAP-positive

MSCs as CAF-like cells. The secretion of CCL2, CXCL8, and IL-6 by

CAF-like cells was significantly greater than that observed in MSCs,

as confirmed by cytokine array and enzyme-linked immunosorbent

assay (ELISA) analyses. These cytokines have been shown to

promote the migration of both tumor cells and macrophage-like

cells (39).The intricate interplay between these cellular components

results in enhanced tumor recurrence potential, increased

angiogenesis, and the establishment of pre-metastatic niches that

facilitate systemic tumor dissemination.
3.3 CXCL12-CXCR4/CXCR7 axis: a
multifaceted driver of ESCA pathogenesis

The CXCL12-CXCR4/CXCR7 axis plays a multifaceted role in

ESCA pathogenesis, with extensive experimental and clinical

evidence supporting its involvement in tumor progression and

therapeutic resistance. Immunohistochemical (IHC) analyses have

demonstrated that CXCL12 stimulates the proliferation of ESCC

cells. This finding is corroborated by in vivo studies showing that

pharmacological inhibition of CXCR4 significantly suppresses

ESCC growth and reduces tumor volume (40). In vitro

experiments by Yen-Hao Chen et al. further validated these

results, revealing that CXCL12-driven proliferation is attenuated

in a dose-dependent manner upon blockade of its signaling

pathway. Clinically, elevated pretreatment CXCL12 levels (≥1.5

ng/mL) and post-treatment increases in CXCL12 are associated

with reduced responsiveness to radiotherapy, suggesting that

CXCL12 may mediate tumor evasion from cytotoxic therapies

(41, 42). Tumor microenvironmental factors, including CAFs,

contribute to CXCL12 production, with Twist-1 enhancing

CXCL12 expression in these stromal cells. CXCR4 inhibition

disrupts epithelial-mesenchymal transition (EMT) in ESCC by

downregulating EMT-related genes, while CXCL12/CXCR4

signaling directly promotes EMT through the ERK/AKT-Twist1-

MMP1/E-cadherin axis (43). Furthermore, interleukin-6 (IL-6)

amplifies CXCL12 secretion, fostering immunosuppressive cell

recruitment and EMT acceleration. Conversely, growth inhibitor

5 (ING5) attenuates ESCC metastasis by suppressing IL-6-CXCL12

signaling (44).

Stromal interactions further modulate CXCL12 activity.

Rocuronium bromide, for instance, inhibits CXCL12 production

in CAFs by blocking the PI3K/AKT/mTOR pathway and

autophagy, thereby attenuating CXCL12-mediated ESCA

progression (45). Retrospective clinical analyses underscore the

prognostic significance of CXCR4, as its overexpression correlates
Frontiers in Oncology 06
with increased lymph node metastasis risk, including

micrometastases (46, 47). CXCR4 is prominently expressed in

both primary and metastatic ESCA lesions, enabling tumor cell

homing to CXCL12-rich niches such as lymph nodes (48).

CXCR7, a second high-affinity receptor for CXCL12, has

emerged as a critical regulator of ESCA progression. Recent

investigations by Jing Guo et al. highlight the clinical relevance of

CXCR7, which is overexpressed in ESCA tissues and cell lines. The

CXCL12-CXCR7 axis facilitates ESCA cell proliferation, migration,

invasion, and EMT. Mechanistically, CXCL12 knockdown reduces

EMT-related protein expression and alters ESCA cell morphology,

whereas CXCR7 silencing counteracts CXCL12-induced EMT.

These effects are mediated via STAT3 activation, which is

pharmacologically targetable by AZD9150 (49, 50).

The CXCL12-CXCR4/CXCR7 axis drives ESCA progression via

EMT, STAT3 activation, and stromal interactions with CAFs and

Twist-1. It promotes therapeutic resistance, lymph node metastasis,

and immunosuppression, modulated by IL-6/ING5 signaling.

Pharmacological targeting (e.g., AZD9150, rocuronium bromide)

demonstrates therapeutic potential by disrupting tumor-stroma

crosstalk and metastatic pathways.
3.4 Chemokines promote multi-
dimensional immunosuppression in ESCA

Numerous studies indicate that CCL2 is crucial for the

recruitment of TAMs and the regulation of the M1/M2

macrophage ratio. For instance, Hui Yang et al. found that

elevated CCL2 expression correlates with TAM accumulation

during esophageal carcinogenesis, as evidenced by analyses of

human ESCA tissue arrays and the TCGA database, both of

which suggest a poor prognosis for ESCC patients. Experiments

in mouse models of ESCA revealed that hindering the recruitment

of TAMs through blockade of the CCL2–CCR2 axis considerably

enhances the antitumor efficacy of CD8+ T cells in the TME,

resulting in a significant reduction in tumor incidence.

Additionally, M2 polarization in TAMs was found to increase

PD-L2 expression, which facilitates immune evasion and tumor

growth via the PD-1 signaling pathway (51). Moreover, a recent

study indicated that CCL2 induces macrophages to express

epidermal growth factor (EGF), enhancing tumor proliferation

and metastasis through the activation of the EGFR receptor (52).

Numerous studies have established that CCL2 is a vital chemokine

for the recruitment of TAMs and influences the M1/M2

macrophage ratio. The CCL2-CCR2 pathway mediates the

aggregation of monocytes and macrophages, promoting the

conversion of TAMs into M2-type macrophages, thereby

facilitating tumor progression and lymph node metastasis (51,

53, 54).

Specific studies using cDNA microarray analysis have shown

that CCL1 is overexpressed in TAM-like macrophages and that

CCR8, a receptor for CCL1, is present on ESCC cells. In vitro

experiments demonstrated that TAM-like macrophages

significantly enhance the motility of ESCC cells, a process that
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can be inhibited through neutralizing antibodies against CCL1 or

CCR8 (55). CCL3, expressed in both TAMs and ESCC cells, binds

to its receptor CCR5, also found in ESCC cells. The interaction

promotes cell migration and invasion by phosphorylating Akt and

ERK. Inhibition of the CCL3–CCR5 axis along with the PI3K/Akt

and MEK/ERK pathways has demonstrated effectiveness in

reducing cell migration and invasion prompted by TAM/rhCCL3

induction. Immunohistochemical analyses of clinical samples

further associate CCL3 and CCR5 expression in ESCC tissues

with patient prognosis (56). Both CCL4 and CCL5 show positive

correlations with CD8+ T-cell markers, with CCR5 predominantly

expressed on CD8+ T cells in ESCC. Moreover, CCL4 facilitates the

recruitment of CD8+ T cells in vitro (57, 58). In vitro experiments

indicate that PSMA3 can inhibit CD8+ T-cell infiltration through

the CCL3–CCR5 axis, as shown by several scholars (59).

The transcription factor forkhead box protein O1 (FOXO1)

facilitates the polarization of macrophages from the M0 to M2

phenotype by upregulating colony-stimulating factor 1 (CSF-1).

Additionally, FOXO1 promotes the secretion of CCL20, which

recruits M2 macrophages to the TME; this process can be

inhibited using an anti-CCL20 antibody (60). Jingyao Lian

reported that CCL20 binds to its receptor CCR6, facilitating the

aggregation of Tregs in the ESCC TME and accelerating tumor

proliferation (61).

Maruyama et al. evaluated the frequencies of CCL17(+) and

CCL22(+) cells in ESCC tumors using flow cytometry, reporting a

significant elevation compared to normal esophageal mucosa.

Moreover, a significant correlation was established between the

frequency of CCL17(+) or CCL22(+) cells and Foxp3(+) Tregs

within tumor-infiltrating lymphocytes. In vitro migration assays

using ESCC-derived Tregs exposed to CCL17 or CCL22 indicated

that these chemokines significantly enhanced Treg migration (62).

Additionally, a positive correlation between Treg concentration in

the TME and serum IL-10 levels, as well as the extent of CCL22-

positive cell infiltration, has been documented in patients with head

and neck squamous cell carcinoma (HNSCC) and ESCC. IHC

staining was employed for the quantitative detection of Treg

infiltration (63). It has also been reported that L1 cell adhesion

molecule (L1CAM) expression within the TME modulates Treg

infiltration in ESCC by influencing the secretion of CCL22.

Mechanistically, L1CAM upregulates CCL22 expression through

the activation of the PI3K/Akt/NF-kB signaling pathway,

facilitating Treg recruitment to the tumor site. Furthermore,

Tregs secrete TGF-b, which promotes L1CAM expression via

Smad2/3, thereby establishing a positive feedback loop (64).

In ESCC, the levels of the chemokines CCL17, CCL20, and

CCL22 are significantly elevated in tumorous tissues compared to

non-tumorous tissues. Additionally, a positive correlation exists

between the distributions of Th17 cells, a subpopulation of CD4+ T

cells, and these chemokines. In vitro migration assays further

demonstrate that CCL17, CCL20, and CCL22 exert chemotactic

effects on tumor-derived Th17 cells (65, 66). It has been reported

that EAC cells can promote the recruitment of myeloid dendritic

cells during the process of esophageal metaplasia-dysplasia-

carcinogenesis by secreting CCL20 (67).
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CXCL1 has been shown to facilitate the recruitment of

granulocyte MDSCs (G-MDSCs) to the tumor niche in

embryonic stem cells (ESCs). Additionally, metformin inhibits

CXCL1 secretion in ESCC cells and tumor xenografts by

enhancing AMPK phosphorylation and inducing the expression

of the cell fate determinant Dachshund homolog 1 (DACH1),

which subsequently leads to NF-kB inhibition and reduced

MDSC migration (68). Several studies have documented the

chemotactic effects of CXCL8 on MDSCs. The neural precursor

cell-expressed developmentally downregulated 9 (NEDD9) protein

regulates CXCL8 expression via the ERK pathway, thus recruiting

MDSCs into tumors. Furthermore, Maelstrom (MAEL) increases

phosphorylated Akt1 expression in tumor cells, which

phosphorylates the NF-kB subunit RelA, resulting in MDSC

chemotaxis through the upregulation of CXCL8, thereby

accelerating tumor progression within the TME (69, 70).

Moreover, MDSCs with elevated CD38 expression possess a

greater capacity to suppress activated T cells and promote tumor

growth compared to those with lower CD38 expression. In contrast,

CXCL16, IL-6, and IGFBP3 have been identified as factors that

induce CD38 expression on the surface of MDSCs (71).

CXCL1, CXCL2, CXCL5, and CXCL8 attract neutrophils that

overexpress CXCR2 to cancer-prone tissues (72). In a study

investigating the mechanisms of ESCC immunoediting, Gan

Xiong demonstrated that the CXCL1–CXCR2 signaling axis can

establish a neutrophil extracellular trap (NET) network.

Conditional knockdown of the immune checkpoint CD276 in

epithelial cells significantly downregulates CXCL1, which in turn

reduces NET formation while enhancing natural killer (NK) cell

activity. Furthermore, overexpression of CD276 has been shown to

facilitate the development of ESCC by promoting NET formation

and decreasing the number of NK cells within the TME in vivo

(73). (Figure 2).
3.5 Lymph node metastasis of ESCA
and chemokines

In the context of lymphatic metastasis of ESCA, endothelial cells

release chemokines along with associated receptors that facilitate

tumor cell entry into lymph nodes. The CCL21–CCR7 signaling

system has been identified as playing a critical role in ESCC lymph

node metastasis. CCR7 shows significant associations with

lymphatic infiltration, lymph node metastasis, tumor depth, and

tumor-node metastasis (TNM) stage, all of which correlate with

poor survival outcomes. In vitro studies have demonstrated that

CCL21 markedly enhances cell migration in ESCC cell lines and

induces the formation of pseudopodia. Furthermore, CCL21

significantly augments the migratory capacity of ESCA cell lines,

as evidenced by kinetic assays of phagocytosis (74–76).

Mo Shi et al. utilized IHC to detect the coexpression of CCR7

and MUC1, finding a correlation with lymph node metastasis,

regional lymphatic recurrence, and poor prognosis. Additionally,

in vitro experiments have elucidated the mechanisms behind lymph

node metastasis involving the CCL21–CCR7 axis. This axis has
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been shown to activate ERK1/2 and Akt, with ERK1/2 promoting

the phosphorylation of Sp1. Phosphorylated Sp1 subsequently

binds to the MUC1 promoter region at -99/-90, leading to the

upregulation of MUC1 and promoting invasion and metastasis of

ESCA cells (77). In ESCA, let-7a miRNA downregulates the

expression of CCR7. Decreased let-7a has been associated with

increased CCR7 expression in ESCC cells, enhancing their

invasiveness and malignancy, which ultimately leads to poorer

prognoses for patients. In vitro studies show that highly invasive

cancer cells exhibiting high levels of CCR7 and low levels of let-7a

demonstrate greater invasiveness than wild-type cell lines (78).

Numerous studies have shown that elevated levels of CXCL8

and CXCR2 expression in ESCC patients are strongly associated

with lymph node metastasis. Additionally, CXCL8 facilitates ESCC

cell migration and invasion by activating CXCR1 and CXCR2

receptors, inducing phosphorylation of the AKT and ERK1/2

signaling pathways (79, 80).
3.6 Role of chemokines in Barret’s
esophagus and EAC

Barrett’s esophagus (BE) represents an early stage of cancerous

transformation that can ultimately lead to the development of EAC.

A substantial body of evidence indicates that chronic inflammation

and multiple chemokine pathways play pivotal roles in the

pathogenesis of both BE and EAC.

Hsin-Yu Fang et al. conducted imaging analyses of IL-1b
transgenic mouse models of BE and EAC, as well as studies on

human patients. They discovered that CXCR4 expression increased

in both epithelial and immune cells throughout the progression of

the disease in mice, with elevated CXCR4 levels also observed in

biopsy samples from EAC patients. Furthermore, the specific

recruitment of CXCR4-positive immune cells was correlated with

the progression of dysplasia (81). RNA-Seq analysis of tissue

samples from EAC patients who underwent surgical resection

demonstrated increased expression of the cytokine IL-6 and the
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chemokine CXCL8 during the transition from BE to EAC.

Additionally, tumor sections from EAC patients exhibited

diminished immune function, as indicated by elevated PD-L1

levels and a reduction in CD8+ T cells (82). Furthermore, the

secretion of CCL5 was increased when EAC cells were cocultured

with CAFs (27). In studies investigating radiation resistance in EAC

patients, the irradiated treatment group exhibited impaired

antitumor T-cell function alongside a notable increase in CCR5+

T cells in the blood compared to healthy controls. Additionally,

irradiation was shown to enhance T-cell migration into tumor

cultures derived from EAC patients (83).

By employing artificial intelligence algorithms, researchers have

created a model for the progression of EAC, trained and validated

on a substantial number of BE and EAC samples. These findings

suggest that the CXCL8–neutrophil immune microenvironment

plays a pivotal role in driving adenocarcinoma cell transformation

in EAC and the gastroesophageal junction (84). Gene expression

analyses of EAC revealed prominent expression of chemokine

receptor axes, including CXCL9, CXCL10, and CXCL11/CXCR3,

with a maximum observed fold change of 9.5. These axes have been

shown to promote cancer cell proliferation and metastasis (85).

Utilizing single-cell RNA-Seq data from EAC tissues, Alok K. Maity

and colleagues reported hyperactivation of the CCL20 chemokine

network in both EAC tissues and saliva from EAC patients. In a

separate study, they found that CCL20 was hyperactivated in EAC

tissues infected with Fusobacterium nucleatum, a bacterium

typically found in the oral cavity (86). A retrospective study on

EAC revealed that high expression of CXCR7 significantly

correlated with increased lymphatic invasion and lymph node

metastasis, as well as poor prognosis in EAC patients. Notably,

high expression of CXCR7 and its ligand, CXCL12, was closely

associated with adverse outcomes (87).

ESCC and EAC represent distinct malignancies with significant

differences in cellular origin, pathogenesis, and molecular

characteristics. ESCC originates from squamous epithelial cells

and is predominantly associated with risk factors like tobacco use,

alcohol consumption, and dietary habits, while EAC develops from
FIGURE 2

Chemokines and their receptors as key factors in ESCA tumor immunity microenvironment.
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Barrett’s metaplasia in the lower esophagus, typically linked to

chronic gastroesophageal reflux disease. Cellularly, ESCC involves

transformation of stratified squamous epithelial cells, characterized

by more aggressive local invasion and higher metastatic potential

compared to EAC. The chemokine profiles between these two

cancer types reveal notable distinctions: ESCC demonstrates

significantly higher expression of CXCL12, CXCR4, and CCL20,

which are associated with enhanced tumor invasiveness and

metastatic potential, whereas EAC shows a relatively different

chemokine signature with increased CCL2 and IL-8 levels. These

differential chemokine profiles suggest potential biomarkers for

distinguishing between ESCC and EAC, with CXCL12/CXCR4

axis being particularly prominent in ESCC and potentially

representing a more specific therapeutic target (Table 2).
3.7 Angiogenesis of ESCA and chemokines

Research has shown that CCL2 expression is markedly elevated

in ESCA tissues, particularly in ESCC. The elevated levels of CCL2

are linked to macrophage infiltration, which plays a critical role in

stimulating angiogenesis in ESCC. It is proposed that CCL2 may

interact with macrophages to facilitate angiogenesis by promoting

the production of angiogenic factors (such as TP) from these

recruited macrophages. Additionally, the expression of CCR2 in

vascular endothelial cells may also contribute to angiogenesis to

some extent (88, 89).

Moreover, studies have demonstrated that poly(A)-binding

protein cytoplasmic 1 (PABPC1) interacts with eIF4G, enhancing

the stability of IFI27 mRNA in ESCC. This PABPC1/IFI27

interaction subsequently enhances the expression of miR-21-5p,

which facilitates angiogenesis through the exosomal transfer of
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miR-21-5p and CXCL10, promoting the malignant progression of

ESCC (90).
3.8 Prognosis-related chemokines in ESCA

The overexpression of CCL1 in TAMs and the expression of

CCR8 on ESCA cells are associated with a poor prognosis in ESCA

patients (55). Numerous studies utilizing animal models and RNA

sequencing technology have demonstrated that elevated CCL2

expression is linked to the accumulation of TAMs and predicts

poor prognosis in the ESCC group (51). IHC analysis of clinical

samples revealed that high levels of CCL3 and/or CCR5 in ESCC

tissues are linked to poor prognosis. In fact, elevated CCL3 and

CCR5 expression have been identified as independent prognostic

factors for disease-free survival in ESCC patients (56). CCL4 also

plays a role in recruiting CD8(+) T cells to ESCC cells, with high

CCL4 expression associated with prolonged survival. Notably, the

overall survival rate is greater in patients with high CCL4 expression

and low CCL20 expression (58). Further investigations have

indicated that elevated levels of CCL5 or CCR5 correlate with

poor prognosis in patients with low-grade ESCA (27).Shi et al.

identified coexpression of CCR7 and MUC1 through IHC in 153

ESCC samples; this coexpression was associated with lymph node

metastasis, regional lymphatic recurrence, and poor prognosis (77).

Additionally, the overexpression of CCL18 in ESCC tissues

correlates with reduced survival rates among these patients (20).

Differential gene analysis comparing normal and tumor tissues

from ESCA patients identified CCL25 as an independent immune

gene associated with prognosis (91).

Moreover, CXCL12 overexpression significantly correlates with

poor disease-free survival and overall survival in postoperative
TABLE 2 Chemokine profiles in esophageal squamous cell carcinoma (ESCC) vs. esophageal adenocarcinoma (EAC).

ESCC EAC Common Roles

Primary
Chemokine Types

CCL2, CCL5, CXCL8, CXCL10, CXCL12 CCL20, CXCL1, CXCL5, CXCL9 CCL2 and CCL5
promote inflammation

Role in Tumor
Microenvironment

Promotes inflammation, immune cell infiltration;
associated with Th1/Th17 polarization

Enhances angiogenesis and myeloid cell recruitment;
associated with a more immunosuppressive milieu

Both promote immune
cell infiltration

Key Chemokine
Receptors

CCR5, CXCR4 CCR6, CXCR2 CXCR4 and CXCR2
involved in migration

Immune
Cell Recruitment

Monocytes, neutrophils, Th1/Th17 cells Myeloid-derived suppressor cells (MDSCs), regulatory T
cells (Tregs)

T cell recruitment in both

Angiogenesis
Moderate; primarily via CXCL12 pathways High; driven by CXCL1 and CXCL5-mediated pathways Both involved in

vessel formation

Chemokines
in Metastasis

CXCL10 and CXCL12 involved in lymphatic spread CXCL1 and CCL20 promote liver and lung metastasis Both associated with
metastatic spread

Association with
Immune Evasion

Moderate, primarily via CXCL8 and IL-6 pathways High, via CXCL5 and TGF-5 signaling Both help in
immune evasion

Inflammatory
Context

Strong link to smoking, alcohol use, HPV-
related inflammation

Strong link to chronic gastroesophageal reflux disease
(GERD) and Barrett’s esophagus

Contribute to
local inflammation
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ESCA patients (42). Some studies have implemented in vitro and in

vivo experiments demonstrating that CXCR4 overexpression

promotes the proliferation, migration, invasion, and survival of

ESCC, while silencing CXCR4 produces the opposite effects.

CXCR4 expression is also linked to lymph node metastasis and

poor prognosis (92). Furthermore, elevated expression of CXCL8

and CXCR2 is linked to tumor progression, metastasis, and

unfavorable prognosis in patients with ESCC (79). Both CXCL12

and CXCL8/CXCR2 serve as prognostic factors for overall survival

in patients with ESCA (93).

In research by Noel E. Donlon et al., elevated levels of CCL22

and CCL26 were associated with improved overall survival in 80

patients with EAC based on pretreatment serum protein levels.

Furthermore, patients who responded favorably to treatment

exhibited increased levels of CCL4 (94). Additionally, among

postoperative EAC patients who received neoadjuvant

radiotherapy, those achieving pathologic complete remission

(pCR) demonstrated high expression of CCL28, suggesting its

association with prognosis (95). An evaluation of CXCL12,

CXCR4, and CXCR7 expression levels in 55 EAC patients via

tissue microarray immunohistochemistry revealed that high

CXCR7 expression is associated with poor prognosis. Moreover,

CXCR7 and its ligand, CXCL12, closely correlate with prognosis in

EAC patients (87).
4 Radiation induced tissue injury alters
chemokine and their profile

Radiation therapy is a cornerstone treatment for ESCAs, but it

induces significant tissue injury that alters chemokine profiles in a

manner that can impact both tumor regression and patient

side effects.

In the early phase (acute phase), occurring within the first two

months post-radiation, there is a marked outpouring of pro-

inflammatory cytokines and chemokines, such as IL-1, IL-6, TNF-

a, and CXCL8 (IL-8) (96). This acute inflammatory response is a

direct consequence of radiation-induced tissue damage, leading to

cell death and the release of damage-associated molecular patterns

(DAMPs). The resultant chemokine surge facilitates the

recruitment of immune cells, particularly T lymphocytes,

enhancing anti-tumor activity and contributing to initial tumor

regression. However, this phase is also associated with significant

side effects, including radiation dermatitis and systemic

inflammatory responses, which can manifest as fatigue and

malaise, severely affecting the patient’s quality of life.

As the treatment progresses into the early delayed phase (sub-

acute phase), occurring between 2 to 6 months post-radiation, the

inflammatory profile evolves. During this period, chemokines such

as CCL5 (RANTES) and CXCL12 (SDF-1) become prominent as

the tissue begins to repair itself (97, 98). While the immune

response continues to target residual tumor cells, this phase can

also lead to increased fibrosis and tissue remodeling, which may
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tumor. The presence of macrophages in this phase contributes to

both healing and the potential for further fibrotic changes, which

can complicate recovery and lead to chronic side effects, such as

pulmonary fibrosis in patients receiving thoracic radiation (99).

In the late delayed phase, which occurs beyond 6 months post-

radiation, a chronic inflammatory state may develop, characterized

by low-level production of pro-inflammatory cytokines and

chemokines, including TGF-b. This sustained inflammatory

environment can result in immune suppression, allowing for

tumor dormancy or progression due to diminished immune

surveillance. The long-term presence of immunosuppressive

factors can increase the risk of secondary malignancies and

persistent symptoms, such as pain and organ dysfunction, due to

ongoing fibrosis. In the context of ESCAs, the alterations in

chemokine profiles throughout these phases highlight the dual

nature of radiation therapy; while it can effectively target tumors,

the associated inflammatory responses can lead to significant

morbidity and impact overall patient outcomes (Table 3, Figure 3).

Additionally, the presence of chemokines in the TME can

contribute to the acquisition of radioresistance by tumors. For

instance, CXCL1 and CXCL12 enhances the tumor’s resistance to

radiation through both direct and indirect mechanisms (25).

Chemokines such as CCL3 and CXCL16 can induce

inflammatory responses and fibrotic changes in normal tissues

following radiation treatment. The recruitment and activation of

monocytes/macrophages and lymphocytes are also key components

of radiation-induced fibrosis, a process that is associated with

several chemokines, including CCL2 and CCL22 (100, 101).
5 Discussion

ESCA is a prevalent and highly malignant tumor characterized

by its complex pathophysiology, which is influenced by a multitude

of factors, including genetic predispositions, environmental toxins,

and inflammatory processes. The chemokine subfamily consists of a

diverse array of proteins that play critical roles in various

physiological and pathological processes, encompassing cell

migration, inflammation, and immune responses. Specifically,

chemokines that are associated with ESCA contribute not only to

the processes of carcinogenesis and tumor progression but also

facilitate tumor infiltration and metastasis by promoting the

migration and proliferation of tumor cells in vivo. Moreover,

within the tumor-associated immune microenvironment,

chemokines serve to modulate immune responses by regulating

the composition and activity of diverse immune cell populations.

Certain chemokines and their receptors, such as CCL1, CCL2,

CCL3/CCR5, CXCL12/CXCR4 and CXCL8/CXCR2 are associated

with poor prognosis in ESCA. They have been linked to disease

progression and metastasis, indicating aggressive tumor behavior

and also correlated with unfavorable outcomes. Circulating levels of

certain chemokines, particularly CXCL12 and CXCR4, have been
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investigated as potential biomarkers for tumor grading and

response to therapy. Elevated levels of CXCL12 and/or CXCR4 in

the blood have been associated with higher tumor grades and may

indicate resistance to treatment, making it a candidate for

monitoring therapeutic efficacy. CXCL10, CCL4, CCL5,

andCCL20, were also reported as possible biomarkers in ESCA (57).
Frontiers in Oncology 11
Chemokine-driven immunosuppression is a hallmark of many

cancers, with ESCA exhibiting both conserved mechanisms and

context-dependent adaptations. In ESCA, the CCL2-CCR2 axis

drives TAM infiltration and M2 polarization, suppressing CD8+ T

cells and promoting immune evasion—a pattern mirrored in

melanoma, non-small cell lung cancer (NSCLC), and colorectal
TABLE 3 Impact of chemokines and their receptors on sensitivity and resistance to radiation therapy and the alterations in chemokine profiles
induced by radiation therapy.

Early
Phase (Acute)

0 - 2 months
post-radiation

Pro-inflammatory
cytokines:IL-1, IL-6,
TNF-,Chemokines:
CXCL8 (IL-8)

Increases immune cell recruitment,
enhancing anti-tumor T-cell activity.
Contributes to tumor cell death through
direct cytotoxic effects.

Direct radiation-induced tissue
injury releases DAMPs, leading
to elevated levels of pro-
inflammatory cytokines
and chemokines.

Radiation dermatitis
Systemic inflammatory
responses
(fatigue, malaise)

Early Delayed
Phase

(Sub-Acute)

2 - 6 months
post-radiation

Tissue repair-related
chemokines:CCL5
(RANTES), CXCL12
(SDF-1)

Modulates immune response, supporting
targeting of residual tumor cells.
Increased fibrosis may limit effectiveness
of immune response.

Shift in profile to pro-repair
chemokines; increased
macrophage activity for tissue
remodeling and healing.

Fibrosis in healthy
tissues Persistent
inflammation-
related symptoms

Late Delayed
Phase

(Chronic)

> 6 months
post-radiation

Immunosuppressive
factors:TGF-s Low-
level cytokines
and chemokines

Promotes tumor dormancy or
progression due to immune suppression
and limited surveillance.

Sustained production of
immunosuppressive chemokines
leads to chronic inflammatory
state and reduced
immune activity.

Increased risk of
secondary malignancies
Persistent pain Organ
dysfunction due
to fibrosis
FIGURE 3

Chemokine profile and TME change after radiation treatment.
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cancer (CRC), where CCL2 blockade synergizes with immune

checkpoint inhibitors (ICIs). Similarly, CCL18, a TAM-secreted

chemokine, activates JAK2/STAT3 signaling in ESCA, correlating

with poor prognosis, as seen in ovarian and breast cancers. The

CCL22-CCR4 axis, which recruits Tregs to foster immunosuppression

and chemoresistance in ESCA, also enriches Tregs in NSCLC and CRC,

contributing to ICI resistance. Hypoxia-induced CXCL8 in ESCA

recruits MDSCs and upregulates PD-L1, paralleling its role in

melanoma and CRC, where CXCL8 drives neutrophil/MDSC

recruitment and angiogenesis, underpinning anti-PD-1 resistance.

Despite these shared pathways, ESCA exhibits unique features,

such as chemoresistance mediated by the CCL22-DGKa/NF-kB axis,

which reduces cisplatin efficacy by suppressing reactive oxygen species

(ROS) and upregulating ATP-binding cassette (ABC) transporters—a

mechanism less characterized in other tumors. Additionally, the long

noncoding RNA LINC00330 binds CCL2 to suppress TAM

reprogramming, a regulatory interaction not yet reported in

melanoma or NSCLC. ESCA also uniquely links the immune

checkpoint CD276 to CXCL1-CXCR2 signaling, promoting

neutrophil extracellular trap (NET) formation and natural killer

(NK) cell suppression, a pathway less prominent in ICI-responsive

tumors. While ICIs have shown limited efficacy in ESCA compared to

melanoma and, targeting chemokine pathways offers therapeutic

potential. For instance, CCR2/CCR5 inhibitors, such as PF-04136309

in pancreatic cancer, could disrupt TAM/Treg recruitment in ESCA,

while CXCL8/CXCR2 blockade, trialed in CRC, may reduce MDSC/

NET-mediated immunosuppression. However, ESCA’s fibrotic TME

and hypoxic niche amplify chemokine-driven immunosuppression,

creating unique challenges for therapeutic penetration and efficacy.

Thus, while ESCA shares key chemokine-mediated

immunosuppressive networks with other solid tumors, its distinct

stromal architecture, metabolic stressors, and chemoresistance

pathways demand tailored therapeutic strategies. Combining

chemokine axis inhibitors with ICIs, as explored in more ICI-

responsive tumors, may offer a promising approach to overcoming

resistance in ESCA, though context-specific validation remains essential.

Specific chemokine receptors can be leveraged for targeted drug

delivery. For example, the CXCR4 receptor, primarily activated by

CXCL12, can be used to direct nanoparticles specifically to cancers

expressing CXCR4, such as ESCA, breast cancer and ovarian cancer

(102). By attaching therapeutic agents to ligands for these receptors,

drug delivery becomes more efficient and selective. The exploration of

various strategies targeting chemokines and their receptors has

become increasingly significant in the pursuit of effective cancer

therapies. Initial investigations have focused on agents targeting

CCR2 or CCL2, which have undergone clinical trials; however, the

majority have demonstrated inefficacy, resulting in the abandonment

of several candidates, including carlumab, plozalizumab, and PF-

04136309. In addition to these, a notable range of CCR4 antagonists

has been evaluated in clinical studies, although mogamulizumab

remains the sole approved CCR4 antagonist in oncology, specifically

indicated for the treatment of T cell lymphomas. Parallel to these

efforts, at least four CCR5 antagonists are being investigated in
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oncology trials, namely BMS-813160, along with the small-molecule

antiretroviral drugs maraviroc and vicriviroc, and the monoclonal

antibody leronlimab. These investigations reflect a growing interest in

the therapeutic potential of targeting CCR5-mediated pathways (103).

Further supporting the investigation of chemokine inhibitors, recent

findings from the COMBAT study highlight the effectiveness of the

CXCR4 antagonist BL-8040 combined with pembrolizumab and

chemotherapy in patients with pancreatic ductal adenocarcinoma

(PDAC) (104). This study reported favorable median overall

survival durations for patients receiving this combination therapy

without chemotherapy, compared to historical controls, underscoring

the potential of this immunotherapeutic strategy. Additionally, other

CXCR4 inhibitors, such as AMD3100, are also under evaluation in

clinical trials, aimed at disrupting the tumor-promoting effects of

chemokines. A number of ongoing clinical trials are currently testing

these innovative approaches across various cancers, including multiple

myeloma and breast cancer, contributing to the broader landscape of

immunotherapy in oncology (105).

Alterations in chemokine profiles due to cancer progression or

treatment can lead to adverse effects such as tissue damage, chronic

inflammation, and fibrosis. These effects are often exacerbated in

aging tissues, potentially leading to complications such as cancer

cachexia, pain, and impaired healing processes. Consequently,

investigating chemokines and their receptors in the context of

ESCA offers novel opportunities for improving management

strategies. Given the extensive diversity within the chemokine

family, further comprehensive studies are essential. A more

profound understanding of the mechanisms underlying

chemokine-receptor interactions may subsequently enable the

development of innovative treatment strategies through the

modulation of chemokine expression and activity.
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