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Reversal of chemotherapy
resistance in gastric cancer
with traditional Chinese
medicine as sensitizer:
potential mechanism of action
Chencong Zhou, Kaihan Wu, Meng Gu, Yushang Yang,
Jiatao Tu and Xuan Huang*

Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University,
Hangzhou, Zhejiang, China
Gastric cancer (GC) remains one of the most common types of cancer, ranking fifth

among cancer-related deaths worldwide. Chemotherapy is an effective treatment

for advanced GC. However, the development of chemotherapy resistance, which

involves the malfunction of several signaling pathways and is the consequence of

numerous variables interacting, seriously affects patient treatment and leads to poor

clinical outcomes. Therefore, in order to treat GC, it is imperative to find novel

medications that will increase chemotherapy sensitivity and reverse chemotherapy

resistance. Traditional Chinese medicine (TCM) has been extensively researched as

an adjuvant medication in recent years. It has been shown to have anticancer

benefits and to be crucial in enhancing chemotherapy sensitivity and reducing

chemotherapy resistance. Given this, themechanismof treatment resistance inGC is

summed up in this work. The theoretical foundation for TCM as a sensitizer in

adjuvant treatment of GC is established by introducing the primary signal pathways

and possible targets implicated in improving chemotherapy sensitivity and reversing

chemotherapy resistance of GC by TCM and active ingredients.
KEYWORDS

gastric cancer, chemoresistance, traditional Chinese medicine, sensitizer,
signaling pathway
1 Introduction

According to global cancer statistics 2022, gastric cancer (GC) ranks fifth in terms of

incidence and mortality, seriously threatening human health (1). Endoscopic resection is

the main treatment for early-stage GC. Non-early operable GC is treated with surgery (2).

Unfortunately, most patients are diagnosed with advanced unresectable or metastatic stages

of disease at first, due to the lack of specific clinical symptoms.

In comparison to supportive therapy alone, combined chemotherapy can improve both

survival rates and quality of life for patients with advanced or metastatic disease. A platinum
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fluoropyrimidine doublet has been the first-line therapy due to lower

toxicity (3). Oxaliplatin is recommended for older patients because of

its lower toxicity than cisplatin (4). First-line treatment based on

irinotecan may be recommended as a first-line therapy option in

patients with advanced or metastatic gastroesophageal cancer (3, 5, 6).

For patients with Human Epidermal Growth Factor Receptor 2

(HER2) overexpression positive GC, Trastuzumab should be added

to first-line chemotherapy [category 1 for cisplatin (7); category 2A for

oxaliplatin] (3). Pembrolizumab can be added to this regimen to

improve progression-free survival (8). When patients with HER2

overexpression are negative, the preferred regimen for Programmed

cell death 1 ligand 1 (PD-L1) combined positive score (CPS)≥5 is

nivolumab combined with fluorouracil and oxaliplatin (9). The

selection of second-line and subsequent therapy is determined by

performance status and the history of prior treatments. As a

monotherapy or in combination with paclitaxel, ramucirumab is the

preferred option for second-line and subsequent therapy (10, 11). As

monotherapy or combination, docetaxel, paclitaxel, and irinotecan are

recommended as a second-line therapy (12–14). The regimen of

trifluridine and tipiracil is classified as category 1 recommendations

for patients whose disease progressed after second-line chemotherapy

(15). This treatment is suitable only for patients with low-volume GC,

because of its strong cytotoxicity.

However, parts of GC cells escape cell toxicity and acquire stably

resistant to drug during chemotherapy. The acquired resistance leads

poor clinical efficacy and is the leading cause of chemotherapy failure in

most patients. Currently, there are several strategies for overcoming

chemoresistance in cancer, including discontinuous dosing, modifying

drug concentrations, combination therapy, and the use of natural

products (16). However, most of these strategies generally result in

serious side effects, involve higher treatment costs, and technical

difficulties (17). Natural products play an important role in treatment

of diseases, especially for cancer and infection diseases. It has been

reported that about half of the anti-cancer drugs approved by the Food

Drug Administration (FDA) originate from either natural products or

their derivatives (18). Traditional Chinese Medicine (TCM) has been

extensively used clinically due to its strong specificity, high efficacy, and

low toxicity. It not only inhibits tumor growth but also enhances

chemotherapy efficacy and reverses chemoresistance when combined

with traditional chemotherapy.

In this review, we aim to understand the mechanisms of

chemotherapy resistance in GC and to explore the potential of

TCM and its active components as chemotherapy sensitizers in

reversing chemotherapy resistance and improving curative effect in

GC. We hope TCM can be an innovative strategy to solve the

difficulties of clinical anti-cancer treatments.
2 Mechanisms of chemoresistance for
GC manuscript formatting

2.1 Drug efflux

The intracellular concentration of antitumor drugs needs to

remain within the effective concentration range to exert therapeutic

effects. Compared with that in normal tumor cells, the intracellular
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drug concentration in resistant cells is well below the effective range

due to enhanced drug efflux, reduced drug influx and drug

sequestration (19). Chromodomain helicase DNA-binding protein

4 (CHD4) increases the cisplatin efflux and decrease the

intracellular concentration, leading to drug resistance (20).

Therefore, abnormally high expression of associated membrane

proteins which mediate drug efflux is one of the causes leading to

chemotherapy resistance (Figure 1). ATP-mediated ATP-binding

cassette (ABC) transporter family is a major class of these

membrane proteins. The level of the classical drug resistance-

related protein P-glycoprotein (P-gp) gradually increases in

gastric epithelial cells, GC cells and drug-resistant cells (21). PD-

L1 promotes the expression of P-gp, by up-regulating the

phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt)

signal pathway to enhance drug efflux and reduce the cell damage

caused by cisplatin (22). One study found that a selective

mammalian target of rapamycin complex 1/2 (mTOR1/2) dual

inhibitor could enhance oxaliplatin-induced apoptosis by down-

regulating the expression of p-gp (23). In addition, the function of

ABC transporters, including P-gp, also relies on their subcellular

location. A study showed that ABC transporters were more

localized to the plasma membrane in SGC-7901 cells than in

resistant cells (24). Multidrug resistance-associated protein 1

(MRP1) is another classic ABC transporters protein that is closely

associated with the chemoresistance in GC. As a MRP1 regulator,

the overexpression of Siva-1 could regulate the NF−kB pathway to

GC cells escape certain chemotherapies (25).
2.2 Inhibition of cell death

Programmed cell death can eliminate damaged cells or cells that

replicate pathogens that are at risk of tumor transformation to

maintain homeostasis in the body. These processes include

apoptosis, ferroptosis, autophagy, pyroptosis, necrosis and

necroptosis (26).

Apoptosis is essential for maintaining homeostasis. There are

two pathways of apoptosis (Figure 2). One is that antiapoptotic and

proapoptotic proteins interact with mitochondria to activate the

mitochondrial pathway (19). The B-cell lymphoma-2 (Bcl-2) family

is a pivotal protein in the mitochondrial pathway and regulates

mitochondrial outer membrane permeabilization (MOMP).

Paclitaxel can reduce the expression of Bcl-2 through direct

binding, leading to apoptosis (27). BamH1 A fragment leftward

reading frame 1 (BALF1) plays a role in maintaining Bcl-2 protein

with anti-apoptotic characteristics stability, leading to cancer

progression (28). The combined targeted therapy of pro-apoptotic

Bax and anti-apoptotic Bcl-xl is a novel therapeutic strategy to

overcome cancer progression and resistance (29). P53 is also a

classical regulatory gene which can mediate the intrinsic apoptotic

pathway (30). The pro-apoptotic protein p53 can be degraded

through the exosome miR-769-5p-mediated ubiquitin-proteasome

pathway, ultimately leading to cisplatin resistance (31). The other

pathway is the extrinsic pathway, in which death receptors on the

plasma membrane identify and bind special death ligands, inducing

apoptosis (32). As a classical death ligand, tumor necrosis factor
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(TNF) binds to TNFR1 to recruit downstream molecules, leading to

cell apoptotic (33). Studies have shown that TNF-a can regulate the

nuclear factor kappa-beta (NF−kB) signaling pathway, driving

cisplatin resistance (34).

Autophagy, which is characterized by the self-degradation of

intracellular components, plays dual roles in the resistance of GC to

chemotherapy and relies on the intensity and duration of the stimuli

(Figure 3). In the presence of persistent stimuli, autophagy, known as

cytotoxic autophagy, has anticancer effects (35). However, autophagy,
Frontiers in Oncology 03
which is regulated by multiple proteins and signaling pathways, is also

known as cytoprotective autophagy and can promote cancer cell

resistance to chemotherapeutic agents (36, 37). Enhanced autophagy

was activated by annexin A1 (ANXA1) via the PI3K/Akt pathway,

resulting in oxaliplatin resistance in GC. Moreover, knockdown of

ANXA1 could restore sensitivity to oxaliplatin (38). METase could

inhibit autophagy through regulating the highly up-regulated in liver

cancer (HULC)/Forkhead box protein M1 (FoxM1) pathway and

enhance resistant cell sensitivity to cisplatin (39). Studies had shown
FIGURE 1

ABC transporters active drug efflux and chemotherapy resistance.
FIGURE 2

Cell apoptosis flowchart.
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that MFAP2 could promote autophagy and increase the resistance to

cisplatin in GC, but the specific mechanism was not yet clear (40). so

MEAP2 could be a potential therapeutic targe. As an essential

deubiquitinase, USP13 maintained the stability of autophagy-related

protein 5 (ATG5) to enhance autophagy and promoted imatinib

resistance in cancer cells (41).

Ferroptosis is a unique iron-dependent mode of nonapoptotic

regulated cell death, that involves iron-mediated accumulation of

reactive oxygen species (ROS), oxidative stress and dysfunction of

antioxidative defense (42) (Figure 3). Compared to GC cells,

cisplatin-resistant GC cells exhibit lower levels of ferroptosis,

evident by lower ROS, malondialdehyde (MDA) and lipid

peroxidation and higher intracellular glutathione (GSH) levels

(43). ATF3 blocked the Kelch-like ECH-associated protein 1

(Keap1)/NF-E2-related factor 2 (Nrf2) axis and induced

ferroptosis, consequently restoring GC sensitivity to cisplatin.

DNAJC12 had been shown to induce doxorubicin resistance

through activating the Akt signal to repress cell ferroptosis (44).

Cells subjected to continual chemotherapy often resist apoptosis but

are sensitive to ferroptosis (45). So ferroptosis induction is

considered a potential way to overcome chemoresistance.
2.3 Enhanced DNA damage repair

The DNA damage response (DDR) is a special repair system

used to maintain genetic stability and integrity under stress

conditions. Targeting DNA damage represents a primary

mechanism employed by numerous chemotherapy agents (46).

However, certain cancer cells can acquire drug-resistant

phenotypes through the enhancement of DNA repair processes.

Some nucleotide excision repair (NER) proteins are overexpressed

in Pt-resistant cells. Spontaneous NER is one of the significant

causes of platinum resistance. Poly (ADP-Ribose) polymerase 1
Frontiers in Oncology 04
(PARP1), as an enzyme crucial for repairing DNA damage, can

effectively repair damaged DNA by mediating abnormal

activation of the base excision repair (BER) pathway, thereby

resulting in oxaliplatin resistance (47). The excision repair cross-

complementing gene (ERCC) is also a key gene involved in DNA

repair. The overexpression of ERCC4 and ERCC3 may confer

resistance to cisplatin by part of a mechanism involving the NER

pathway (48). The high expression of ERCC1 is strongly associated

with the risk of cisplatin in GC and is considered an independent

predictor of the efficacy of platinum chemotherapy (49). The

expression levels of ERCC1 and ERCC4 are inversely correlated

with miR-138-5p in GC samples. Upon silencing miR-138-5p, the

upregulation of ERCC1 and ERCC4 occurs, which subsequently

reduces the sensitivity of GC cells to cisplatin (50).
2.4 Modulation of the
tumor microenvironment

The cellular environment in which tumors exist is referred to as

TME, which comprises stromal cells, immune cells, and

extracellular components and plays an essential role in tumor

progression, drug resistance, and immune escape (Figure 4).

Studies have found that the cancer-associated fibroblasts (CAFs)

within the GC can secrete stromal cell-derived factor-1 (SDF-1) by

activating the Hippo pathway, thereby inducing resistance to 5-Fu

(51). Tumor-associated macrophages (TAMs) with the M2

phenotype are also one of the main causes of drug resistance.

CXCL5 derived from M2-TAMs induces 5-Fu resistance by

regulating the PI3K/Akt/mTOR pathway (52). It’s widely believed

that mesenchymal stem cells (MSCs) can mediate the PD-L1, thus

leading to GC invasion, metastasis and therapy escape. Wang et al.

found MSCs could enhance cisplatin resistance of GC cells exposed

to cisplatin through regulating PD-L1 to promote the expression of
FIGURE 3

The process of autophagy and iron death in cells.
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multi-drug resistance 1 (MDR1) and Reds1 (53). For noncellular

components, approximately 50–60% of locally advanced solid

tumors show areas of hypoxia. As an important gene of hypoxia,

the high expression of HIF-1a can mediate cellular resistance to

cisplatin and paclitaxel (54, 55). Regarding trace elements, the levels

of zinc, and manganese in GC tissues are markedly higher

compared to those in adjacent normal tissues (56).
2.5 Intensification of epithelial-
mesenchymal transition

EMT refers to the process of phenotypic transformation of

epithelial-like cells into mesenchymal cells. After EMT, cancer cells

lose epithelial characteristics and acquire higher migration and

transfer ability (57). EMT is involved in several signaling

pathways which include the Notch, Wnt, and TGF-b signaling

pathways (58). At the molecular level, the changes in a variety of cell

adhesion molecules, such as E-cadherin and N-cadherin, indicate

the occurrence of EMT. Resistant cells are apt to metasize. The

expression level of Ras-related protein 31 (Rab31) is negatively

correlated with the sensitivity of cisplatin to stomach

adenocarcinoma, and it can activate Twist1 through regulating

the Stats/Mucin 1 (MUC-1) signaling, thereby mediating cisplatin

resistance and metastasis (59). Liu et al. pointed out that the
Frontiers in Oncology 05
overexpression of Wilms tumor 1 associated protein (WTAP) was

significantly correlated with poor cancer prognosis, as it facilitated

the EMT in GC cells by modulating TGF-b expression and stability

of mRNA, consequently leading to multiple chemotherapy

resistance and metastasis (60). Adenosine deaminases acting on

RNA1 (ADAR1) has been shown to be involved in occurrence and

development of GC, and it regulates the protein expression levels of

EMT-related markers via the antizyme inhibitor1 (AZIN1)

pathway. Knockout of ADAR1 can inhibit the metastatic, as well

as enhance sensitivity to cisplatin (61).
2.6 Cancer stem cell

Although only a small proportion of GC cells, GC stem cells

(gCSCs) are considered the key contributor to tumor initiation,

metastasis, recurrence and treatment failure. gCSCs can develop

drug resistance by affecting drug efflux, apoptosis, DNA damage

repair, TME and EMT, as well as proliferate after escaping

chemotherapy, eventually resulting in tumor recurrence and

metastasis (62) (Figure 5). As a highly expressed gene in resistant

cells, PRKA kinase anchor protein 8L (AKAP-L8) can promote GC

cells to acquire stem cell-like features by maintaining the stability of

Stearoyl-CoA desaturase 1 (SCD1) via an IGF2 mRNA binding

protein 1 (IGF2BP1)-dependent manner, resulting in resistance to
FIGURE 4

Tumor microenvironment in chemoresistance of GC. Extracellular matrix acts as a physical barrier to prevent drugs from entering. The TCM
formation of new blood vessels, hypoxia and acidification contribute to chemoresistance.
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oxaliplatin (63). Ukai et al. also found that KH domain-containing

RNA-binding signal transduction-associated protein 3 (KHDRBS3)

might play a role in stem cell-like characteristics by mediating CD44

variant expression, thereby reducing the sensitivity of GC cells to 5-

Fu (64). Metallothionein 1 M (MT1M) plays a key role in tumor

progression and formation, and its expression is positively

correlated with clinical prognosis. The overexpression of MT1M

can inhibit stem cell characteristics and reverse 5-Fu resistance by

targeting Glioma-associated oncogene homolog 1 (GLI1) and

affecting GLI1 ubiquitination (65). Wnt1 has been proven to be a

potential therapeutic target. Tan et al. found the Wnt1-SOX4

positive feedback loop could maintain gCSCs self-renewal and

tumorigenicity and associate with the resistance of 5-Fu and

oxaliplatin (66).
2.7 Metabolic reprogramming

Metabolic reprogramming of cancer cells can efficiently obtain

and utilize nutrients to adapt to various signals of TME and

facilitate survival, proliferation and drug resistance. Therefore, it

may be a foundation for the development of drug resistance. Cancer

cells preferentially produce energy through glycolysis rather than

oxidative phosphorylation, the phenomenon referred to as aerobic

glycolysis. Xu et al. found that Far upstream element-binding

protein 1 (FUBP1), which is involved in regulation of target gene

transcriptional in vivo, could positively correlate with aerobic

glycolysis and induce oxaliplatin resistance by regulating
Frontiers in Oncology 06
glycolysis in GC cells (67). He et al. pointed out that pyrimidine

biosynthesis could accelerate glycolysis via activating Notch

signaling and enhancing the expression of c-Myc, leading to

hindering the efficacy of chemotherapy (68). Maintenance

complex component 10 (MCM10) is also observed to be enriched

in the glycolysis-related pathway, leading to an enhancement of

stemness characteristics in GC cells and contributing to paclitaxel

resistance (69). Glucose-regulated protein 75 (GRP75) is highly

expressed in cisplatin-resistant GC cells. Knockdown of GRP75 can

alter the metabolic reprogramming through blocking anti-

oxidation/apoptosis-related progress, thereby enhancing the

sensitivity to cisplatin (70).
2.8 Non-coding RNAs and exosomes

Non-coding RNAs, involved in miRNAs, lncRNAs, and

circRNAs, and exosomes have been extensively studied for their

roles in the chemoresistance of GC. Circ_0006089 is highly

expressed in GC-resistant cells, while it can induce GC cells

resistant to oxaliplatin through mediating Neuropilin 1 (NRP1)

expression via sponging miR-217 (71). Fei et al. pointed out that

circ_0008315 could accelerate GC progression and hinder

therapeutic efficacy of cisplatin by enhancing GC cell stemness

property (72). Overexpression of miR-30c-5p can directly target the

3’UTR of Lactate Dehydrogenase A (LDHA) to block glycolysis,

thereby reversing resistance (73). The levels of regulator of

reprogramming (ROR) and high mobility group protein. A2
FIGURE 5

gCSCs keep their sustained growth, metastasis and gain chemoresistance by escaping chemical therapy.
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(HMGA2) are significantly upregulated, but miR-519d-3p is

downregulated in GC tissues and cells. Knocking down ROR can

restrain cisplatin resistance in GC cells through targeting miR-

519d-3p (74). Chen et al. found that the exosomal circ-0091741 can

induce apoptosis and oxaliplatin resistance through blocking miR-

330-3p combination with tripartite motif 14 (TRIM14) and

activating the Wnt/b-catenin signaling via stabilizing dishevelled

2 (Dvl2) (75).
3 TCM in the treatment of GC

It is well known that active ingredients extracted from Chinese

herbs have therapeutic effects on GC. Artemisinin, which is the active

ingredient extracted from the leaves and roots of Artemisia annua, is

frequently used to cure malaria. In recent years, artemisinin and its

derivatives have been shown in numerous investigations to have

anticancer properties (76). In both cellular and mouse models, the

derivative dihydroartemisinin successfully suppressed tumor

progression and vasculogenic mimicry formation (77). Moreover,

the combination of dihydroartemisinin and anlotinib can increase the

rate of apoptosis and prevent angiogenesis, migration, and invasion

of cells (78). Li et al. have discovered that after dihydroartemisinin

treatment, E-cadherin showed high expression, while vimentin,

Akt, p-Akt, and Snail showed low expression in SGC7901 cells,

thereby effectively blocking EMT and inducing cell apoptosis (79).

As another derivative, artesunate has been shown to induce

apoptosis by downregulating Cox-2 expression and impeding

mitochondrial function (80). Su et al. have found that artesunate,

dihydroartemisinin, and artemisinin could effectively reduce the

incidence of GC in mouse models and prevent the occurrence of

Helicobacter pylori-induced GC (81).

As a natural flavonoid, quercetin is the primary active

ingredient in Chinese herbs such as hawthorn, licorice, and

knotweed, and it has anticancer effects. Through network

pharmacology, quercetin is involved in regulating apoptosis,

proliferation, metabolism, and oxidative stress of GC and treating

GC through PI3K/Akt signaling, EGFR tyrosine kinase inhibitor

resistance, Rap1 signaling, ErbB signaling, FoxO signaling, and Ras

signaling pathways (82). According to Shen et al., quercetin could

inhibit the progression of GC by blocking the PI3K/Akt pathway

and inducing mitochondria-dependent apoptosis (83). Ding et al.

have discovered that through targeted inhibition of SLC1A5

expression, quercetin could also hasten iron precipitation in GC

cells, leading to ferroptosis (84). Additionally, quercetin can

upregulate pyroptosis-related genes (GSDMD, GSDME, cleaved

CASP1, NLRP3) and activate the pyroptosis pathway to suppress

cell proliferation (85).

A variety of natural active ingredients derived from the Chinese herb

Salvia miltiorrhiza play an important role in the adjuvant treatment of

GC. Tanshinone II can induce ferroptosis and inhibit cell proliferation in

BGC803 and NCI-H87 cells by increasing lipid peroxidation and

upregulating the expression of ferroptosis markers Ptgs2 and Chac1

(86). Huo et al. also found that tanshinone II could promote apoptosis

(87). According to Xiao et al., tanshinone I could effectively induce cell
Frontiers in Oncology 07
ferroptosis (88). Moreover, tanshinone I can reduce inflammation and

inhibit precancerous lesions of GC by reversing abnormal expression of

E-cadherin and N-cadherin (89). Another ingredient, diterpenoid

tanshinones, has been proven to regulate the expression of angiogenic

factors and inhibit tumor angiogenesis (90). Wang et al. have found that

a neutral polysaccharide fraction (SMPA) prepared from the roots of

Salvia miltiorrhiza could be used as a potential immunomodulator. It

improved the TME, stimulated splenocyte proliferation, promoted anti-

inflammatory cytokine production, and augmented the killing activity of

natural killer cells and cytotoxic T lymphocytes in GC rats (91).

Astragalus IV is one of the active ingredients of Astragalus, which

has anti-inflammatory, hypoglycemic, antifibrotic, and anticancer

activities (92). Zhu et al. discovered that Astragalus IV could

dramatically lower GC cell invasion and migration through

reversing TGF-b1-induced EMT (93). Astragalus IV has also been

shown to be able to reshape TME and correct CAFs dysfunction

caused by dysregulation of mic RNA expression, thereby inhibiting

GC cell proliferation, invasion, and migration (94). For precancerous

lesions of gastric cancer, Astragalus IV provides therapeutic effects.

Zhang et al. discovered that the PLGC rats’ stomach epithelial

dysplasia area decreased and their epithelial cells became more

symmetrical after Astragalus IV therapy (95). Astragalus saponins

can inhibit angiogenesis. In GC cells treated with Astragalus saponins,

VEGF, MMP-9, and MMP-3 levels decreased significantly, and the

cells stopped in the G2/M stage, thus inhibiting tumor development

and invasion (96). Calycosin, as another active ingredient of

Astragalus, promotes apoptosis through mediating ROS, thus

playing an anticancer role (97). In addition, Li et al. found that

calycosin could also improve IM, dysplasia, and protect the stomach in

MNNG-induced PLGC rats (98).

Curcumin is a polyphenolic compound derived from turmeric,

which has broad-spectrum anticancer effects. The activity and

migration of GC cells treated with curcumin decreased in a

concentration-dependent manner, which may be related to down-

regulating the expression of related genes in the PI3K pathway (99).

Curcumin can also inhibit GC cell proliferation by activating P53

and induce apoptosis and autophagy (100).
4 Potential targets and mechanisms
of action

4.1 PI3K/Akt signaling pathway

The PI3K/Akt signaling pathway is one of the vital intracellular

signaling pathways (Figure 6). PI3K, as a classic lipid kinase,

participates in various cellular functions, including growth,

proliferation, differentiation, and survival. PI3K can be activated,

turning into PI3K-phosphorylated phosphatidylinositol 3,4,5-

trisphosphate (PIP3), when stimulated by extracellular signals, such

as EGFR, PDGF, RGF, and IGF, thereby promoting signal transduction

cascades (101, 102). Akt, which is the most important downstream

target, directly responses to PIP3, resulting in regulating downstream

effectors (103). The PI3K/Akt signaling pathway is considered a

significant cause of chemoresistance in cancer therapy. By controlling
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key apoptosis factors, including XIAP and the Bcl-2 family, the PI3K/

Akt pathway prevents apoptosis and eventually results in

chemoresistance. According to numerous studies, overactivation of

Akt stimulates Bcl-2 while inhibiting Bax, thereby promoting cancer

cell survival (104). Liu et al. demonstrated that overactivation of the

PI3K/Akt signaling pathway upregulated the expression of Bcl-2 in

cancer cells and significantly inhibited cisplatin-induced apoptosis

(105). As a primary apoptosis inhibitor, XIAP can bind to caspase-9

and caspase-3 to block active caspase and inhibit apoptosis. In parts of

cancer cells, XIAP is highly expressed, which is thought to be related to

drug resistance. XIAP, which is downstream of Akt, upregulates the

PI3K/Akt cell survival signaling pathway to prevent apoptosis (106). In

addition, abnormal activation of the PI3K/Akt pathway mediates the

expression of ABC transporters, which increases drug efflux and

reduces drug response through up-regulation of P-gp, BCRP, and

MRP1 expressions, thus leading to chemoresistance (107). The

metabolic reprogramming of cancer cells to increase energy supply
Frontiers in Oncology 08
during chemotherapy is one of the causes of drug resistance. As

an important regulator of glucose metabolism, Dong et al. found

that through ROS-mediated activation of the PI3K/Akt signaling

pathway, HIF-1a was up-regulated in cancer cells, inducing glucose

metabolic reprogramming, and eventually cancer cells acquire

resistance to anti-tumor drug (108). Consequently, targeting the

PI3K/Akt signaling pathway may play a pivotal role in

overcoming chemoresistance.

Research had demonstrated that quercetin may successfully

cause chemosensitization and reverse MDR. Through network

pharmacology and molecular docking studies, Guo et al.

demonstrated that the reversal of MDR by quercetin was closely

associated with the PI3K/Akt signaling pathway (109). Following

additional investigation, it was found that the expression of

phosphatase and tensin homolog deleted on chromosome 10

(PTEN) is concentration-dependently upregulated in quercetin-

treated KATOIII/OXA cell lines, which blocked the phosphorylation
FIGURE 6

the PI3K/Akt signaling pathway.
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of the PI3K/Akt signaling pathway, limited P-gp activity, and increased

the intracellular level of oxaliplatin in KATOIII/OXA cells, thereby

reversing oxaliplatin resistance (110). As an active component of

celastrus and triperygium, celastrol exhibits significant broad-

spectrum anticancer activities for the treatment of various cancers.

Zhan et al. investigated the impact of celastrol on the PI3K/Akt

signaling pathway and the expression levels of related proteins in the

SGC7901/DDP cell line. Their findings indicated a significant

reduction in the expressions of p-PI3K, p-mTOR, and p-4EBP1 in

the SGC7901/DDP cells treated with celastrol, leading to PI3K/Akt

signaling pathway inhibition. Additionally, the combination of

celastrol and cisplatin reduced the expression of P-gp and MRP1

in the SGC7901/DPP cells. Therefore, celastrol was shown to

reverse cisplatin resistance by inhibiting PI3K/Akt signaling and

downregulating drug resistance-related protein expression (111).

Zhang et al. had demonstrated that dihydroartemisinin exhibited

anti-cancer efficacy in the treatment of SGC7901/DDP cells, and

significantly enhanced the levels of autophagy-related proteins such

as Beclin-1 and LC3II by inhibiting the PI3K/Akt/mTOR signaling

pathway while concurrently downregulated P-gp, thereby increasing

sensitivity to cisplatin (112). Ginsenoside Rg3 could both sensitize GC

cells to cisplatin-induced cell death and relieve miR-420-mediated

cisplatin resistance. The fundamental process might entail that Rg3

enforced SOX2 expression and exerted cytotoxic effects due to the

downregulation of SOX2 in AGS/DDP GC cells, resulting in inhibiting

downstream PI3K/Akt signaling pathway hyperactivation (113).

Jaridon 6, a diterpene derived from Rabdosia rubescens, is thought

to have the ability to activate autophagy. According to research by Fu

et al., Jaridon 6 could effectively inhibit the proliferation of paclitaxel-

resistant cells and 5-Fu-resistant cells both in vivo and in vitro. This

may reduce the activity of the sirtuin1 (SIRT1) enzyme via the PI3K/

Akt signaling pathway (114). Chen et al. discovered that baicalein could

increase the susceptibility of stomach cancer cells to 5-Fu under

hypoxic conditions. According to the mechanism study, baicalein

could downregulate downstream important glycolytic enzymes

(HK2, LDH-A, PDK1) by encouraging the accumulation of

intracellular PTEN and inhibiting the activation of the PI3K/Akt

signaling, thereby reversing the hypoxia-induced 5-Fu resistance

(115). The BGC823 and SGC7901 cell lines treated with berberine

had markedly reduced MDR1 and MRP1 expressions. In the

meantime, cisplatin resistance was reversed by berberine and

cisplatin combination therapy, which suppresses the PI3K/Akt

signaling and increases caspase-3 and caspase-9 activation to cause

apoptosis (116).

A traditional prescription that demonstrated an enhanced

immune response through anti-oxidation and anti-inflammation

is the decoction of Buzhong Yiqi (BZYQ). To prevent GC growth

and immunological escape, Liu et al. had used modified-BZYQ

(mBZYQ), guided by clinical practice and traditional Chinese

medicine theory. The levels of PI3K, p-PI3K, and p-AKT in

BGC823 cells were decreased after the intervention of mBZYQ,

which resulted in activation of T lymphocytes and inhibited the PD-

L1 expression in GC. This worked in concert with 5-Fu to prevent

the progression of GC (117). The decoction of Jianpi Yangwei

(JPYW) could increase the apoptosis of BGC825/5-Fu cells by

lowering the p-Akt to Akt ratio, which inhibited the expression of
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MDR1 and MRP1 while increasing Bcl-2 and caspace-3. Combining

JPYW with the pathway inhibitor LY294002 could further reduce

MDR1 expression and encourage apoptosis (118).
4.2 NF−kB signaling pathway

The transcription factor a common gene regulator, NF−kB plays a

role in the recoding of cell adhesionmolecules, cytokines, and cytokine

receptors (119). The occurrence and development of tumors,

including their proliferation, differentiation, migration, and

resistance to radiation and chemotherapy, are intimately linked to

aberrant NF−kB activation. The NF−kB family’s REL homology

domain regulates DNA binding, dimerization, and interactions with

inhibitory factors called IkB proteins (120). NF−kB complexes are

found in the cytoplasm of the majority of untransformed cell types.

They also prevent nuclear uptake and DNA binding, which results in

transcriptional inactivation (121). The IKK complex is made up of the

catalytic subunits IKKa and IKKb as well as the regulatory component

IKKg (NEMO) (122). Following the activation of their respective

receptors by signaling molecules, the IKK complex activates and

causes the ubiquitin proteasome pathway to hydrolyze NF−kB
complexes. This leads to the release of NF−kB dimers from

cytoplasmic inhibition and their translocation to the nucleus, which

in turn drives transcription of the target gene (123). The NF-kB

signaling pathway is also a driving factor for chemoresistance in parts

of malignant tumors (Figure 7). After stimulating, the NF-kB pathway

may participate in the regulation of P-gp expression through binding

to the MDR1 gene promoter region. According to Song et al.,

Adriamycin-resistant cells exhibited a marked overexpression of P-

gp and NF-kB signaling pathway, and NF-kB inhibitor BAY1-7082

could overcome drug resistance through blocking the pathway and

downregulating P-gp expression (124). Aronia berry extracts had also

been demonstrated to reverse gemcitabine resistance, through

inhibiting the NF-kB pathway in Pancreatic ductal adenocarcinoma

(PDAC) cells to target the expressions of MYD88 and P-gp (125).

Moreover, it has also been demonstrated that NF-kB pathway is

associated with apoptosis, causing the activation of genes linked to

anti-apoptosis through target genes, which results in apoptosis escape

and reducing drug efficacy. According to one study, MIR55HG could

mediate cisplatin and 5-Fu resistance of GC by triggering the NF-kB

signaling pathway and preventing cisplatin and 5-Fu-induced

apoptosis (126). Yan et al. found that IL-33 could activate the NF-

kB signaling pathway, which in turn could downregulate caspase-3

expression, while increase the expressions of Bcl-2 and Bax, leading to

reduce the sensitivity of acute myeloid leukemia to chemotherapy

(127). The NF-kB pathway also participates in TME-related

chemoresistance. CAFs can mediate platinum resistance in GC and

PDAC by producing IL-8 and activating the NF-kB pathway (128,

129). It has been demonstrated that the occurrence of EMT is closely

related to the NF-kB signaling pathway. Fu et al. found that the NF

−kB signaling pathway contributes to cisplatin resistance in GC by

promoting CD133-induced EMT (130).

Tanshinone I had been shown to inhibit cervical cancer’s growth

and resistance to chemotherapy in a way that was dependent on

kirsten rat sarcoma virus oncogene homologue (KRAS) (131).
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Tanshinone I had been shown by Wang et al. to prevent resistant GC

cells from proliferating and spreading. The levels of phospho-IKK-a/b,

NF−kB, GSDME-NT, cleaved caspase-8, and cleaved caspase-3 were

significantly elevated in BGC823/DDP and SGC7901/DDP cells

treated with tanshinone I. This implied that tanshinone I reversed

cisplatin resistance by triggering pyroptosis through the signaling

pathways of NF-kB and caspase -3/-8. In contrast, when combined

with tanshinone I, cisplatin’s anti-tumor activity was enhanced and

the growth of GC tumors transplanted subcutaneously in mice was

inhibited (132). By inhibiting NF-kB-related genes, parthenolide could

increase chemosensitivity to paclitaxel by suppressing NF-kB
phosphorylation. In comparison to the group treated with paclitaxel

alone, the combination treatment of parthenolide and paclitaxel

dramatically inhibited proliferation and promoted apoptosis in

MKN45 GC cells. Additionally, in all three GC cell lines,
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parthenolide tended to have a synergistic antitumor impact when

combined with paclitaxel and cisplatin (133). Combined treatment of

5-Fu with celastrol effectively inhibited proliferation and induced

apoptosis, which may be related to reducing the expression of IkB
kinase and NF-kB, inhibiting the NF-kB P60 subunit, and inhibiting

the signaling pathway. 5-Fu at lower concentrations could still exert

higher anti-cancer effects; at the same time, the adverse reactions

caused by cytotoxicity could be alleviated (134). GC cells’ sensitivity to

cisplatin had purportedly been connected to curcumol, a bioactive

sesquiterpenoid that was isolated from several plants in the genus

curcuma (135). According toHu et al., curcumol could inhibit the NF-

kB pathway, and curcumin-treated GC cells exhibited a large rise in

miR-7, which improved the sensitivity of GC to cisplatin. However,

downregulation of miR-7 or miR-7 knockdown led to increased NF-

kB p65 (RELA) and SNAIL protein levels in GC cells, thereby blocking
FIGURE 7

The NF−kB signaling pathway.
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the sensitizing effects of curcumol (136). Wogonin is a flavonoid

compound found in Scutellaria baicalensis Georgi (Huang Qin).

According to Zhao et al., wogonin made the human GC cells

MGC803 more susceptible to 5-Fu-induced apoptosis. Possible

mechanisms included suppression of NF-kB nuclear translocation

and I-kB phosphorylation and dihydropyrimidine dehydrogenase

(DPD) downregulation to slow down drug metabolism, which

boosted the anti-tumor efficacy of low dose 5-Fu in MGC803 cells

(137). Curcumin further reduced NF-kB activation and

downregulated the expression of downstream anti-apoptotic gene

products, including Bcl-2 and Bcl-xl, in the SGC7901 cell line

treated with chemotherapeutics (etoposide and doxorubicin). This

suggested that curcumin may promote apoptosis and reverse

chemoresistance through the NF-kB signaling pathway (138). Wu

et al. demonstrated that NF-kB activity in the nuclei of SGC7901 cells

was significantly inhibited following treatment with aeoniflorin,

indicating that paeoniflorin may promote 5-Fu-induced apoptosis

by preventing IkBa phosphorylation and reducing NF-kB nuclear

translocation (139).
4.3 Mitogen-activated protein kinases
signaling pathway

Protein kinases in the MAPK pathway are continuously

activated to transmit a variety of input signals, such as hormones,

cytokines, cell growth factors, endogenous stressors, and

environmental stimuli (140). This sets off a series of events that

support several biological processes. The four cascades that make up
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the MAPK pathway are extracellular signal-regulated kinase (ERK)

1/2, p38, c-Jun N-terminal kinase (JNK), and ERK5 (Figure 8).

In the MAPK/ERK pathway, when the transmembrane receptors

are activated, the cytoplasmic complexes of growth-factor-receptor

bound protein (GRB) 2 and son of sevenless (SOS) are recruited to

the inner surface of the cell membrane. From the RTK, the signal is

sent to RAS. Then, with SOS’s assistance, RAS–GDP becomes RAS–

GTP. Additionally, RAS-GTP functions as a molecular switch that

sends signals downward, which causes downstream kinase RAF to

be recruited and directly phosphorylated. RAF’s downstream

kinase, MEK1/2, additionally catalyzes ERK1/2 (141, 142). The

dual phosphorylation of MAP3Ks at the TGY motif is necessary

for the activation of both JNK and P38. The most crucial MAP2Ks,

MKK4 andMKK7, can be triggered to activate JNK (143). Activated

JNK phosphorylates numerous cytoplasmic substrates, including

cytoskeletal proteins and mitochondrial proteins like Bcl-2 and Bcl-

xl, in addition to controlling a few transcription factors, including c-

Jun, c-Fos, ATF-2, AP-1, p53, and Elk. The p38 goes from the

cytosol to the nucleus after activation, where they activate

downstream transcriptional targets such as PAX6, ETS1, PRAK,

MK3, RARa, AP-1, ATF1, and CHO to control cellular processes

(144) It is generally believed that overactivation of the MAPK/ERK

signaling pathway is positively related to chemoresistance.

According to one study, the calcium channel blockers

lercanidipine and amlodipine could reverse chemoresistance and

increase the doxorubicin sensitivity of GC cells through inhibiting

the ERK/MAPK pathway (145). Chen et al. have discovered that

after continuously stimulating with vincristine, MGC803 showed a

high expression level of P-gp and developed resistance to
FIGURE 8

The MAPK signaling pathway.
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vincristine. Following the addition of MEK inhibitor PD98059, P-

gp level decreased significantly, and drug resistance was reversed

(146). However, the JNK and P38 MAPK signaling pathways play a

dual role in drug resistance. On the one hand, several

chemotherapeutic drugs, such as cyclophosphamide and

oxaliplatin, induce apoptosis that is reliant on P38 activation

(147). Low et al. discovered that dual-specificity phosphatase 16

(DUSP16) increased drug resistance by preventing the activation of

the P38 MAPK pathway and the JNK pathways, which led to

reduced Bax accumulation in mitochondria to reduce apoptosis

(148). However, under certain conditions, apoptosis resistance can

also be mediated by the P38 MAPK pathway and the JNK pathway.

According to one study, galectin-1 could promote tumor

proliferation and medication resistance by activating the P38

MAPK pathway, which in turn increases the expression of Cox-2,

which augments tumor angiogenesis and resistance to apoptosis

(149). Prostate cancer cells become resistant to docetaxel-induced

apoptosis when p38 is phosphorylated (150). HBV X protein can

promote drug resistance and decrease adriamycin-mediated

apoptosis by activating the JNK pathway (151).

According to Peng et al., sophoridine could mediate the MAPK

signaling pathway, enhance the expression of estrogen-related

receptor gamma (ESRRG) to promote b-catenin degradation, and

inhibit the repair of double-stranded DNA breaks to caused cell

cycle arrest at the G2/M phase, thereby lowering GC cell survival

and increasing the efficiency of cisplatin. Because ESRRG was a

downstream signaling protein of MAPK pathways, the activation of

MAPKs ERK1/2, p38, and JNK1/2 promoted the phosphorylation

of b-catenin (152). The tumor-suppressive properties of oridonin,

an active compound derived from Rabdosia rubescens, had been

demonstrated in various GC cell lines. Oridonin demonstrated the

ability to inhibit cell proliferation by blocking cycle progression in

the C2/M phase while also activating JNK signaling pathways to

induce caspase-dependent apoptosis in the HGC27 cell line.

However, JNK inhibitor SP600125 hindered the activation of

JNK, leading to decreasing oridonin-mediated apoptosis (153). As

a potential chemosensitizer, Hong et al. discovered that wogonin

could promote oxaliplatin-induced apoptosis by activating

phosphorylation of JNK signaling and raising nitrosative stress to

accelerate excessive autophagy, thereby synergistically enhancing

the chemotherapeutic impact of oxaliplatin on BGC832 cells in vitro

(154). As an active ingredient from Dioscorea zingiberensis C.H.

Wright, it has been demonstrated that deltonin exhibited anti-

cancer properties against a variety of cancer forms. Yang et al.

discovered that deltonin might decrease the expressions of

downstream apoptotic genes such Bad, Bid, and Fas by lowering

the phosphorylation of P38-MAPK in GC cells. This inhibition was

further strengthened when cisplatin was added, suggesting that

deltonin may increase GC cells’ susceptibility to cisplatin treatment.

Furthermore, by blocking the PI3K/Akt/mTOR signaling pathway,

deltonin could also reduce the expression levels of important DNA-

repair enzymes, such as Rad51 and murine double minute (MDM)2

(155). It had been demonstrated that ethanol extracted of Scutellaria

barbata ESB increased the depolarization of the mitochondrial

membrane and the activity of caspase-3 and caspase-9, which
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caused apoptosis. Additionally, the anti-tumor effect was greatly

increased when cisplatin, etoposide, or doxorubicin were coupled

with ESB; this may be connected to the MAPK signaling pathway.

Furthermore, this impact could be lessened by MAPK inhibitors

PD98059(an ERK1/2 inhibitor), SB203580(a p38 inhibitor), or

SP600125 (a JNK inhibitor) (156). A scaffold protein called kinase

suppressor of Ras 1 controls how the oncogenic mitogen-activated

ERK/MAPK signaling cascade is initiated. In cisplatin-treated

SGC7901 cells, etoposide-treated SGC7901 cells and cisplatin-

resistant SGC7901 cells, Ginkgo biloba extract EGb could

suppress proliferation and promote apoptosis by reducing the

expression of KSR1, p-KSR1, ERK1/2, and p-ERK1/2. This

suggested that EGb not only increased chemotherapy sensitivity

but also reversed chemotherapy resistance (157).
4.4 P53 signaling pathway

Unquestionably, p53 is a significant tumor suppressor that

contributes to both normal proliferation and the inhibition of tumor

growth (Figure 9). The p53 levels are regulated by negative feedback

mediated by the E3 ubiquitin ligase MDM2 and its homolog MDMX

(158). Signals of cell stress, including DNA damage and carcinogenic

stress, cause p53 to become active. To lessen aberrant cell accumulation

and stop tumors from forming, it, on the one hand, controls

downstream signals, aids in the repair of DNA damage, stops the cell

cycle, and transduces the caspase signal through the activation of the

mitochondrial pathway or death receptor pathway to promote

apoptosis when damage cannot be repaired (159). On the other

hand, p53 ubiquitination by MDM2 and MDMX is followed by

proteolytic hydrolysis or nuclear export to maintain the stability of

the p53 level (160). Continuous stimulation can reduce P53 stability;

additionally, mutant p53 is the most prevalent genetic abnormality in

cancer cells, which are strongly linked to medication resistance. Di et al.

have discovered that after continuous oxaliplatin stimulation, p53

ubiquitination was enhanced and its stability was damaged, thus

inducing oxaliplatin resistance in CRC (161). Moreover, continuous

temozolomide stimulation could cause P53 to become phosphorylated,

which decreased drug absorption and improved DNA damage repair,

leading to induced chemoresistance (162). According to Jing et al.,

miR-769-5p causes cisplatin resistance by promoting p53 degradation

and blocking apoptosis via the ubiquitin-proteasome system (31). P53

can also simultaneously enhance cell survival and proliferation and

control chemotherapy resistance through triggering various survival

signaling pathways, including the NF-kB signaling pathway. Yang et al.

have found that P53 could promote NF-kB p65 nuclear translocations

in A549 or H358 cell lines, thereby enhancing the cell’s drug resistance

to cisplatin and paclitaxel, which was significantly weakened after

treatment with the NF-kB inhibitor PS1145 (163).

Xu et al. found that when doxorubicin and tanshinone II were

administered together to doxorubicin-resistant SNU719 cells, the

levels of p53 and Bax rose while those of Bcl-2 fell. However,

doxorubicin alone had virtually no effect on the expression of genes

linked to apoptosis. These suggested that via triggering the p53

signaling pathway, tanshinone II could induce apoptosis in
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doxorubicin-resistant SNU719 cells. Furthermore, it also enhanced

the anticancer impact of doxorubicin via inhibition ofMRP1 function

(164). Because oridonin dramatically increased apoptotic cell and

decreased cell viability, it remarkably amplified the anti-tumor impact

of cisplatin. According to Bi et al., it increased the level of p53

expression by suppressing MDM2 expression through negative

feedback regulation; at the same time, oridonin increased the pro-

apoptotic function of p53 by suppressing the expression of anti-

apoptotic genes Bcl-2 and up-regulating the expression of genes

linked to pro-apoptosis, such as p53, p-p53, p21, and Bax (165).

Liquiritin, a key component of licorice flavonoids, could increase

cisplatin’s killing capacity and decrease resistance in SGC7901/DDP

cells by preventing the cell cycle, triggering apoptosis and promoting

autophagy. In the study, liquiritin and cisplatin caused cyclin D1 and

cyclin A to all decrease at the same time, further arresting the G1/G0

cell cycle. Moreover, it increased LC3B-II and Beclin 1, which in turn

stimulated caspase-8/-9/-3 and PARP cleavage, upregulating

apoptosis autophagy (166). Scutellaria baicalensis is a Chinese herb

that contains the potent compound baicalin. According to Shao et al.,

it dramatically rose p53 expression in HGC-27/OXA cells, which in

turn targeted downstream ferroptosis activation by blocking

SLC7A11 and glutathione peroxidase (GPX) 4 and promoting ROS

accumulation, resulting in reverse oxaliplatin resistance (167).

Extracted from frankincense, boswellic acid had been demonstrated

to increase cisplatin-mediated apoptosis in GC cells by upregulating
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p53 expression and subsequently decreasing Akt downstream

phosphorylation (168). A naturally occurring substance called

Genipin, which comes from Gardenia jasminoides, may be a

sensitizer to accelerate oxaliplatin-induced cell apoptosis and

autophagy. It could trigger p53 expression, which in turn promoted

the cleavage of PARP, caspase-9, and caspase-3 and rose damage-

regulated autophagy modulator (DRAM) (169). According to Lee

et al., Chrysin and 5-Fu worked together to enhance the anticancer

effects of 5-Fu and overcame 5-Fu resistance in vitro by further

upregulating p53 and subsequently stimulating p21 activity to block

arrest in AGS/5-Fu cells (170).
4.5 Signal transducers and activators of
transcription 3 signaling pathway

Seven genes have been found by the STAT family; STAT3 in

particular is generally thought to be linked tometastasis, cancer growth,

and multidrug resistance (171) (Figure 10). The classical STAT3

signaling pathway is activated by a number of growth factors (EGF,

FGF, IGF) and cytokines (IL-6, IL-10) binding to their appropriate

reporters. The associated janus kinase (JAK) proteins are activated, self-

phosphorylated, and transphosphorylate the receptor-associated

tyrosine residues (172). Phosphorylated tyrosine residues are bound

by STAT3 through its SH2 domain (173, 174). Homodimers are
FIGURE 9

The p53 signaling pathway.
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formed by the phosphorylated STAT3. Following its release from the

receptors, importins quickly carry the pSTAT-pSTAT dimer into the

nucleus. The dimer mediates subsequent biological functions, such as

metastasis, cell death and drug resistance, by forming complexes with

certain activators and binding to target gene promoters for

transcription (175, 176). More and more studies have shown that the

STAT3 signaling pathway plays a significant role in the regulation of

tumor stemness and EMT, promoting EMT through key regulatory

factors and subsequently producing cell stemness and chemoresistance

(177). According to Shi et al., Glycochenodeoxycholic acid (GCDC)

could reduce E-cadherin expression and enhance vimentin expression

by activating the STAT3 pathway and then induce EMT and enhance

the development of CSC-like characteristics in HCC cells, resulting in

resistance to 5-Fu and cisplatin (178). By controlling metabolism, the

STAT3 pathway can also affect cancer cell sensitivity to drugs. In

prostate tumors, the activation of STAT3 signaling enhances glycolysis

and proliferation in cancer cells, inhibits apoptosis, induces EMT

mechanisms to facilitate cancer metastasis, and additionally activates

drug resistance pathways (179). Wang et al. have found that the JAK/

STAT3 pathway could control the expression of several genes involved

in lipid metabolism, such as carnitine palmitoyltransferase 1B (CPT1B)
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and fatty acid b-oxidation (FAO), to mediate cancer stemness and

chemoresistance (180). Chemoresistance could be reversed when FAO

is blocked. JAK/STAT3 can also induce chemotherapy resistance in

TME via inducing M2 polarization of macrophages (181).

Danshen’s fat-soluble diterpene, crypotanshinone, increased the

effectiveness of 5-Fu in a mouse model of GC by reducing P-gp

expression and altering the transcriptional activity of the MDR1

gene via the JAK2/STAT3 signaling pathway (182). Additionally,

Cao et al. discovered that crypotanshinone reversed 5-Fu resistance

and boosted the inhibitory effect of 5-Fu in SGC7901/5-Fu cells by

blocking the JAK/STAT3 signaling pathway, which in turn lowed

the levels of Mcl-1, Bcl-xl, and Bcl-2 expression while raising Bax

expression (183). The anticancer activity of doxorubicin is further

enhanced by crypotanshinone, which significantly suppressed

constitutive and phosphorylation of STAT3 Tyr705 to inhibit

STAT3 activity. This lowed the levels of proteins encoded by

downstream target genes (Bcl-xL, Mcl-1, survivin) (184).

Schisandrin B could enhance 5-Fu sensitivity in GC cells and

cooperate to stop 5-Fu-induced cell death in vitro and in vivo,

according to He and colleagues. SchisandrinB may be responsible

for controlling STAT3 upstream proteins (SOCS, PIAS, PTPs)
FIGURE 10

The STAT 3 signaling pathway.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1524182
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2025.1524182
which in turn may cause autophagy triggered by STAT3 signaling

activation (185). Berberine may be able to target STATs and

surviving cells in drug-resistant GC cells, increasing the sensitivity

of these cells to 5-Fu (186). Parthenolide-treated SGC7901/DDP

cells showed decreased STAT3 activation, which led to apoptosis by

raising the expression of Bax, P53, and cleaved caspase-9/-3 protein

and lowering that of Bcl-2 and Bcl-x. Therefore, by blocking the

STAT3 signaling pathway, parthenolide could reverse cisplatin

resistance in GC (187). A decoction of banxia xiexin (BXXX)

could lower the expression levels of DNA methyltransferases PD-

L1 and O6-methylguanine-DNA methyltransferase (MGMT),

which worked through the IL-6/JAK/STAT3 pathway, in GC cells

resistant to cisplatin (188). This stops GC from proliferating while

intensifying cisplatin’s inhibitory actions. ,
4.6 Other signaling pathway

As a multifunctional cytokine, TGF-b plays a role in immune

response, apoptosis, differentiation, and cell proliferation. When the

TGF ligand binds to the type II TGF receptor, classical TGF

signaling begins. The type I TGF-b receptor is then recruited and

phosphorylated, which phosphorylates the transcription factor

Smad and starts downstream signal transduction, particularly

EMT (189). Recent research has suggested that the TGF-b
pathway may play a key role in cancer treatment resistance (190).

Isolequiritigenin, which was another natural flavonoid from

licorice, prevented GRP78-mediated stemness by suppressing the

expression of transcriptional factors (SOX2, Nanog), linked to

stemness, and cell surface indicators (CD24, CD44, LGR5).

Additionally, it inhibited MMP-9 and IL-6, which prevented

CAFs from activating to decrease drug resistance and ultimately

boost chemosensitivity to 5-Fu, hence reducing TGF-B release by

GC cells (191). By suppressing cancerous inhibitor of PP2A

(CIP2A) expression in cells, polyphyllin I counteracted TGF-b1-
mediated downregulation of E-cadherin and upregulation of

vimentin, indicating that it may prevent EMT-promoted invasion

and improve effectiveness when used in conjunction with

chemotherapy (192).

Cellular resistance to oxidative damage is regulated by Nrf2, a

transcription factor linked to oxidative stress. Nrf2 shields cancerous

cells from chemotherapy that results in chemoresistance, as well as

healthy cells from ROS-induced DNA damage (193, 194). Le et al.

discovered that baicalein might increase the sensitivity of cisplatin in

drug-resistant cells by lowering the levels of Nrf2 and Keap1 in

SGC7901/DDP cells while also lowering the expression of MDR1.

Furthermore, by blocking the Akt/mTOR pathway and upregulating

the expression of LC3B and beclin 1, baicalin could cause drug-

resistant cells to undergo autophagy and death (195). According to

Huang et al., Yi-qi-hua-yu-jie-du (YQHYJD) decoction could reverse

5-Fu resistance and speed up apoptosis. This could partially restrict

cell stemness by reducing MDR1 and MRP1 expression by blocking

activity of the PI3K/Akt/Nrf2 pathway (196). Glutathione

metabolism is frequently dysregulated in cisplatin-resistant GC.

Further investigations by Huang et al. had demonstrated that
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YQHYJD could mitigate cisplatin resistance. The underlying

mechanism may involve the inhibition of the phosphorylation

cascade activity within the Akt/GSK3b pathway and modulation of

Nrf2 expression, thereby reprogramming glutathione metabolism

and promoting ferroptosis (197).

The Wnt/b-catenin pathway, sometimes referred to as the

classical Wnt pathway, is typically highly conserved and is

triggered by extracellular Wnt ligands interacting to membrane

receptors (Frizzled, LRP5/6) autocrinely or paracrinely. After

activation, the Wnt/b-catenin pathway causes b-catenin to

become stable and move to the nucleus, where it uses T-cell

factor/lymphoid enhancer-binding factor (TCF/LEF) transcription

factors to activate and control downstream target genes, ultimately

increasing the expression of genes related to cell migration,

differentiation, proliferation, and survival (198, 199).

Chemotherapy resistance has been linked to the Wnt/b-catenin
signaling pathway in a number of cancers, including GC (200).

Hosseini et al. found that cornus officinalis extract could induce

apoptosis of GC cell lines and effectively inhibit cell proliferation in

vitro (201). Subsequent investigation revealed that loganin, the

primary active component of cornus officinals, combined with 5-

Fu inhibited the Wnt/b-catenin pathway and reduced the

accumulation of b-catenin in the cytoplasm and nucleus, thereby

downregulating downstream targets and key proteins to

significantly inhibit stem-like properties and migration, suggesting

that loganin could be an efficient sensitizer to boost 5-Fu’s anti-

tumor effect (202). According to research by Hou et al., cardamonin

may enhance the chemosensitivity of the BGC823/5-Fu cell line to

5-Fu by suppressing the expression of Wnt target genes (b-catenin,
TCF5) and interfering with the b-catenin/TCF4 complex formation.

Moreover, it might promote Rh123 accumulation to prevent P-gp

overexpression. Additionally, cardamonin and 5-Fu considerably

slowed the growth of tumors in vivo (203). When combined with

cisplatin, ginsenoside Rg3 could further decrease SGC7901/DDP

cell migration, proliferation, and EMT while promoting cell death.

In the meantime, cisplatin and Rg3 could inhibit the expression of

associated proteins in the Wnt/b-catenin signaling pathway,

suggesting that Rg3 could regulate cisplatin resistance (204).
5 Conclusion

Chemotherapy resistance is still an urgent problem in the

treatment of malignant tumors. Intracellular signal pathways are

involved in numerous biological processes and have also been

demonstrated to be intimately linked to the development of drug

resistance. Currently, blockers that target genes or signaling

pathways linked to drug resistance have been discovered but are

not utilized widely in clinical settings due to high cost and severe

side effects. TCM has a lengthy history, a distinct theoretical

framework, exceptional clinical effectiveness, and a significant role

in the management of cancerous tumors. According to numerous

fundamental tests and clinical data conducted in recent years, TCM

can be employed as an auxiliary sensitizer of traditional

chemotherapy drugs, effectively improve anti-cancer efficacy and
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reverse chemotherapy resistance. This review summarizes the

primary mechanism of GC chemoresistacne and focuses on

mechanisms of enhancing chemotherapy sensitivity and reversing

drug resistance in TCM from the standpoint of the signaling

pathways, which include PI3K/Akt, NF-kB, MAPK, P53, STAT3,

TGF-b, Nrf2, and Wnt/b-catenin, thereby affecting various
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biological processes, such as cell cycle, cell proliferation,

migration, apoptosis, autophagy, ferroptosis, TME, EMT, DNA

damage repair, and cell stemness (Table 1). Whether TCM is

taken alone or in conjunction with other anticancer medications,

we think it has a lot of potential as an ongoing and alternative

clinical treatment for cancer.
TABLE 1 The main signaling pathways of TCM to increase the sensitivity of chemical drugs.

Monomer/Formula TCM Possible mechanism Drug

Quercetin Hawthorn, Licorice,
Knotweed

Increasing PTEN expression, blocking the PI3K/Akt signaling
pathway, downregulating the expression level and activity of

P-gp

Oxaliplatin

Celastrol Celastrus, Triperygium Inhibiting the PI3K/Akt signaling pathway, reducing the
expression of P-gp, MRP1, and BCRP

Cisplatin

Inhibiting the NF-kB signaling pathway 5-Fu

Dihydroartemisinin Artemisia annua Inhibiting the PI3K/Akt signaling pathway, activating caspase-8/
9/3, downregulating P-gp expression

Cisplatin

Ginsenoside Rg3 Panax ginseng Upregulating miR-429, regulating SOX2 and the PI3K/Akt
signaling pathway

Cisplatin

Inhibiting the Wnt/b-catenin signaling pathway Cisplatin

Jaridon 6 Rabdosia rubescens Inhibiting the PI3K/Akt signaling pathway, inhibiting
SIRT1 enzyme

Paclitaxel

Baicalein Scutellaria baicalensis Promoting PTEN accumulation, inhibiting the PI3K/Akt
signaling pathway, downregulating HIF-1a expression

5-Fu

Decreasing the levels of Nrf2 and Keap1, decreasing the
MDR1 expression

Cisplatin

Berberine Evodia rutaecarpa Coptidis Rhizoma Reducing the expression of MDR1 and MRP1, inhibiting the
PI3K/Akt signaling pathway, activating caspase-9/3

Cisplatin

Mediating the STAT3 signaling pathway 5-Fu

mBZYQ / Inhibiting the PI3K/Akt signaling pathway, activating T
lymphocytes, inhibiting PD-L1 expression

5-Fu

JPYW / Inhibiting the PI3K/Akt signaling pathway, inhibiting the
expression of MDR1 and MRP1, increasing Bcl-2 and caspace-3

5-Fu

Tanshinone I Salvia miltiorrhiza Bunge activating NF-kB/caspase-3 (8)/GSDME axis Cisplatin

Parthenolide Tanacetum balsamita Inhibiting the NF-kB signaling pathway Paclitaxel

Blocking the STAT3 signaling pathway, increasing the expression
of Bax, P53 and cleaved caspase-9/3 protein, decreasing the

expression Bcl-2 and Bcl-x.

Cisplatin

Curcumol Turmeric Upregulating miR-7, inhibiting the NF-kB/SNAIL axis Cisplatin

Wogonin Scutellaria baicalensis Inhibiting the NF-kB signaling pathway, modulating 5-FU
metabolic enzymes

5-Fu

Activating the JNK/MAPK signaling pathway, raising
nitrosative stress

Oxaliplatin

Curcumin Turmeric Inhibiting the NF-kB signaling pathway, downregulating the
expression of Bcl-2 and Bcl-xL

etoposide
doxorubicin

Paeoniflorin Paeonia lactiflora pall Inhibiting the NF-kB signaling pathway 5-Fu

Sophoridine Sophora alopecuroides. L Mediating the MAPK signaling pathway, enhancing ESRRG
expression, inhibiting DNA damage repair

Cisplatin

(Continued)
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However, there are still certain shortcomings and restrictions in

pertinent studies as of right now. Most of the existing studies focus

on the role of a single signaling pathway or a single gene, and do not

involve the interaction between pathways. In addition, the current

research on the pharmacological mechanism of TCM mostly

focuses on in vitro cell experiments, lacking a dearth of adequate

and trustworthy in vivo experimental results as well as clinical

efficacy data. TCM has the characteristics of multi-components and

multi-targets, and the same monomer may affect multiple targets,

which is incompatible with the concept of accurate targeted therapy

in modern medicine. The use of the TCM formulas should be based
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on the treatment with syndrome differentiation, which is one of the

features of TCM theoretical system; however, at the moment, nearly

all research does not include the syndrome differentiation. Lastly,

the extraction and clinical application of active components present

additional challenges, including increasing drug extraction rate,

increasing drug concentration, maintaining drug stability,

improving bioavailability, and pharmacokinetics.

This review aims to present a new theoretical foundation for

overcoming chemotherapy resistance in GC, as well as ideas for the

development of new chemotherapy sensitizers and a favorable

research direction, in order to provide a better, safer and more
TABLE 1 Continued

Monomer/Formula TCM Possible mechanism Drug

Deltonin Dioscorea zingiberensis C.H. Wright inhibiting the PI3K/Akt/mTOR signaling pathway, inhibiting the
P38/MAPK signaling pathway, inhibiting DNA damage repair

Cisplatin

Scutellaria barbata ESB Scutellaria barbata Mediating the MAPK signaling pathway, activating caspase-3/9,
depolarization of the mitochondrial membrane

Etoposide,
Doxorubicin, Cisplatin

EGb Ginkgo biloba Inhibiting the KSR1-mediated ERK/MAPK signaling pathway Cisplatin

Tanshinones II Salvia miltiorrhiza Bunge triggering the p53 signaling pathway, upregulating the expression
of p53 and Bax, downregulating Bcl-2 expression

Doxorubicin

Oridonin Rabdosia rubescens increasing the level of p53 expression and Bax, downregulating
Bcl-2 expression

Cisplatin

Liquiritin Licorice Increasing the expression of P53 and p21, decreasing cyclin D1,
cyclin A and CDK4, activating caspase-8/9/3 and PARP,

upregulating LC3B-II and Beclin 1

Cisplatin

Baicalin Scutellaria baicalensis Increasing P53 expression, blocking SLC7A11 and GPX4,
promoting ROS accumulation

Oxaliplatin

Boswellic acid Frankincense upregulating p53 expression, decreasing Akt phosphorylation Cisplatin

Genipin Gardenia jasminoides Increasing P53 expression, promoting the cleavage of PARP,
caspase-9, and caspase-3 and DRAM

Oxaliplatin

Chrysin Bignoniaceae plant oryx, propolis Increasing P53 expression 5-Fu

Crypotanshinone Salvia miltiorrhiza Bunge Mediating the JAK/STAT3 signaling pathway, reducing the
expression of P-gp and MDR1.

5-Fu

Inhibiting the JAK/STAT3 signaling, increasing Bax expression,
decreasing Mcl-1, Bcl-xl, and Bcl-2 expression

Doxorubicin

Schisandrin B Schisandra chinensis Mediating SOCS, PIAS and PTPs, activating the STAT3
signaling pathway

5-Fu

BXXX / Mediating the IL-6/JAK/STAT3 axis Cisplatin

Isoliquiritigenin Licorice Inhibiting the expression of SOX2, Nanog, CD24, CD44, LGR5,
MMP-9 and IL-6, reducing TGF-B release

5-Fu

Polyphyllin I Polyphylla Counteracting TGF-b1-mediated downregulation of E-cadherin
and upregulation of vimentin

Cisplatin

YQHYJD / Blocking the PI3K/Akt/Nrf2 axis, decreasing the expression
MDR1 and MRP1

5-Fu

Blocking the Akt/GSK3b/Nrf2 axis, reprogramming
glutathione metabolism

Cisplatin

Loganin Cornus officinali Inhibiting the Wnt/b-catenin signaling pathway, reducing the
accumulation of b-catenin

5-Fu

cardamonin Alpiniae katsumadai Inhibiting the Wnt/b-catenin signaling pathway, breaking b-
catenin/TCF4 complex formation

5-Fu
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effective treatment plan and drug selection for enhancing the anti-

tumor effect of traditional chemotherapy drugs and reversing

chemotherapy resistance in the future.
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GC gastric cancer
Frontiers in Oncology
HER2 human epidermal growth factor receptor 2
CPS combined positive score
PD-L1 programmed cell death 1 ligand 1
FDA food drug administration
TCM traditional Chinese medicine
DHD4 DNA-binding protein 4
ABC ATP-binding cassette
P-gp P-glycoprotein
PI3K phosphatidylinositol-3-kinases
Akt protein kinase B
mTOR1/2 mammalian target of rapamycin complex 1/2
MRP1 multidrug resistance-associated protein 1
Bcl-2 B-cell lymphoma-2
MOMP mitochondrial outer membrane permeabilization
BALF1 bamH1 A fragment leftward reading frame 1
TNF tumor necrosis factor
NF kB nuclear factor kappa-beta
ANXA1 annexin A1
HULC highly up-regulated in liver cancer
FoxM1 forkhead box protein M1
ATG5 autophagy-related protein 5
ROS reactive oxygen species
MDA malondialdehyde
GSH glutathione
Keap1 kelch-like ECH-associated protein 1
Nrf2 NF-E2-related factor 2
DDR DNA damage response
NER nucleotide excision repair
PARP1 Poly (ADP-Ribose) polymerase 1
BER base excision repair
ERCC excision repair cross-complementing gene
TME tumor microenvironment
CAFs cancer-associated fibroblasts
SDF-1 stromal cell-derived factor-1
TAMs tumor-associated macrophages
MSCs mesenchymal stem cells
MDR1 multi-drug resistance 1
EMT epithelial-mesenchymal transition
TGF transforming growth factor
Rab31 Ras-related protein 31
MUC-1 mucin 1
WTAP wilms tumor 1 associated protein
23
ADAR1 adenosine deaminases acting on RNA1
AZIN1 antizyme inhibitor1
CSC cancer stem cell
AKAP-L8 PRKA kinase anchor protein 8L
SCD1 stearoyl-CoA desaturase 1
MT1M metallothionein 1 M
IGF2BP1 IGF2 mRNA binding protein 1
KHDRBS3 KH domain-containing RNA-binding signal transduction-

associated protein 3
GLI1 glioma-associated oncogene homolog 1
SOX SRY-box transcription factor
FUBP1 far upstream element-binding protein 1
MCM10 maintenance complex component 10
GRP75 glucose-regulated protein 75
NRP1 neuropilin 1
LDHA lactate dehydrogenase A
ROR regulator of reprogramming
HMGA2 high mobility group protein A2
TRIM14 tripartite motif 14
Dvl2 dishevelled 2
PIP3 phosphatidylinositol 3,4,5-trisphosphate
FOXO forkhead box O
PTEN phosphatase and tensin homolog deleted on chromosome 10
SIRT1 sirtuin1
KRAS kirsten rat sarcoma virus oncogene homologue
DPD dihydropyrimidine dehydrogenase
MAPK mitogen-activated protein kinases
ERK extracellular signal-regulated kinase
JNK c-Jun N-terminal kinase
GRB growth-factor-receptor bound protein
SOS son of sevenless
FGFR fibroblast growth factor receptor
ESRRG estrogen-related receptor gamma
MDM murine double minute
SLC7A11 solute carrier family 7 member 11
GPX glutathione peroxidase
DRAM damage-regulated autophagy modulator
STAT signal transducers and activators of transcription
JAK janus kinase
MGMT O6-methylguanine-DNA methyltransferase
CIP2A cancerous inhibitor of PP2A
TCF T-cell factor
LEF lymphoid enhancer-binding factor
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