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Enhancing survival predictions
in lung cancer with cystic
airspaces: a multimodal
approach combining clinical
and radiomic features
Liang Yin1, Jing Wang1*, Pingyou Fu2, Lu Xing2, Yuan Liu2,
Zongchang Li1 and Jie Gan1*

1Medical Imaging, Shandong Provincial Third Hospital, Jinan, Shandong, China, 2Radiology
Department, Shandong Yellow River Hospital, Jinan, China
Objective: To enhance the prognostic assessment and management of lung

cancer with cystic airspaces (LCCA) by integrating temporal clinical and

phenotypic dimensions of tumor growth.

Patients andmethods: A retrospective analysis was conducted on LCCA patients

treated at two hospitals. Clinical and imaging characteristics were analyzed using

the independent samples t-test, Mann-Whitney U test, and c2 test. Features with

significant differences were further analyzed using multivariate Cox regression to

identify independent prognostic factors. Radiomic features were extracted from

CT images, and volume doubling time (VDT) was calculated from two follow-up

scans. Separate predictive models were constructed based on radiomic features

and VDT. A fusion model integrating radiomic features, VDT, and independent

clinical prognostic factors was developed. Model performance was evaluated

using receiver operating characteristic curve and the area under the curve, with

DeLong’s test used for comparison.

Results: A total of 193 patients were included, with an average survival time of 48.5

months. Significant differenceswere found between survivors and non-survivors in

age, smoking status, chronic obstructive pulmonary disease, and tumor volume (P

< 0.05). Multivariate Cox analysis identified smoking and chronic obstructive

pulmonary disease as independent risk factors (P = 0.028 and P = 0.013). The

VDT for survivors was 421 (298 582.5) days compared to 334.5 ± 106.1 days for

non-survivors (Z= -3.330, P= 0.001). In the validation set, the area under the curve

for the VDT model was 0.805, for the radiomic model 0.717, and for the fusion

model 0.895, demonstrating the highest predictive performance (P < 0.05).

Conclusion: Integrating VDT, radiomics, and clinical imaging features into a

fusion model improves the accuracy of predicting the five-year survival rate for

LCCA patients, enhancing personalized and precise cancer treatment.
KEYWORDS
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Introduction

Lung cancer remains one of the most lethal malignancies

worldwide, with diverse histological subtypes and clinical

presentations. Among these, lung cancer with cystic airspaces

(LCCA), characterized by the presence of cystic airspaces within

the lung parenchyma (1–3), presents unique diagnostic and

therapeutic challenges. These cystic features can be visualized

using imaging techniques such as computed tomography (CT)

(4), but their atypical presentation often leads to misdiagnosis or

delayed diagnosis (5, 6). Understanding the growth dynamics,

clinical features, and imaging characteristics of LCCA is crucial

for improving patient outcomes (7, 8).

Tumor volume doubling time (VDT) is a quantitative measure

that reflects the growth rate of a tumor by calculating the time

required for the tumor to double in size (9, 10). In the context of

LCCA, VDT offers a potentially valuable metric for prognostic

assessment (11). A longer VDT generally indicates a slower-

growing tumor, which may correlate with a more favorable

prognosis (12). However, several challenges hinder the clinical use

of VDT, including variability in cystic measurements and the

impact of factors such as fluid accumulation and air content on

volume estimation (8). Additionally, the heterogeneity within

LCCA, consisting of both solid and cystic components,

complicates the precise determination of VDT. Radiomics, an

emerging field that extracts high-dimensional data from medical

images (13), holds promise for enhancing the prognostic evaluation

of LCCA. By analyzing various quantitative features such as shape,

texture, and intensity from CT or MRI images, radiomics can

provide a comprehensive characterization of tumor heterogeneity

and microenvironment (14, 15). These radiomic features have the

potential to uncover patterns and biomarkers associated with tumor

behavior and patient outcomes.

To overcome the limitations of using VDT or radiomics alone,

this study integrates VDT, clinical data, imaging features, and

radiomic analysis to improve the prognostic assessment of LCCA.

This multifaceted approach aims to develop a robust and accurate

prognostic model by combining temporal dynamics, clinical data,

and phenotypic details.

The aim of this study is to advance the prognostic assessment

and management of LCCA by uniting the temporal, clinical, and

phenotypic dimensions of tumor growth, offering a novel pathway

toward more precise and individualized cancer care.
Materials and methods

Study population

This retrospective, multi-center study was approved by the

Institutional Review Board. Due to its retrospective nature, the

requirement for individual informed consent was waived. The study

was conducted at two medical centers: the Shandong Provincial

Third Hospital and Shandong Yellow River Hospital.
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We retrospectively analyzed the clinical and imaging data of

patients diagnosed with cystic airspace-associated lung cancer based

on surgical pathology from February 2015 to January 2020. The

inclusion criteria were as follows: (1) LCCA confirmed by surgical

pathology; (2) complete clinical, pathological, and imaging data; (3) at

least two preoperative CT examinations with aminimum interval of six

months, including the first and most recent preoperative CT scans; (4)

no intrapulmonary metastasis or mediastinal lymph node metastasis;

(5) a minimum postoperative follow-up period of five years (unless

death occurred). The exclusion criteria were: (1) presence of another

concurrent tumor or a history of malignancy; (2) history of tuberculosis

or sarcoidosis; (3) receipt of preoperative anti-tumor treatments such as

chemotherapy, radiotherapy, or immunotherapy; (4) postoperative

complications; (5) poor image quality affecting analysis.
CT acquisition

In this study, Institution I utilized two CT scanners for chest CT

scans: a 128-slice scanner (Brilliance 64; Philips Healthcare) and a

256-slice scanner (Brilliance iCT; Philips Healthcare). Institution II

conducted scans using two 64-slice scanners (Brilliance 64; Philips

Healthcare and LightSpeed; GE Healthcare).

Patients were positioned supine with their hands raised above

their heads, holding their breath at the end of deep inspiration. The

scan range extended from the lung apices to the costophrenic

angles. CT scan parameters included a tube voltage of 120 kVp, a

tube current of 200–700 mAs, a slice thickness of 3 mm, and an

inter-slice gap of 3 mm. Upon completion of the scans, routine

reconstructions were performed for both lung window settings

(window width: 1500 HU, window level: -500 HU) and

mediastinal window settings (window width: 350 HU, window

level: 40 HU), with a reconstruction matrix of 512 × 512.
CT image analysis

The reconstructed images were uploaded to 3D Slicer 5.4.0

(https://www.slicer.org/) software for three-dimensional manual

segmentation of the tumors. Two radiologists with 7 and 11 years

of experience in thoracic diagnosis independently analyzed the

images in a blinded manner. The inter-rater consistency of

the region of interest (ROI) delineation was assessed using the

intraclass correlation coefficient (ICC), with an ICC > 0.8 indicating

good consistency. After segmentation, the software automatically

calculated the nodule volumes.

The VDT was calculated based on the exponential growth model

described by Schwartz, using the following equation (16): VDT = (T2

– T1) × log2/(logV2 – logV1), where T2 – T1 represents the time

interval between two sequential CT scans, and V1 and V2 are the

nodule volumes on the respective scans. To evaluate inter-reader

variability in VDT measurement, the two radiologists independently

repeated the VDT calculations on a random sample of 50 patients

two weeks after completing the consensus assessment of all nodules.
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Radiomics analysis

To address the imbalance between the survivor and non-

survivor groups, we applied the Synthetic Minority Over-

sampling Technique (SMOTE) to the training set, generating

synthetic samples for the minority class. Image normalization and

radiomic feature extraction were performed in the pyradiomics

package (https://github.com/AIM-Harvard/pyradiomics) within

the Python environment. The radiomic features extracted from

the ROI included first-order features, shape features (both 2D and

3D), gray-level co-occurrence matrix (GLCM) features, gray-level

size zone matrix (GLSZM) features, gray-level run length matrix

(GLRLM) features, gray-level dependence matrix (GLDM) features,

and neighboring gray-tone difference matrix (NGTDM) features.

Due to the large number of radiomic features, dimensionality

reduction was a critical step to prevent overfitting and enhance the

model’s predictive efficiency. To achieve this, the least absolute

shrinkage and selection operator (LASSO) algorithm was

employed, leveraging its capability for both feature selection and

regularization. A 10-fold cross-validation process was applied to

determine the optimal lambda, minimizing the mean squared

error. Radiomic features with non-zero coefficients at the selected

lambda were retained, effectively reducing dimensionality while

preserving relevant predictive information. Subsequently, a

radiomic score (Radscore) was computed as a linear combination

of the selected features, weighted by their respective coefficients. This

Radscore served as a concise representation of tumor heterogeneity

and was integrated into the predictive model.
Clinical feature collection

Patient medical records were reviewed to collect information on

lung cancer risk factors, including smoking, chronic obstructive

pulmonary disease (COPD), occupational exposure, lung diseases,

and family history of cancer. Morphological features were also

recorded, including the classification of LCCA (17), the presence of

spiculation, and preoperative tumor volume.
Statistical analysis

Statistical analysis was conducted using SPSS 23.0 and R

software (version 4.0.1, http://www.r-project.org). The

Kolmogorov-Smirnov test was used to assess the normality of

quantitative data. Data following a normal distribution were

expressed as mean ± standard deviation (�x ± s), while data not

following a normal distribution were expressed as median (Q1, Q3).

Comparisons between two groups were conducted using the

independent samples t-test or the Mann-Whitney U test for

quantitative data, and the c² test for qualitative data.
Variables showing statistical significance in univariate analysis

were included in the Cox regression analysis to identify independent

prognostic factors for LCCA, using a stepwise forward selection
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method. Models based on tumor VDT, radiomics, and a combined

model incorporating clinical risk factors were constructed.

Receiver Operating Characteristic (ROC) curves were plotted to

evaluate the predictive performance of eachmodel for LCCA survival,

with the area under the curve (AUC) and the sensitivity and

specificity at the optimal diagnostic threshold calculated. The

DeLong test was used to compare AUCs. The combined model was

visualized using a nomogram generated with the “rms” package, and

its goodness-of-fit and calibration were assessed using calibration

curves. Decision curve analysis (DCA) was employed to evaluate the

clinical utility of the nomogram. The intraclass correlation coefficient

(ICC) was used to assess the consistency of parameter evaluations by

the two radiologists, with an ICC > 0.75 indicating good consistency.

Statistical significance was set at a P-value of <0.05.
Results

Patient characteristics

This study included a total of 193 patients from two institutions,

comprising 106 males and 87 females, with a mean age of 68.0 ± 7.5

years. The mean survival time was 48.5 months, ranging from 11 to

77 months. Of these patients, 153 survived for five years or longer,

while 40 died within five years post-surgery. During the follow-up

period, none of the 153 survivors developed tumor recurrence or

metastasis. The 40 non-survivors died from tumor recurrence,

metastasis, or other thoracic diseases. Based on five-year survival

status, the patients were classified into two groups: survivors (n =

153) and non-survivors (n = 40).
Univariate analysis and multivariate Cox
regression analysis

Univariate analysis was conducted to identify clinical and

imaging risk factors associated with the five-year survival rate. No

significant differences were found between the survivor and non-

survivor groups regarding gender, occupational exposure, ionizing

radiation, genetic history, LCCA subtype, or the presence of

spiculation (P > 0.05, Table 1). However, significant differences

were observed for age, smoking, COPD, and tumor volume (P <

0.05, Table 1).

Subsequently, multivariate Cox regression analysis was

performed, incorporating the significant variables from the

univariate analysis. The results confirmed that smoking and

COPD were independent clinical risk factors (P < 0.05, Table 2).
VDT and radiomic models

The inter-rater consistency for ROI delineation between the two

radiologists was good (ICC > 0.80). Consequently, the ROIs

delineated by the radiologist (L.Y.) with 11 years of diagnostic
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experience were used for VDT calculation and radiomic feature

extraction (Figures 1A–C).

The VDT for the survivor group was 421 (298, 582.5) days,

whereas for the non-survivor group, it was 334.5 ± 106.1 days, with

the difference being statistically significant (Z = -3.330, P = 0.001).

Patients were randomly divided into a training set (n = 135) and

a validation set (n = 58). There were no statistically significant

differences in clinical and imaging characteristics between the

training and validation sets (P > 0.05). From each ROI image, 851

radiomic features were extracted. ICC analysis retained 677 stable

features, and the LASSO algorithm with 10-fold cross-validation

was used to select 9 radiomic features to construct the radiomic

signature. These included 1 shape feature, 1 texture feature, and 7
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wavelet features. A Radscore was computed as a linear combination

of the selected radiomic features and their weighted coefficients.

In both the training and validation sets, the Radscore of the

survivor group was significantly higher than that of the non-

survivor group (P < 0.001).
Evaluation of predictive model
performance

In the training set, the AUC for the VDT model in predicting

the five-year survival rate of LCCA was 0.840, while the AUC for the

radiomic model was 0.782. The fusion model, which integrated
TABLE 1 Baseline clinical and imaging characteristics of survivors and non-survivors with LCCA.

Characteristics Survivor (n=153) Non-survivor (n=40) Statistic Value P-value

Age (years) 67.3 ± 7.6 70.6 ± 6.9 t = -2.459 0.015

Sex Χ2 = 0.606 0.436

Male 97 (63.4%) 28 (70%)

Female 56 (36.6%) 12 (30%)

Smoking Χ2 = 4.821 0.028

Smoker 59 (38.6%) 8 (20%)

Non-smoker 94 (61.4%) 32 (80%)

Ionizing Radiation 0.348

Exposed 6 (3.9%) 0 (0%)

Unexposed 147 (96.1%) 40 (100%)

Occupational Exposure 0.691

Yes 9 (5.9%) 1 (2.5%)

No 144 (94.1%) 39 (97.5%)

Genetic History 0.435

Yes 7 (4.6%) 3 (7.5%)

No 146 (95.4%) 37 (92.5%)

COPD Χ2 = 6.204 0.013

Yes 35 (22.9%) 17 (42.5%)

No 118 (77.1%) 23 (57.5%)

Spiculation Χ2 = 2.652 0.103

Yes 16 (10.5%) 8 (20%)

No 137 (89.5%) 32 (80%)

LCCA Subtypes Χ2 = 2.061 0.560

1 12 (7.8%) 2 (5%)

2 63 (41.2%) 20 (50%)

3 42 (27.5%) 12 (30%)

4 36 (23.5%) 6 (15%)

Tumor Volume (mm3) 1813.0 (1070.5, 2396.0) 2017.0 (1406.0, 2831.8) z = -2.028 0.043
COPD, chronic obstructive pulmonary disease; LCCA, lung cancer with cystic airspaces.
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VDT radiomics, and clinical imaging features, achieved an AUC of

0.905 (Figure 2). In the validation set, the AUC for the VDT model

was 0.805, and the AUC for the radiomic model was 0.717. The

fusion model in the validation set achieved an AUC of 0.895

(Figure 3). In both the training and validation sets, the AUC of

the fusion model was significantly higher than that of the VDT and

radiomic models, with statistically significant differences (P <

0.05, Table 3).

The nomogram constructed using the fusion model is shown in

Figure 4A. Both the calibration curve (Figure 4B) and the clinical

decision curve (Figure 4C) demonstrate the high reliability and

consistency of the fusion model.
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Discussion

This study aims to establish a predictive model for the 5-year

survival rate of patients with LCCA by integrating clinical and

imaging-independent risk factors, tumor VDT, and radiomic

features. The results indicate that among clinical and imaging

characteristics, smoking and COPD are the only independent risk

factors influencing the 5-year survival rate of LCCA patients. VDT

and radiomic features play significant roles in survival prediction

for LCCA patients, and the integrated model demonstrates higher

predictive capability. Additionally, the constructed nomogram

exhibits strong consistency in the calibration curve and DCA,

making it a promising tool for clinical application.

Accurately assessing postoperative survival in LCCA patients

remains challenging, despite advancements in the field (18, 19).

Previous studies have primarily focused on clinical and imaging

characteristics (4, 20). Snoeckx A et al. reported that the occurrence

of LCCA is associated with smoking, with most cases reported

among former and current smokers (21). COPD, characterized by

chronic inflammation and airway damage (22), creates a favorable

environment for the occurrence and progression of lung cancer.

The presence of COPD is linked to poorer survival outcomes in

lung cancer patients due to impaired lung function and increased
FIGURE 1

A 54-year-old male patient with a nodule with cystic airspaces identified during initial examination (A). Follow-up CT at 12 months showed increased
nodule size (B). The final examination’s 3D tumor model displays the cystic area in yellow and the tumor in red (C).
TABLE 2 Results of cox regression analysis for clinical and
imaging characteristics.

Variable OR(95%CI) P-value

Age 1.047 (0.999~1.096) 0.053

Smoking 2.769 (1.249~6.138) 0.012

COPD 2.172 (1.131~4.170) 0.020

Tumor Volume 1.000 (1.000~1.000) 0.213
COPD, chronic obstructive pulmonary disease; OR, odds ratio; CI, confidence interval;.
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susceptibility to complications (23). Lange C et al. confirmed that

lung cancer patients with COPD have significantly lower survival

rates than those without COPD (24). This study similarly identified

smoking and COPD as independent risk factors for LCCA survival

and incorporated them into the predictive model. Although Ma Z

et al. found that different morphotypes of LCCA correlated with
Frontiers in Oncology 06
varying survival rates, with type 1 associated with excellent survival

and type 2 with the worst prognosis (25), this study did not find

statistically significant differences in survival in terms of

morphotypes and thus did not include them in the final

integrated predictive model.

VDT has proven beneficial in distinguishing high-risk from

low-risk lung nodules in lung cancer screening (26, 27). Recent

research highlights VDT’s importance in predicting lung cancer

survival and treatment outcomes. Studies have validated VDT’s

reliability as an effective tool and revealed its potential applications

across different lung cancer types. Kakinuma R et al., in an eight-

year observational study, confirmed that nodules with shorter VDT

are more likely to be malignant, whereas longer VDT is associated

with lower malignancy risk (28). Combining VDT with radiomic

features, which provide detailed information on nodules’ shape,

texture, and density, significantly improves the accuracy of

predicting lung nodule malignancy (29). Consistent with previous

findings, this study demonstrated that combining VDT with

radiomics and clinical imaging features results in a more

comprehensive and reliable predictive tool, paving the way for

personalized treatment approaches.

The study found that the integrated model, which combines

VDT, radiomics, and clinical imaging features, outperforms

individual VDT and radiomic models in predicting the 5-year

survival rate of LCCA patients. This comprehensive approach

leverages the strengths of multiple data types to enhance

prognostic accuracy, with recent literature increasingly supporting

this method (30, 31). Compared to standalone VDT and radiomic

models, the integrated model exhibits higher AUC values. Limkin

EJ et al. showed that integrating clinical, imaging, and molecular

data significantly improves the accuracy of cancer prognosis models

(32). Their findings align with this study’s results, indicating that

models incorporating diverse data types perform better than those

based on a single data source. The predictive model developed in

this study exhibits high accuracy, sensitivity, and specificity, with

minimal bias observed in the calibration curves, underscoring the

model’s reliability. This approach enhances the accuracy and

reliability of survival predictions for LCCA patients, supporting

more in formed c l in ica l dec i s ions and persona l i zed

treatment strategies.

However, the study has certain limitations. Firstly, the sample

size may be relatively small, particularly for rare types of LCCA,

potentially leading to overfitting. Second, although this is a dual-

center study, external validation with larger, multi-center cohorts is

necessary and will be prioritized in future research. Thirdly, as a

retrospective study, it may face selection bias. Lastly, the manual

tumor delineation, although consistent among physicians, is time-

consuming and may benefit from automated or semi-automated

methods to enhance efficiency and stability (33).

In conclusion, integrating VDT, radiomics, and clinical imaging

features into a fusion model provides a more accurate and reliable

method for predicting the 5-year survival rate of LCCA patients,

enhancing the potential for personalized and precision

cancer treatment.
FIGURE 3

ROC curves in the validation set for predicting the 5-year survival
rate of LCCA using the Tumor Volume Doubling Time model,
Radiomics model, and Fusion model. The Fusion model again shows
the highest AUC (AUC = 0.895) in comparison.
FIGURE 2

Receiver operating characteristic (ROC) curves in the training set for
predicting the 5-year survival rate of LCCA using the Tumor Volume
Doubling Time model, Radiomics model, and Fusion model. The
Fusion model achieves the largest area under the curve (AUC =
0.905) among the three.
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FIGURE 4

illustrate the nomogram, calibration curve, and decision curve for predicting the five-year survival rate of LCCA using the fusion model based on
VDT, radiomics, and clinical imaging features. (A) presents the nomogram. (B) shows the calibration curve, indicating minimal deviation and
demonstrating the high reliability of the fusion model. (C) displays the decision curve.
TABLE 3 Efficacy of different models in predicting survival rates of LCCA in training and validation sets.

Group AUC 95% CI Sensitivity(%) Specificity(%)
VS Fusion_Model

Z P*

Training Set

VDT 0.840 0.742 - 0.912 80.0 75.6 1.974 0.048

Radiomics 0.782 0.676 - 0.866 92.5 58.5 2.735 0.006

Fusion_Model 0.905 0.819 - 0.959 75.0 97.6

Validation Set

VDT 0.805 0.703 - 0.885 62.5 87.8 2.415 0.016

Radiomics 0.717 0.606 - 0.812 85.0 53.7 3.429 0.001

Fusion_Model 0.895 0.806 - 0.952 87.5 78.0
F
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VDT volume doubling time; AUC area under the curve; CI, confidence interval;.
*Delong test.
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