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Background: Cervical squamous cell carcinoma (CESC) constitutes a substantial

global health burden, especially in resource-limited regions. The identification of

reliable biomarkers is critical for developing a clinically applicable nomogram to

predict survival outcomes and evaluate immune infiltration in CESC patients.

Methods: This study integrated RNA-seq data from GEO and TCGA databases to

identify key genes associated with CESC through differential expression analysis

and machine learning techniques. Prognostic models were constructed and

validated, with additional analyses exploring immune cell infiltration and gene

function via GSEA and clinical correlation. Finally, key genes were validated via

qRT-PCR in CESC tissues.

Results: A total of 112 differentially expressed genes (DEGs) were identified

through differential analysis of the GEO and TCGA datasets. EFNA1, CXCL8,

and PPP1R14A emerged as prognostic biomarkers for CESC, showing significant

associations with survival, tumor stage, and immune infiltration. EFNA1may drive

tumor progression via the MAPK signaling pathway, CXCL8 could influence

immune evasion through NOD-like receptor signaling, and PPP1R14A may

contribute to tumor invasion by modulating extracellular matrix remodeling. A

nomogram integrating these genes demonstrated high predictive accuracy for

overall survival (AUC>0.75) and calibration plots. Decision curve analysis (DCA)

was performed to assess the nomogram’s clinical utility and net benefit for

application in clinical practice. Additionally, it was validated by qRT-PCR, showing

elevated expression in tumors versus normal tissues (P<0.05).
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Conclusion: EFNA1, CXCL8, and PPP1R14A are promising biomarkers for CESC

prognosis and immune regulation. The nomogram model provides a practical

tool for personalized survival prediction, enhancing clinical decision-making for

immunotherapy and risk stratification.
KEYWORDS

cervical squamous cell carcinoma (CESC), diagnosis, survival prognosis, immune
infiltration, biomarker
1 Introduction

CESC is the fourth most common cause of cancer death among

women globally, accounting for approximately 606,000 new cases and

342,000 deaths annually (1). Notably, over 70% of cervical cancer deaths

occur in low- and middle-income countries (LMICs), where the

incidence and mortality rates are the second highest (1, 2). Despite

advancements in prevention and treatment, cervical cancer remains a

significant health threat to women in LMICs, highlighting disparities in

access to care (2). Current treatment strategies for CESC depend on the

diagnostic stage. For stage I, hysterectomy is the primary treatment, with

cervical resection an option for fertility preservation. Adjuvant therapies

such as pelvic radiation are often used post-surgery, while high-risk

cases may require chemotherapy (3, 4). Stage II treatment involves

radical resection of the cervix, uterus, and lymph nodes, supplemented

with adjuvant therapies (3). For locally advanced (stage III) ormetastatic

(IVA-stage) disease, cisplatin-based chemotherapy remains the

mainstay, with emerging immunotherapies like pembrolizumab

showing promise in recurrent cases (5, 6). However, the clinical

benefits of immunotherapy are inconsistent, with response rates

below 20% in advanced CESC (7). This variability underscores the

urgent need for predictive biomarkers to stratify patients likely to benefit

from immunomodulatory therapies. A critical gap persists in

understanding how immune-related biomarkers interact with the

tumor microenvironment (TME) to influence prognosis. While

studies have identified immune-targeted genes in CESC using gene

microarrays (8), these efforts often focus on single biomarkers or lack

integration with clinical outcomes (9). For instance, PD-L1 expression

alone fails to predict immunotherapy response in 40–60% of CESC

cases, suggesting that multi-gene signatures or immune contexture may

better capture prognostic complexity (10). Furthermore, existing

prognostic models rarely account for dynamic immune-TME

crosstalk, limiting their utility in guiding personalized therapy (11).

To address these gaps, we propose a systems biology approach

integrating multi-omics data and machine learning. By analyzing

RNA-seq data from GEO and TCGA cohorts, we aim to identify

immune-related gene signatures that not only predict survival but

also reflect TME modulation. Our study diverges from prior work

by prioritizing genes with dual roles in prognosis and immune

regulation, validating biomarkers across heterogeneous cohorts,

and constructing a nomogram that bridges molecular insights
02
with clinical parameters (e.g., lymph node metastasis, tumor

stage). This strategy addresses the limitations of reductionist

biomarker discovery and provides a framework for translating

immune-genomic findings into actionable clinical tools.
2 Materials and methods

2.1 Data collection and preprocessing

To better understand the research process, Figure 1 illustrates the

workflow diagram of this study. RNA-seq data were acquired from

publicly accessible Gene Expression Omnibus (GEO) and The Cancer

Genome Atlas (TCGA) databases (12, 13). The TCGA dataset contains

clinical information from 296 cancer patients, including disease stage

and survival outcomes, along with 3 normal tissue controls. Key

characteristics of both datasets are systematically summarized in

Table 1. DEGs were rigorously identified using the “limma” package

in R, with selection criteria of |log2 FC|>1 and adjusted P<0.05 (14).
2.2 Functional enrichment analysis of GO
and KEGG

DEGs were subjected to functional enrichment analysis using

the DAVID database (https://david.ncifcrf.gov/) for Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

annotations (15). The “clusterProfiler” package in R facilitated

statistical evaluation and visualization of enriched biological

terms (16, 17). GO enrichment analysis includes three key

biological domains: biological processes (BP), cellular components

(CC), and molecular functions (MF) (18), while KEGG pathway

annotation elucidated predominant metabolic and signaling

pathways. Enrichment significance was determined at P<0.05.
2.3 Machine learning methods for
obtaining disease characteristic genes

Feature selection employed LASSO regression and Support Vector

Machine-Recursive Feature Elimination (SVM-RFE) (19, 20).
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The LASSO algorithm (“glmnet” package) identified CESC-associated

genes through penalized regression (a=1), with optimal regularization

parameter l determined by five-fold cross-validation. SVM-RFE

(“e1071” package) iteratively eliminated low-contribution features to

extract disease-specific signatures. Prognostically significant

differentially expressed genes were subsequently screened via

univariate Cox regression (P<0.01), followed by multivariate Cox

regression to construct the final predictive nomogram (21).
2.4 Validation of prognostic models

The risk score, derived from the constructed prognostic model,

represents the prognostic risk for each CESC patient. The

calculation formula for the model’s gene risk score is as follows:

gene a coefficient multiplied by gene an expression, plus gene b

coefficient multiplied by gene b expression,…, plus gene i coefficient

multiplied by gene i expression (where a, b, and i represent specific

genes). Training and testing cohorts were stratified into high-/low-

risk groups using cohort-specific median thresholds. Survival
Frontiers in Oncology 03
disparities between risk strata were statistically validated through

Kaplan-Meier analysis.
2.5 Estimation and analysis of immune cell
infiltration patterns

Immune cell infiltration levels of 22 distinct subtypes were

quantified through transcriptomic deconvolution using the

“CIBERSORT” algorithm implemented in R. Comparative

analysis of immune profiles between high- and low-risk cohorts

was subsequently performed with the “limma” package.
2.6 GSEA enrichment analysis

Gene set enrichment analysis was conducted using the

Molecular Signatures Database (MSigDB) col lect ions

“c5.go.v7.4.symbols” and “c2.cp.kegg.v7.4.symbols”. Hub genes

associated with specific immune cell populations were

functionally annotated through the “clusterProfiler” and

“enrichplot” packages in R, with statistically significant terms

identified at P<0.05 (16).
2.7 Clinical general information

This retrospective analysis included 6 hysterectomy patients

stratified into two cohorts: cervical squamous carcinoma (CESC;

n=3, mean age 57.02 ± 9.21 years) and benign gynecological

conditions (adenomyosis/uterine fibroids/prolapse; n=3, 57.56 ±
TABLE 1 Details of GEO and TCGA dataset.

Dataset Normal Tumor

GSE9750 26 33

GSE39001 5 19

GSE122697 5 11

TCGA-ECSC 3 296
FIGURE 1

Research and design flow chart.
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9.81 years), all confirmed by histopathological examination.

Surgical specimens were snap-frozen in liquid nitrogen within 30

min post-resection for RNA preservation. Exclusion criteria

encompassed pre-existing metabolic disorders (diabetes mellitus)

or renal dysfunction. The research protocol was approved by the

Second Affiliated Hospital of Guangdong Medical University

(Approval No. PJKT2024-134).
2.8 RNA extraction and gene expression
analysis

Gene expression analysis was performed using TRIzol reagent

(Invitrogen, USA) to extract 1 mg total RNA per manufacturer’s

protocol. RNA was reverse-transcribed into cDNA and amplified

via qRT-PCR under standardized cycling conditions: 95°C for 5

min, followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. Primer

sequences used for qPCR are detailed in Table 2. Gene expression

levels were quantified using the 2–DDCT method and normalized

with GAPDH.
2.9 Construction and validation of
nomograms

A prognostic nomogram integrating independent risk factors

identified through univariate and multivariate Cox regression

analyses was developed using the rms package in R, enabling

visualization of 3-, 5-, and 8-year overall survival (OS) predictions

for CESC patients. Model validation comprised temporal

discrimination assessment via time-dependent receiver operating

characteristic (ROC) curves with area under the curve (AUC)

quantification, calibration curve analysis for prediction

accuracy evaluation.
2.10 Clinical relevance

Clinical utility of the nomogram was systematically evaluated

through decision curve analysis (DCA). Using the ROC curve, we
Frontiers in Oncology 04
determine the optimal threshold for each patient’s risk score via the

nomogram. Subsequently, patients in the training and validation

queues are classified into high-risk and low-risk categories based on

their calculated risk scores. Kaplan-Meier survival curves are

employed to analyze OS between these groups in two cohorts to

assess survival differences.
2.11 Statistical analysis

Statistical analyses were conducted using R software (version

4.3.1). Continuous and categorical variables were compared

between groups using Student’s t-tests and Pearson’s chi-square

tests, respectively. Survival outcomes were evaluated through

Kaplan-Meier methodology with log-rank testing for group

comparisons, supplemented by Cox proportional hazards

regression modeling. Prognostic predictors were identified

through univariate/multivariate Cox regression. Model

discriminative ability was quantified using C-index, while

calibration curves assessed prediction-observation agreement.

Clinical decision-making utility was evaluated through

DCA. Statistical significance in this study was determined

using P<0.05.
3 Results

3.1 Screening for DEGs

We retrieved mRNA expression profiles from GEO databases

(GSE9750, GSE39001, GSE122697) to identify DEGs in CESC.

Following batch calibration and normalization, differential

expression analysis of the GEO dataset revealed 666 DEGs,

comprising 434 upregulated genes (log2 FC>1) and 232

downregulated genes (log2 FC< -1), as shown in (Figures 2A, B).

To further explore DEGs in CESC, we performed a detailed

differential expression analysis using the TCGA dataset, comparing

cancer tissues with adjacent normal tissues. This analysis identified

5,784 significantly differentially expressed genes, including 3,452

upregulated genes (log2 FC>1) and 2,332 downregulated genes

(log2 FC<-1), as presented in (Figures 2C, D). By integrating the

GEO and TCGA datasets, we identified 112 overlapping DEGs,

consisting of 20 upregulated genes (log2 FC> 1) and 92

downregulated genes (log2 FC< -1), illustrated in (Figure 2E). This

study conducted integrative differential gene expression analysis

across GEO and TCGA cohorts, characterizing tumor-specific

transcriptional dysregulation through systematic comparison of

neoplastic and normal tissues.
3.2 GO & KEGG enrichment analysis of
DEGs

To investigate the functional characteristics of 112 DEGs in

CESC, systematic enrichment analyses were performed through the
TABLE 2 Primer sequences for real-time reverse transcription PCR
(qRT-PCR).

Gene name Primer sequence (5′ to 3′)

EFNA1 -Forward CAGCGCTTCACACCTTTCAC

EFNA1-Reverse GGTGGATGGGTTTGGAGATGT

CXCL8-Forward AGCTCTGTGTGAAGGTGCAG

CXCL8-Reverse TCTCAGCCCTCTTCAAAAACTTC

PPP1R14A -Forword CACCGTCAAGTATGACCGGC

PPP1R14A -Reverse GACTTCAGGAGTCCCATGCC

GAPDH-Forward GGACTCATGACCACAGTCCAT

GAPDH-Reverse CAGGGATGATGTTCTGGAGAG
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DAVID database. GO and KEGG analyses were conducted with

FDR<0.05. Expressly, BP analysis indicated significant involvement

of these DEGs in processes such as DNA replication, chromosome

segregation, cell division, and the mitotic cell cycle. CC analysis

revealed their primary association with spindle poles, kinetochores,

and chromosome regions. Furthermore, MF analysis demonstrated

that these DEGs primarily exhibit binding abilities to single-

stranded DNA, microtubules, and protein kinases (Figure 3A).

KEGG pathway analysis (Figure 3B) identified core mechanisms

including Cell cycle, DNA replication, Oocyte meiosis,

Progesterone-mediated oocyte maturation, Motor proteins, p53

signaling pathway, Cellular senescence, Mismatch repair, and

Base excision repair. These findings collectively implicate the
Frontiers in Oncology 05
DEGs in essential oncogenic processes: genomic stability

maintenance through DNA replication/repair, mitotic regulation

via spindle apparatus components, and potential involvement in

cellular senescence mechanisms in CESC pathogenesis.
3.3 LASSO regression of differentially
expressed genes in GEO dataset and SVM-
RFE algorithm for screening key
pathogenic-characteristic gene

Disease-associated genes were identified through a multi-step

feature selection process. LASSO regression analysis selected 23
FIGURE 3

GO analysis of the top 5 enriched DEGs and KEGG analysis of the top 10 enriched DEGs. (A) GO enrichment analysis of BP, CC, and MF. (B) KEGG
enrichment analysis. Node size represents the proportion of genes; The node color represents the FDR value.
FIGURE 2

Differential gene analysis between GEO and TCGA datasets. (A, B) The differential gene analysis heatmap and volcano map of the GEO dataset. The
expression profiles above the average in the heatmap are yellow, while those below the average are in green. (C, D) The differential gene analysis
heatmap and volcano map of the TCGA dataset. Expression profiles above the average were represented in red. In contrast, those below the average
were represented in green. Log FC: log2 fold changes. (E) Venn map of differentially expressed genes between GEO and TCGA datasets.
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characteristic genes (e.g., CXCL8, EFNA1, EZH2) by minimizing

prediction error, with error magnitude and gene number

relationships visualized (Figures 4A, B). SVM-RFE analysis

subsequently refined candidate genes through recursive

elimination, identifying 51 optimal features at minimal cross-

validation error (Figure 4C). Intersection analysis of both

methods revealed eight core disease-characteristic genes (CXCL8,

EFNA1, EZH2, PAQR4, SLC27A6, SPINK5, SYCP2, YEATS2),

confirmed by Venn diagram (Figure 4D).
3.4 Screening of disease characteristic
genes using LASSO regression and
univariate COX regression analysis in the
TCGA dataset

Feature selection was conducted through LASSO regression

(“glmnet” package) to identify feature genes demonstrating

minimal prediction error. The optimal regularization parameter

(l) was determined via cross-validation, selecting hub genes with

the lowest error rate as disease-specific biomarkers (Figures 5A, B).

Furthermore, a risk-scoring model for cervical cancer was

constructed and used to stratify 296 CESC patients into low-risk

(n=148) and high-risk (n=148) groups based on their median

disease risk, as shown in (Figure 5C). For further insight,

(Figure 5D) displays the risk score distribution and corresponding

survival status of patients within these risk groups. Finally,

univariate Cox regression analysis was conducted to identify four

key genes (F10, PPP1R14A, FBLN5, ABCA8), and a gene model was

constructed based on these findings. The analysis results are

presented clearly in (Figure 5E).
3.5 Survival prognosis analysis of key genes

To investigate the prognostic significance of 12 key genes

(EFNA1, CXCL8, EZH2, PAQR4, SLC27A6, SPINK5, SYCP2,

YEATS2, F10, PPP1R14A, FBLN5, ABCA8) in CESC, we
Frontiers in Oncology 06
conducted a comprehensive survival analysis. Notably, EFNA1

(Figure 6A), CXCL8 (Figure 6B), and PPP1R14A (Figure 6C)

demonstrated statistically significant predictive value for overall

survival (P<0.05). Conversely, EZH2, PAQR4, SLC27A6, SPINK5,

SYCP2, YEATS2, F10, FBLN5, and ABCA8 did not exhibit

statistically significant differences in overall survival prognosis

(Figures 6D–L). These findings suggest that EFNA1, CXCL8, and

PPP1R14A may serve as potential prognostic markers for CESC,

warranting further investigation for their roles in disease

progression and therapeutic targeting.
3.6 ROC validation of key survival
prognostic genes

Time-dependent ROC analysis evaluated the prognostic

accuracy of a three-gene signature (EFNA1, CXCL8, PPP1R14A)

for cervical squamous cell carcinoma survival outcomes. The

EFNA1 (Figure 7A) demonstrated moderate discrimination with

progressive improvement in AUC from 0.650 (1-year) to 0.715 (10-

year), consistently exceeding random prediction. CXCL8

(Figure 7B) showed superior and stable performance across all

intervals, maintaining AUC between 0.682-0.719 with minimal

temporal variation. Notably, PPP1R14A (Figure 7C) exhibited

temporal performance heterogeneity - achieving peak

discriminative capacity at 1-year (AUC=0.726) followed

by progressive decline to 0.505 at 10-year follow-up. This

temporal analysis revealed two distinct prognostic patterns:

CXCL8 maintained consistent predictive reliability throughout

the observation period, while PPP1R14A and EFNA1 showed

opposing temporal trajectories. The composite model

demonstrated the strongest predictive utility for early-stage

prognosis (1–3 year AUC range: 0.650-0.726), with diminished

accuracy in long-term predictions (5–10 year AUC range: 0.505-

0.715). These findings position this multigene signature as a

potential tool for short-term survival stratification, though

longitudinal prognostic accuracy may require temporal

recalibration or incorporation of complementary biomarkers.
FIGURE 4

Mechanical learning method for obtaining disease characteristic genes from GEO dataset. (A, B) LASSO regression plot, l = 0.1022. (C) SVM-RFE
diagram, 51-0.0205 indicates an error rate of 0.0205 for the 51 trait genes screened. (D) Venn diagram.
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3.7 Key gene immune infiltration analysis

Comprehensive immune microenvironment profiling of CESC

was performed through analysis of 22 immune cell signatures and

infiltration patterns (Figures 8A, B). The heatmap visually

represents the abundance and proportional differences of various

immune cell subtypes in CESC samples, highlighting a higher

proportion of CD8+ T cells, plasma cells, Tregs, follicular helper

T cells, and macrophages (M1, M0, and M2). To explore the

correlation between the three key genes (EFNA1, CXCL8, and

PPP1R14A) and immune cell infiltration, we stratified the gene

expression levels into high- and low-risk groups for analysis

(Figures 8C-E). The findings revealed significant differences in

dendritic cell activation between high- and low-risk groups for

EFNA1 (P<0.05). CXCL8 significantly influenced the proportions of

Tregs, NK cells, dendritic cell activation, mast cells, and neutrophils

(P<0.05), and changes in PPP1R14A were significantly associated

with gd T cells, macrophages (M0 and M2), dendritic cell activation,

and the proportion of neutrophils (P<0.05). These mechanistic

insights propose clinically actionable strategies: CXCL8 inhibition

may disrupt immunosuppressive networks while PPP1R14A

modulation could target macrophage polarization, with EFNA1-

mediated dendritic cell activation serving as a potential predictive

biomarker for immune checkpoint inhibitor response.
Frontiers in Oncology 07
3.8 Specific gene co-expression analysis

Gene co-expression network analysis revealed distinct

interaction patterns among EFNA1, CXCL8, and PPP1R14A.

Pearson correlation analysis demonstrated a statistically robust

positive correlation between EFNA1 and CXCL8 expression

(R=0.21, P<0.001; Figure 9A), suggesting potential co-regulatory

mechanisms or functional synergy. In contrast, non-significant

correlations were observed for EFNA1-PPP1R14A (R=0.053,

P=0.36; Figure 9B) and CXCL8-PPP1R14A pairs (R=0.042,

P=0.46; Figure 9C), as evidenced by nullcline-proximal data

distributions. This differential correlation profile implies

PPP1R14A’s functional autonomy from the EFNA1-CXCL8 axis

within the studied biological context.
3.9 Enrichment analysis of key survival
prognostic genes using GSEA

GSEA systematically decoded functional networks of

EFNA1, CXCL8, and PPP1R14A within the CESC immune

microenvironment. EFNA1 exhibited dual regulatory capacity: GO

terms implicated its involvement in keratinocyte differentiation and T

cell receptor complex assembly (Figure 10A), while KEGG pathways
FIGURE 5

Mechanical learning method for obtaining disease characteristic genes from TCGA dataset. (A, B) LASSO regression plot, l=0.0086. (C, D) Patient
risk scores and survival status for high-risk and low-risk groups. (E) Forest plot of key genes selected in features through univariate Cox analysis.
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connected it to MAPK signaling and cytoskeletal remodeling

(Figure 10B). CXCL8 exhibited dual regulatory roles in cervical

carcinogenesis, demonstrating pro-proliferative effects on

endothelial/epithelial lineages (Figure 10C) concurrent with

inflammasome activation through NOD-like receptor signaling

pathways (Figure 10D). PPP1R14A emerged as a stromal interface

regulator, with GO enrichment in fibroblast growth factor signaling

and extracellular matrix (ECM) organization (Figure 10E),
Frontiers in Oncology 08
corroborated by KEGG pathways encompassing ECM-receptor

interactions and cancer-associated adhesion molecules (Figure 10F).

Multi-dimensional analysis reveals three synergistic pathological

mechanisms in cervical squamous carcinogenesis: EFNA1-mediated

immune-structural interactions regulate differentiation processes,

CXCL8 coordinates proliferative-inflammatory equilibrium, and

PPP1R14A drives stromal-ECM remodeling. These interconnected

networks collectively promote tumor progression through
FIGURE 7

ROC curve for predicting overall survival based on risk score. (A) ROC analysis of EFNA1 gene. (B) ROC analysis of CXCL8 gene. (C) ROC analysis of
PPP1R14A gene.
FIGURE 6

Single-factor analysis of factors influencing the survival rates of CESC patients. (A-L) Kaplan Meier survival curve analysis of EFNA1, CXCL8, EZH2,
PAQR4, SLC27A6, SPINK5, SYCP2, YEATS2, F10, PPP1R14A, FBLN5, and ABCA8 showed significant differences in OS between low-risk and high-risk
scoring groups.
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differentiation dysregulation, immune evasion, and metastatic niche

formation, identifying microenvironment-specific targets for

precision immunotherapy development.
3.10 Clinical correlation analysis of key
genes for survival prognosis

To investigate the role of key genes in cervical cancer survival

prognosis, we comprehensively analyzed the correlation between

the expression levels of EFNA1, CXCL8, and PPP1R14A, and

various clinical features, including age, stage, tumor grade (T),

lymph node status (N), and metastasis status (M). EFNA1

demonstrated lymph node-specific regulation with elevated

expression in NX versus N1 cases (P=0.045, Figures 11A, E),

showing no significant associations with age, stage, grade, or

metastasis (Figures 11B-D, F). CXCL8 exhibited progressive

upregulation in advanced disease stages (T3 vs T2, P=0.032; G3

vs G2, P=0.016; Figures 11G-J), independent of age or metastatic

status (Figures 11K, L). PPP1R14A displayed age-dependent

suppression (>65 years, P=0.032) and paradoxical elevation in

TX-grade tumors (vs T1-2, P=0.023; Figures 11M, N, P), with no

significant correlations to staging or metastasis (Figures 11O, Q, R).
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In short, EFNA1 demonstrates lymph node-specific biomarker

potential, CXCL8 correlates with histopathological progression

through stage/grade associations, and PPP1R14A exhibits age-

related suppression and grade-dependent paradoxical expression.

These differential clinical signatures collectively highlight their

translational value for precision staging systems and biomarker-

driven therapeutic stratification in CESC management.
3.11 Establishment and evaluation of a
prognostic nomogram for key genes and
clinical features

A prognostic nomogram integrating three molecular markers

(EFNA1, CXCL8, PPP1R14A) with clinicopathological parameters

(age, TNM stage) was developed to predict 3-/5-/8-year overall

survival in cervical squamous cell carcinoma (Figure 12A). Tumor

grade demonstrated the strongest prognostic weight (C-index: 0.785

training, 0.750 validation), followed by CXCL8 expression and

metastasis status. The nomogram showed robust temporal

discrimination (3-year AUC: 0.762 training, 0.689 validation;

Figures 12B, C) and precise calibration (Figures 12D-I), with

DCA confirming clinical utility across 10-45% risk thresholds
FIGURE 8

Immune infiltration analysis based on 22 immune-related gene sets. (A) Representing 22 subtypes of immune cells, the abundance of each bar chart
represents the proportion of immune cells in each sample, and different colors represent each subtype. (B) Differences in the proportion of 22
subtypes of immune cells. (C-E) The comparative analysis of the proportion of immune infiltrating cells in the high-risk and low-risk groups of
EFNA1, CXCL8, and PPP1R14A (*P<0.05, **P<0.01, ***P<0.001).
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(Figures 12J-O). This multivariable tool enables personalized

survival prediction and risk-stratified therapeutic decision-making

for CESC patients.
3.12 Key gene qRT-PCR validation

Cervical cancer primarily consists of squamous cell carcinoma

(70%), adenocarcinoma (25%), and other rare types (5%) (22).

Multimodal analysis of cervical carcinogenesis progression was

conducted through histopathological evaluation and molecular
Frontiers in Oncology 10
profiling. Hematoxylin-eosin staining revealed progressive

histoarchitectural alterations (Figure 13A): Control tissues

maintained normal stratified squamous epithelium, LSIL specimens

exhibited basal layer expansion with koilocytic changes, HSIL showed

full-thickness dysplasia with nuclear hyperchromasia, and invasive

carcinoma displayed complete architectural disarray with stromal

invasion. Complementary qRT-PCR analysis demonstrated

significant transcriptional upregulation of oncogenic effectors -

EFNA1, CXCL8, and PPP1R14A in carcinoma versus control tissues

(P<0.05) (Figure 13B). This coordinated overexpression pattern

correlates with histopathological progression from premalignant
FIGURE 9

Analysis of the co-expression correlation for key genes EFNA1, CXCL8, and PPP1R14A. (A–C) The correlation among EFNA1, CXCL8, and PPP1R14A
expressions in our cohort was determined by Spearman's correlation analysis.
FIGURE 10

GSEA enrichment analysis of key genes. (A, B) GSEA analysis of EFNA1 gene. (C, D) GSEA analysis of CXCL8 gene. (E, F) GSEA analysis of
PPP1R14A gene.
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lesions to invasive carcinoma, suggesting their synergistic role in

cervical carcinogenesis.
4 Discussion

CESC poses a substantial threat to women’s health worldwide,

with epidemiological studies showing ~80% of cases diagnosed at

advanced stages (III-IV) where treatment efficacy remains limited

(23, 24). Although therapeutic strategies have evolved, patients with

advanced CESC still demonstrate poor clinical outcomes,

emphasizing the imperative need for both validated prognostic

biomarkers and elucidation of molecular progression mechanisms.

In this study, we identified EFNA1, CXCL8, and PPP1R14A as core

biomarkers that bridge prognosis with immune modulation, offering

novel insights into CESC biology and therapeutic targeting.
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EFNA1, a member of the Ephrin ligand family, regulates cell

migration and angiogenesis through Eph receptor interactions (25,

26). Studies have shown that EFNA1 was associated with MAPK

signaling, a pathway driving proliferation and invasion in CESC

(27). In CESC, EFNA1’s association with lymph node metastasis

(P=0.045) and may drive invasiveness via Eph receptor-mediated

MAPK/STAT3 activation, a pathway linked to epithelial-

mesenchymal transition (EMT) in solid tumors. CXCL8, a pro-

inflammatory chemokine, was linked to NOD-like receptor

signaling, which activates inflammasomes and modulates immune

responses (28). In CESC, CXCL8 fosters an immunosuppressive

tumor microenvironment by recruiting neutrophils and

regulatory T cells (Tregs) (29), consistent with its correlation to

advanced tumor stages and immune cell infiltration patterns.

PPP1R14A, a member of the protein phosphatase 1 (PP1)

inhibitor family, is also known as the 17kDa PKC-enhanced
FIGURE 11

Correlation analysis between key gene expression and clinical features. (A-F) Correlation analysis between EFNA1 gene expression and clinical
features. (G-L) Correlation analysis between gene expression of CXCL8 and clinical features. (M-R) Correlation analysis between PPP1R14A gene
expression and clinical features.
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PP1 inhibitory protein (CPI-17) (30). Studies have shown that

PPP1R14A plays a crucial role in the onset and progression of

various tumors, including sporadic vestibular glioma, human

melanoma, and schwannoma (30–32). PPP1R14A was associated

with fibroblast growth factor signaling and extracellular matrix

(ECM) organization, critical for stromal remodeling and tumor

invasion (33). Its clinical correlations with tumor grades suggest it
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contributes to invasive phenotypes through ECM alterations. These

pathways suggest that EFNA1, CXCL8, and PPP1R14A drive CESC

progression through proliferation, immune modulation, and

stromal alterations, respectively. Their interconnected roles merit

further exploration.

The immune infiltration analysis further contextualized our

findings by revealing elevated infiltration of CD8+ T cells, Tregs, and
FIGURE 12

Establishment and evaluation of a prognostic nomogram of key genes and clinical features. (A) Models of OS for CESC patients at 3, 5, and 8 years.
(B, C) Time-dependent curves (ROC) of the nomogram for 3-, 5-, and 8-year predictions in the training and validation cohorts. (D-I) Calibration
charts of 3-year, 5-year, and 8-year overall survival for CESC patients in the training and validation cohorts. (J-O) Decision curve analysis of
nomogram. DCA curves of 3-year, 5-year, and 8-year OS in the training queue and validation queue.
FIGURE 13

Morphological changes and Hub gene expression validation in CESC patients. (A) Typical HE staining images of CESC patients. (scale bar=50 mm).
(B) EFNA1、CXCL1 and PPP1R14A mRNA expression levels were examined using qRT-PCR. (n=3, *P<0.05, **P<0.01 vs Normal).
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tumor-associated macrophages (TAMs) in CESC specimens. The

activation of EFNA1 and mast cells provides a new target for Ephrin

signaling in allergic diseases, highlighting tissue-specific immune

modulation (34). EFNA1 correlated with dendritic cell activation

(P<0.05), potentially enhancing antigen presentation. CXCL8 was

associated with increased Tregs, NK cells, and neutrophils (P<0.05),

supporting its immunosuppressive role (29). PPP1R14A influenced gd
T cells andM2macrophages (P<0.05), linked to tumor progression (35,

36). However, this study did not assess survival outcomes tied to

immune cell abundance—a limitation, as high Treg infiltration often

predicts poor prognosis in cancers (37). Future survival analyses are

needed to clarify these associations in CESC.

A prognostic nomogram integrating EFNA1, CXCL8,

PPP1R14A, age, and TNM stage achieved strong predictive

accuracy for 3-, 5-, and 8-year survival (3-year AUC: 0.762–

0.763), with decision curve analysis confirming its utility.

Recent studies have shown that EFNA1 overexpression serves as

an independent prognostic risk factor in cervical cancer,

demonstrating robust predictive value for survival outcomes (25,

38). CXCL8 plays a role in modulating immune infiltration, thereby

influencing the prognosis of patients with various cancers,

particularly cervical cancer (39–41). While research on PPP1R14A

in CESC is limited, studies have shown that its high expression in

bladder cancer (BCA) is associated with poor prognosis, suggesting

its potential as a prognostic biomarker (42). Unlike prior models

focusing on single biomarkers (43, 44), our nomogram combines

multi-gene signatures with clinical parameters, achieving superior

predictive accuracy. Experimental validation via qRT-PCR and HE

staining showed significant upregulation of all three genes in CESC

tissues (P<0.05), along with histopathological progression from

normal epithelium to invasive carcinoma, further supporting their

biological relevance.

However, the retrospective nature of TCGA and GEO data may

introduce selection bias. Computational findings regarding immune

infiltration require confirmation through immunohistochemistry or

flow cytometry. Future research should validate these biomarkers in

prospective cohorts and explore their functional roles through single-cell

sequencing or knockout models. Additionally, prospective validation of

the nomogram and survival analyses examining the relationship between

immune cell abundance and clinical outcomes are crucial next steps.
5 Conclusion

In this study, we developed a predictive risk model for CESC by

integrating EFNA1, CXCL8, and PPP1R14A gene expression profiles

with clinical baseline characteristics. This prognostic nomogram

demonstrates strong predictive power while requiring only a

minimal gene panel, thereby reducing economic burdens on patients

and showing potential for clinical application and translational

research. Furthermore, the nomogram independently predicts patient

prognosis and complements existing TNM staging systems, offering

comprehensive information to support clinical decision-making. With

future validation in more clinical cases, our research is poised to benefit

a broader patient population and propel advancements in personalized

cancer treatment and precision medicine.
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