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Introduction: The intravoxel incoherent motion (IVIM) model of diffusion

weighted imaging (DWI) provides imaging biomarkers for breast tumor

characterization. It has been extensively applied for both diagnostic and

prognostic goals in breast cancer, with increasing evidence supporting its

clinical relevance. However, variable performance exists in literature owing to

the heterogeneity in datasets and quantification methods.

Methods: This work used retrospective anonymized breast MRI data (302

patients) from three sites employing three different software utilizing least-

squares segmented algorithms and Bayesian fit to estimate 1st order radiomics

of IVIM parameters perfusion fraction (fp), pseudo-diffusion (Dp) and tissue

diffusivity (Dt). Pearson correlation (r) coefficients between software pairs were

computed while logistic regression model was implemented to test malignancy

detection and assess robustness of the IVIM metrics.

Results: Dt and fp maps generated from different software showed consistency

across platforms while Dp maps were variable. The average correlation between

the three software pairs at three different sites for 1st order radiomics of IVIM

parameters were Dtmin/Dtmax/Dtmean/Dtvariance/Dtskew/Dtkurt: 0.791/0.891/

0.98/0.815/0.697/0.584; fpmax/fpmean/fpvariance/fpskew/fpkurt: 0.615/0.871/

0.679/0.541/0.433; Dpmax/Dpmean/Dpvariance/Dpskew/Dpkurt: 0.616/0.56/

0.587/0.454/0.51. Correlation between least-squares algorithms were the

highest. Dtmean showed highest area under the ROC curve (AUC) with 0.85

and lowest coefficient of variation (CV) with 0.18% for benign and malignant

differentiation using logistic regression. Dt metrics were highly diagnostic as well

as consistent along with fp metrics.
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Discussion: Multiple 1st order radiomic features of Dt and fp obtained from a

heterogeneous multi-site breast lesion dataset showed strong software

robustness and/or diagnostic utility, supporting their potential consideration in

controlled prospective clinical trials.
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1 Introduction

Breast cancer remains a leading cause of cancer-related deaths in

women in the U.S (1). Diffusion weighted MRI (DW-MRI or DWI)

provides biomarkers for cancer diagnosis and characterization (2–6),

and has been demonstrated to distinguish benign and malignant

breast lesions (7–10) without using contrast agents.

Intravoxel incoherent motion (IVIM) (11–13), an advanced

DWI technique allows simultaneous quantification of diffusion and

perfusion properties of the tissue. IVIM is sensitive to cellularity

and microvascular flow and there is a growing evidence base of its

clinical utility for both diagnostic and prognostic goals in the setting

of breast cancer (14–18). IVIM uses a biexponential function (see

Equation 1.1) to describe the diffusion signal decay over different b-

values to estimate tissue diffusivity (Dt), pseudo-diffusion (Dp), and

perfusion fraction (fp). These IVIM coefficients serve as biomarkers

for the identification of different tumor biologic characteristics.

Specifically, Dt is sensitive to restrictions to Brownian water motion

such as cell membranes, fibrosis, or macromolecules. fp reflects the

volume fraction of faster microcirculation, often originating from

the microvascular space. Finally, Dp reflects the apparent diffusion

process in the microcirculatory space which is impacted by both

fluid flow speed and vascular architecture. For the specific case of

breast cancer, malignant tumors often exhibit lowerDt values due to

higher cellularity, higher fp due to higher vascularity and lower Dp

due to slower blood velocity compared to benign lesions.

One obstacle to clinical implementation is the variability of

algorithms and tools used to determine the IVIM metrics, which

can introduce corresponding variability in clinical performance. For

example, most IVIM parameters’ estimation is based on nonlinear

least squares (19, 20), segmented least squares fitting (17, 21–23), or

the Bayesian (24–27) approach. More recently, deep learning (DL)

based approaches have gained significant attention for their

mitigation of acquisition (28) and noise-induced variability

compared to traditional methods, especially for fp and Dp (29–

32). Furthermore, most prior studies calculated IVIM coefficients

based on the mean values within the region of interest (ROI),

whereas radiomic features of IVIM maps may potentially provide

more information and capture tumor heterogeneity (33–35).

Nevertheless, differences in patient cohorts, scanners, acquisition

protocols, and analysis algorithms (36–39) contribute to variable

diagnostic performance between studies and can dilute the potential
02
of the IVIM biomarkers for more widespread adoption in clinical

trials or daily practice (8, 10). A retrospective cross-sectional view of a

large subset of available clinical data from patients presenting with

suspicious lesions, acquired at different sites analyzed with widely

used software platforms, may be illuminating to highlight the

software dependency of IVIM parameters as well as the most

robust and diagnostic 1st order radiomic features in the IVIM

dataset and guide future harmonization efforts in multi-center trials.
2 Materials and methods

This study evaluated retrospective anonymized breast MR

imaging data from three different sites. The patients were scanned

using 1.5 T or 3 T scanners at each site (Site A: GE Healthcare,

Waukesha, Wisconsin, USA, 1.5 T and 3.0 T; Site B: Philips

Healthcare, Best, the Netherlands, 3.0 T; and Site C: Siemens trio,

Siemens Healthcare, Erlangen, Germany, 3.0 T). Details of each

acquisition protocol and studied cohort are listed in Tables 1, 2.

Criteria for evaluation varied between sites. Site A included the

patients who underwent breast MRI screening when they were

suspicious of Breast Imaging Reporting and Data System (BI-

RADS) 4, 5 and/or cancer-proven BI-RADS 6 lesions. Site B

included patients underwent breast MRI screening and had BI-

RADS 4, 5 lesions detected. Site C included the patients who

underwent breast MRI when they were known to have or were

suspected of having breast carcinoma. This included patients with

BI-RADS categories 2-5 lesions.

Lesion conspicuity was assessed by radiologists on either b0 or

b>0 DWI images, in comparison with dynamic contrast enhanced

(DCE) MRI at Site A, Site B and Site C. Referencing the

accompanying DCE MRI, ROIs were drawn on either b0 or b>0

DWI images in consultation with the respective team radiologist. At

Site A ROIs were prescribed on all lesion slices, while for Sites B and

C only the central slice of largest cross section was prescribed. The

ROI contains at least 3 voxels, and no obvious artifacts were

included at all sites as per the guidelines from the European

Society of Breast Radiology (EUSOBI) (8). Single lesion per

patient was used at all sites. In addition, lesions were

histologically confirmed (Site A and Site B), or sometimes based

on radiologist reports, and based on stability on imaging for more

than 18 months for benign lesions at Site C.
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2.1 Data analysis

IVIM data from all sites were independently analyzed using

three software packages: a shareware tool with least-squares

segmented fitting (Firevoxel, https://firevoxel.org/ (Software a)),

an MR vendor research software package with least-squares

segmented fitting (Siemens MR Body Diffusion Toolbox from

Siemens Healthineers (Software b)) and a commercial software

package with Bayesian fit algorithm Olea Sphere (Software c).

IVIM parameters were estimated from a fit of all acquired b-

values (see Table 1) to a biexponential decay:

S
S0

= fp exp ( − b · Dp) + (1 − fp) exp ( − b · Dt) 1:1

IVIM parameters fp, Dp and Dt were calculated from the voxels

in the lesion ROI using each software tool. Histogram analysis of

parametric maps generated by each software was also performed

within a separate module for histogram generation in Firevoxel (100

bins, fp: 0 – 1, Dp: 0 – 0.1 mm2/s and Dt: 0 – 0.003 mm2/s) to

estimate 1st order radiomic features from each parameter:
Frontiers in Oncology 03
mean/minimum/maximum/variance/skewness/kurtosis. This

single histogram module was used to limit the software

differences to that in IVIM estimation alone.
2.2 Statistical analysis

The Pearson correlation (r) coefficient of IVIM parameters for

the 1st order radiomic features was computed between each

software pair at each site separately. The average correlation

coefficient and coefficient of variation (CV) over all software pairs

and sites was computed for each metric and ranked in numerical

order to assess the consistency of performance of a clinical task. The

intraclass correlation coefficient (ICC) was also computed for the

agreement among three software for the IVIM metrics at each site.

Additionally, Bland-Altman analysis (40) of IVIM parameters for

the 1st order radiomic features was also carried out between each

software pair at each site separately. Measures of absolute difference

mean, absolute difference standard deviation, and CV (%) were

derived from each software pair comparison.
TABLE 2 Number of patients with breast lesions from multiple centers along with average age at each site.

Site A Site B Site C

N
ROI Size

N
ROI Size

N
ROI Size

Voxels cm3 Voxels cm3 Voxels cm3

Lesions

Benign 12 201 ± 143 0.97 ± 0.69 70 51 ± 101 0.32 ± 0.63 38 33 ± 40 0.39 ± 0.47

Malignant 46 1363 ± 1644 6.6 ± 7.96 19 34 ± 28 0.21 ± 0.18 117 56 ± 69 0.67 ± 0.83

Total 58 1123 ± 1537 5.43 ± 7.44 89 47 ± 91 0.29 ± 0.57 155 50 ± 64 0.6 ± 0.77

Age (yrs) 48.26 ± 9.61 46.12 ± 11.34 57.03 ± 15.25
f

Voxel count, size values (in cubic centimeters) and age are given in mean ± standard deviation.
TABLE 1 MRI system and acquisition parameters used at each site in the multicenter study. Resolutions are given in acquired and reconstructed
voxel sizes.

Site A Site B Site C

MRI system Vendor GE 1.5 T/3 T Philips 3 T Siemens Trio 3 T

Resolution (mm)
2.2 - 2.8/2.2 - 2.8/4

Recon. 1.1 - 1.4/1.1 - 1.4/4
1.8/1.8/4

Recon. 1.3/1.3/4
2.0/2.0/3

Echo time (ms) 96.2 59.2 88.4

Repetition time (ms) 6000 4987.5 4700

b-values (s/mm2)

9 0,30,60,90,120,250,
400,600,800

0,100,600,800,1000 0,5,10,20,30,50,70,100,200,400,600,800,1000

24 0,30,60,90,120,400,
600,800,1000

10 0,30,60,90,120,250,
450,600,800,1000

14 0,30,60,90,120,250,
400,600,800,1000

1 0,10,30,60,90,120,
200,400,600,800,
1000
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Within the context of each software, each IVIM metric was

tested for benign/malignant differentiation, separately for each

software, using logistic regression for all three sites’ data together,

with each variable adjusted by site (coefficient and intercept). In

addition, we also performed leave-one-patient-out (LOU) cross

validation for each IVIM metric for the logistic regressions

adjusted by site for each software. The area under the ROC curve

(AUC) and standard error (SE) were quantified for each software

separately. An average of AUCs (separately for original and LOU

analysis) across software was computed for each IVIM metric. CVs

of the three AUCs from each software were computed for benign

and malignant differentiation. These average metrics were then

ranked in numerical order for assessment of consistency of

performance of a clinical task. Additionally, AUCs from all pairs

of software were separately compared with DeLong’s test. Statistical

analysis was performed using MATLAB software for Bland-Altman

analysis and R 4.2 software for ICC and logistic regression.
Frontiers in Oncology 04
3 Results

The study included 58, 89 and 155 patients from Site A, Site B,

and Site C respectively. Site A, Site B and Site C included 79.3%,

21.4%, and 75.5% of patients with malignant lesions respectively,

with each patient contributing one lesion. Table 2 shows the

distribution of the patients including the number of biopsy-

confirmed benign/malignant lesions across sites in this

retrospective multicenter study along with ROI size. The number

of voxels per ROI ranged from 47 ± 91 (Site B) to 50 ± 64 (Site C),

and up to 1123 ± 1537 (Site A). In addition, average age across sites

is also reported.

Example IVIM parameter maps obtained from each software

for malignant lesions from Site A, Site B and Site C are shown in

Figure 1, Figures 2, 3 respectively. Example benign breast lesions are

shown in Supplementary Figure S1-S3. Overall Dtmaps and fpmaps

show consistency while Dp maps exhibit the most variability across
FIGURE 1

IVIM parametric maps overlaid on raw DWI images in a patient with malignant breast lesion for Site A. IVIM parameters tissue diffusivity (Dt), perfusion
fraction (fp) and pseudodiffusivity (Dp) obtained from Firevoxel, Siemens and Olea software in the breast lesion. Dt maps and fp maps are the most
consistent across software platforms, while Dp maps show the most variability with fit algorithms. Dt and Dp are given in units of 10 -3 mm2/s.
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the software platforms. The average fractions of utilized voxels per

lesion (i.e. having values within the prescribed histogram ranges)

were as follows. Dt utilized 99.72%/99.88%/99.87% of lesion voxels

at Site A; 100%/100%/100% at Site B; 99.99%/99.95%/100% at Site C

using Software a/b/c. Dp utilized 77.51%/99.77%/100% of lesion

voxels at Site A; 80.58%/100%/100% at Site B; 59.78%/99.23%/100%

at Site C using Software a/b/c while fp utilized 100% of lesion voxels

at all sites using Software a, b, c. The mean IVIM parameter values

for benign and malignant lesions at Site A, Site B and Site C are

shown in Table 3 which clearly indicates the consistency ofDt and fp
values across all software platforms except for fp at Site B. Mean fp
values were found to be somewhat variable between least squares

segmented fitting and Bayesian fitting at Site B.

The correlation coefficient of IVIM parameters between each

software pair for 1st order radiomic features at each site is shown in

Supplementary Table S1 along with ICC values. Correlations between

least-squares segmented fitting algorithms are generally higher than

those between least squares and Bayesian algorithms. The average
Frontiers in Oncology 05
correlation between the three software at three different sites for 1st

order radiomic features mean/maximum/variance/skewness/kurtosis

were fp (r = 0.871/0.615/0.679/0.541/0.433), Dp (r = 0.56/0.616/0.587/

0.454/0.51) and Dt (r = 0.98/0.891/0.815/0.697/0.584) respectively

while that for Dtmin was 0.791. The correlations between the three

software for mean Dt at Site A, Site B and Site C are shown in

Figure 4; excellent correlation observed between least-squares

segmented algorithms (Firevoxel and Siemens) and Bayesian

algorithms (Olea) at each site. Similarly, the correlations between

the three software for mean fp at Site A, Site B and Site C are shown in

Figure 5; strongest correlation observed between least-squares

segmented algorithms (Firevoxel and Siemens) at each site.

Figure 6 shows the average of correlation coefficients of 1st order

radiomic features of fp, Dt and Dp across all software and sites along

with CV of correlation coefficients. In general, Dt radiomics showed

the highest average software correlation along with mean fp while

Dtmean showed the lowest CV. Additionally, Bland-Altman analysis

of IVIM parameters between each Software (a, b, c) pair for 1st order
FIGURE 2

IVIM parametric maps overlaid on raw DWI images in a patient with malignant breast lesion for Site B. IVIM parameters tissue diffusivity (Dt), perfusion
fraction (fp) and pseudodiffusivity (Dp) obtained from Firevoxel, Siemens and Olea software in the breast lesion. Dt maps and fp maps are the most
consistent across software platforms, while Dp maps show the most variability with fit algorithms. Dt and Dp are given in units of 10 -3 mm2/s.
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radiomics at each site is shown in Supplementary Table S2. Bland-

Altman plots between the three software for mean Dt and mean fp at

Site A, Site B and Site C are shown in Supplementary Figures S4, S5.

No pair of parameter AUCs from different software were

significantly different (p>0.05). Regarding the pooled site analyses,

the AUC with SE for benign and malignant differentiation for

different IVIMmetrics employing different software from three sites

using logistic regression and LOU cross validation is shown in

Table 4 while the average of AUC as well as CV of AUC (%) for

benign and malignant differentiation is shown in Figure 7. For both

AUC analyses, mean, minimum, maximum and skewness of Dt

showed the highest average AUC followed by Dp metrics for the

benign/malignant task while mean and variance of fp along with

several Dt radiomics showed high consistency among software.
Frontiers in Oncology 06
LOU AUCs showed a similar ranking of performance to logistic

regression AUC with a few exceptions (such as higher ranking of fp
mean), with slightly lower and more spread values of average AUC,

and higher and more spread values of CV of AUC.
4 Discussion

Our study evaluated variability across software tools for IVIM

measurements of breast tumors in a heterogeneous multicenter

multivendor dataset to test the robustness and diagnostic utility of

IVIM biomarkers in a worst-case scenario paradigm. Broadly speaking,

Dt metrics present markers of tissue microstructure (especially tumor

cellularity) and fp metrics report on microvascularity. Both of these
FIGURE 3

IVIM parametric maps overlaid on raw DWI images in a patient with malignant breast lesion for Site C. IVIM parameters tissue diffusivity (Dt), perfusion
fraction (fp) and pseudodiffusivity (Dp) obtained from Firevoxel, Siemens and Olea software in the breast lesion. Dt maps and fp maps are the most
consistent across software platforms, while Dp maps show the most variability with fit algorithms. Dt and Dp are given in units of 10 -3 mm2/s.
TABLE 3 Mean IVIM parameter values for benign and malignant lesion employing Software (a, b, c) at Site A, Site B and Site C.

Site A Site B Site C

a b c a b c a b c

Dt Benign 1.26 ± 0.29 1.26 ± 0.27 1.25 ± 0.24 1.04 ± 0.33 1.05 ± 0.31 1.12 ± 0.31 1.36 ± 0.4 1.31 ± 0.4 1.31 ± 0.35

Malignant 1.2 ± 0.39 1.19 ± 0.38 1.18 ± 0.38 0.88 ± 0.29 0.88 ± 0.28 0.96 ± 0.31 0.93 ± 0.29 0.9 ± 0.28 0.9 ± 0.29

fp Benign 15.79 ± 9.87 14.42 ± 8.87 16.34 ± 8.36 18.62 ± 7.49 16.47 ± 7.41 11.06 ± 7.46 12.77 ± 6.95 11.78 ± 7 11.08 ± 6.77

Malignant 13.85 ± 5.02 13.03 ± 4.51 14.34 ± 4.85 20.66 ± 7.15 19.32 ± 7.85 14.03 ± 6.79 11.41 ± 4.91 10.21 ± 3.9 9.4 ± 4.61

Dp Benign 10.57 ± 3.83 9 ± 3.54 5.46 ± 2.63 6.07 ± 2.34 5.25 ± 2.99 6.03 ± 3.51 18.02 ± 8.47 10.87 ± 4.81 6.77 ± 4.12

Malignant 12.02 ± 3.12 9.85 ± 3.17 7.85 ± 2.91 7.06 ± 2.02 7.27 ± 3.24 8.62 ± 4.05 16.23 ± 5.94 9.84 ± 4.03 11.43 ± 4.64
fr
a: Firevoxel; b: Siemens; c: Olea.
Perfusion fraction (fp) is given in %, while pseudo-diffusion (Dp) and tissue diffusivity (Dt) are given in units of 10 -3 mm2/s.
Data are given in mean ± standard deviation.
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features are known to be biologically important in determining

malignancy and monitoring or predicting response to differently

targeted treatment (such as cytotoxic or anti-angiogenic agents). In

order to maximize the potential of their separate biologic sensitivities,

their numerical robustness must be scrutinized as in the present study.

IVIM parametric maps obtained from different software

employing least-squares segmented fitting and Bayesian fitting

generated similar Dt and fp maps. Dt maps were the most consistent

across the software platforms at all sites while some differences in

fp maps could be observed particularly at Site B between Software a/b

and c. The lower correlations at Site B between fp values obtained from

Bayesian and least-squares packages may have been affected by that

site’s low number of b-values sampled in the pseudodiffusion regime

(b<200 s/mm2); with fewer data constraints Bayesian approaches may

regress to their prior. Dp maps were the most variable between the

software platforms.

SeveralDt radiomic features as well as mean fp demonstrated high

correlations between software pairs. Software correlations were

highest between the least squares segmented algorithms (a/b) and

mean values are the most consistent across contexts. Multiple Dt

radiomic features were highly diagnostic for benign and malignant

differentiation as well as consistent across software platforms.
Frontiers in Oncology 07
However, for fp metrics, mean and variance, moderately diagnostic

on average, were highly consistent among software.

Results of this study indicate some variability in software

robustness and benign/malignant differentiation among multi-site

data. Some site variability (lesion size, b-value distribution, cohort

size, selection criteria) may limit consistency; therefore, a logistic

regression model with site adjustment factors was employed to

obtain AUCs to account for such heterogeneity in the dataset. LOU

AUCs was also derived as a more stringent test of the data, which

revealed slight reduction in performance but analogous ranking of

parameters. Several Dt metrics showed both software robustness

and consistently high diagnostic performance. The robust

performance of Dt metrics across different software platforms and

sites, particularly for benign/malignant differentiation, supports the

potential for widespread implementation of IVIM-DWI beyond its

current limited clinical use and research applications (5). On the

other hand, several Dp metrics although showing consistency across

software platforms were moderately diagnostic on average for

benign and malignant differentiation. Several fp metrics showed

only slightly lower diagnostic performance in the logistic regression

and were highly consistent across software platforms. These results,

obtained in the challenging context of a retrospective analysis of
FIGURE 4

Correlation coefficient between Firevoxel, Siemens and Olea for mean of tissue diffusivity (Dt) at Site A, Site B and Site C. Comparisons shown left to
right: Firevoxel vs. Siemens, Firevoxel vs. Olea, and Siemens vs. Olea. Least-squares segmented algorithms (Firevoxel, Siemens) and Bayesian
algorithms (Olea) show excellent agreement. Dt is given in unit of mm2/s.
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heterogeneous multi-site data, underline the potential additive value

of fp in future prospective multi-site studies.

In general, consistency of Dt radiomic features from least-

squares segmented algorithms and Bayesian algorithms agrees
Frontiers in Oncology 08
with the study conducted by Scalco et al. (35) in that the choice

of the quantification method can be neglected for the extraction of

1st order histogram features from Dt maps in case of retrospective

multi-center analyses. However, our study also validated that Dt
FIGURE 5

Correlation coefficient between Firevoxel, Siemens and Olea for mean of perfusion fraction (fp) at Site A, Site B and Site C. Comparisons shown left
to right: Firevoxel vs. Siemens, Firevoxel vs. Olea, and Siemens vs. Olea. Least-squares segmented algorithms (Firevoxel, Siemens) show the highest
agreement while correlation between least-squares and Bayesian algorithms (Olea) is somewhat less.
FIGURE 6

Average Pearson correlation coefficients of 1st order radiomic features of fp (yellow), Dt (green) and Dp (red) between software pairs at Site A, Site B
and Site C along with coefficient of variation (CV) of correlation coefficients. Highest correlations are observed for mean Dt (lowest CV) and fp
metrics as well as other Dt radiomics.
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TABLE 4 Area under the ROC curve (AUC) with standard error (SE) using logistic regression and leave-one-patient-out (LOU) cross validation AUC with SE for benign and malignant differentiation for different
IVIM metrics using Software (a, b, c) from Site A, Site B and Site C.

AUC (SE) LOU AUC (SE) Software AUC (SE) LOU AUC (SE)

0.76 (0.03) 0.7 (0.03) Dpmax a 0.81 (0.02) 0.78 (0.03)

0.77 (0.03) 0.73 (0.03) b 0.79 (0.03) 0.76 (0.03)

0.76 (0.03) 0.69 (0.03) c 0.83 (0.02) 0.81 (0.02)

0.77 (0.03) 0.73 (0.03) Dpmean a 0.77 (0.03) 0.74 (0.03)

0.76 (0.03) 0.72 (0.03) b 0.78 (0.03) 0.73 (0.03)

0.77 (0.03) 0.73 (0.03) c 0.85 (0.02) 0.84 (0.02)

0.77 (0.03) 0.72 (0.03) Dpvariance a 0.78 (0.03) 0.72 (0.03)

0.77 (0.03) 0.71 (0.03) b 0.77 (0.03) 0.71 (0.03)

0.77 (0.03) 0.7 (0.03) c 0.81 (0.02) 0.79 (0.03)

0.77 (0.03) 0.66 (0.03) Dpskew a 0.8 (0.03) 0.76 (0.03)

0.77 (0.03) 0.64 (0.03) b 0.78 (0.03) 0.72 (0.03)

0.77 (0.03) 0.71 (0.03) c 0.82 (0.02) 0.79 (0.03)

0.79 (0.03) 0.65 (0.03) Dpkurt a 0.8 (0.03) 0.75 (0.03)

0.75 (0.03) 0.68 (0.03) b 0.78 (0.03) 0.73 (0.03)

0.77 (0.03) 0.66 (0.03) c 0.79 (0.03) 0.7 (0.03)
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Software AUC (SE) LOU AUC (SE) Software

Dtmin a 0.82 (0.02) 0.8 (0.03)

b 0.82 (0.02) 0.8 (0.03)

c 0.83 (0.02) 0.8 (0.03)

Dtmax a 0.8 (0.03) 0.78 (0.03) fpmax a

b 0.81 (0.02) 0.79 (0.03) b

c 0.8 (0.03) 0.78 (0.03) c

Dtmean a 0.85 (0.02) 0.83 (0.02) fpmean a

b 0.85 (0.02) 0.83 (0.02) b

c 0.86 (0.02) 0.84 (0.02) c

Dtvariance a 0.75 (0.03) 0.62 (0.03) fpvariance a

b 0.77 (0.03) 0.68 (0.03) b

c 0.76 (0.03) 0.64 (0.03) c

Dtskew a 0.82 (0.02) 0.78 (0.03) fpskew a

b 0.82 (0.02) 0.8 (0.03) b

c 0.85 (0.02) 0.83 (0.02) c

Dtkurt a 0.78 (0.03) 0.74 (0.03) fpkurt a

b 0.78 (0.03) 0.73 (0.03) b

c 0.78 (0.03) 0.74 (0.03) c

a: Firevoxel; b: Siemens; c: Olea.
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radiomic features obtained from least-squares segmented fitting

could be consistent with the Bayesian fitting and therefore the

fitting methods for the estimation of Dt maps could be completely

neglected. Their study also revealed that Dp is the most sensitive to

quantification method and therefore is less robust across software

platforms as demonstrated in this study.

Meeus et al. (41) reported that the constrained IVIM fitting

method provides robust and reproducible IVIM parameters

particularly Dt and fp in low-perfused brain tissue similar to our

study. Dt consistency across software tools reported in the current

study was good and in agreement with the reproducibility studies

conducted for phantom (42) and kidney (43–46). In addition, we

also observed good fp reproducibility in most contexts.

Our present study had some limitations. Since the study was

retrospective there was no control over the differences in acquisition

protocols or hardware platforms at different sites; this might be one of

many reasons for inconsistency in IVIM parameter maps particularly

Dp. There is a possibility that robustness and consistency of Dp maps

among software packages was impacted by the different amount of

outlier rejection fractions particularly in the case ofDpmaps.Dpmaps

from Firevoxel generated considerably more lesion voxels outside the

histogram range (0 – 0.1 mm2/s) than did Software b and Software C,

which included almost all the lesion voxels. Moreover, the

harmonization in b-values would be beneficial for future
Frontiers in Oncology 10
prospective studies to maintain robustness. Site A in particular may

have been affected by heterogeneous sets of b-values and resolution

levels within its cohort. The non-Gaussian effect/noise floor was not

accounted for in the software used in this study, potentially leading to

overestimations of fp values.While the lesion size among the recruited

population in the study cannot be foreseen, however the difference in

ROI size in patient population in this retrospective study is also

because of the multi-slice segmentation (Site A) or single slice

segmentation (Site B and Site C) employed, which could also be

the reason for some inconsistency in results. Therefore, uniformity in

delineating the lesion must be maintained in addition to recruiting a

similar cohort size and consistent recruitment criteria for prospective

multicenter studies. Finally, there was some heterogeneity in lesion

validation standard (biopsy confirmation at Sites A, B vs. radiologic

assessment at Site C for benign lesions) in the studied cohorts.
5 Conclusion

Even in a heterogeneous multisite cohort with varying acquisition

and analysis settings, certain 1st order IVIM radiomic features

(specifically mean, minimum and maximum of Dt) show potential

for robustness and diagnostic applicability. Pseudodiffusion features

(fp and Dp) are more sensitive to fit algorithms and clinical cohorts,
FIGURE 7

Average area under the ROC curve (AUC) and coefficient of variation (CV) of AUC for benign and malignant differentiation via metrics of fp (yellow),
Dt (green) and Dp (red) using logistic regression (top row) and leave-one-patient-out (LOU) cross validation (bottom row). Dt metrics generally show
the highest average and most consistent performance for the benign/malignant task, and several fp metrics (e.g. mean and variance) show high
consistency among software.
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but the mean and variance of fp still demonstrates potential for

consistent behavior among site/software contexts that controlled

prospective studies might leverage.
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36. Vidić I, Jerome NP, Bathen TF, Goa PE, While PT. Accuracy of breast cancer
lesion classification using intravoxel incoherent motion diffusion-weighted imaging is
improved by the inclusion of global or local prior knowledge with bayesian methods.
J Magnet Resonance Imaging. (2019) 50:1478–88. doi: 10.1002/jmri.26772

37. Gurney-Champion OJ, Klaassen R, Froeling M, Barbieri S, Stoker J, Engelbrecht
MRW, et al. Comparison of six fit algorithms for the intravoxel incoherent motion
model of diffusionweighted magnetic resonance imaging data of pancreatic cancer
patients. PloS One. (2018) 13:1–18. doi: 10.1371/journal.pone.0194590

38. Taimouri V, Afacan O, Perez-Rossello JM, Callahan MJ, Mulkern RV, Warfield
SK, et al. Spatially constrained incoherent motion method improves diffusion-weighted
MRI signal decay analysis in the liver and spleen. Med Phys. (2015) 42:1895–903.
doi: 10.1118/1.4915495

39. Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Impact of the calculation
algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal
organs. Magnet Resonance Med. (2016) 75:2175–84. doi: 10.1002/mrm.25765

40. Klein R. Bland-Altman and Correlation Plot (2025). Available online at: https://
www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-
correlation-plot (Accessed December 24, 2024).

41. Meeus EM, Novak J, Withey SB, Zarinabad N, Dehghani H, Peet AC. Evaluation
of intravoxel incoherent motion fitting methods in low-perfused tissue. J Magn Reson
Imaging. (2017) 45:1325–34. doi: 10.1002/jmri.25411

42. Basukala D, Mikheev A, Sevilimedu V, Gilani N, Moy L, Pinker K, et al. Multisite
MRI intravoxel incoherent motion repeatability and reproducibility across 3 T scanners
in a breast diffusion phantom: A BReast intravoxel incoherent motion multisite
(BRIMM) study. J Magn Reson Imaging. (2024) 59:2226–37. doi: 10.1002/jmri.29008

43. de Boer A, Harteveld AA, Stemkens B, Blankestijn PJ, Bos C, Franklin SL, et al.
Multiparametric renal MRI: an intrasubject test-retest repeatability study. J Magn Reson
Imaging. (2021) 53:859–73. doi: 10.1002/jmri.27167
frontiersin.org

https://doi.org/10.3322/caac.21583
https://doi.org/10.3322/caac.21583
https://doi.org/10.1593/neo.81328
https://doi.org/10.1002/jmri.25479
https://doi.org/10.2214/AJR.23.29933
https://doi.org/10.1007/s00330-024-11010-0
https://doi.org/10.1002/jmri.26908
https://doi.org/10.1148/radiol.2019182789
https://doi.org/10.1007/s00330-019-06510-3
https://doi.org/10.1016/j.crad.2020.03.039
https://doi.org/10.1007/s00330-022-08833-0
https://doi.org/10.1016/j.neuroimage.2017.12.062
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1097/RLI.0000000000000094
https://doi.org/10.1002/jmri.24462
https://doi.org/10.3389/fonc.2020.585486
https://doi.org/10.1016/j.ejrad.2021.109809
https://doi.org/10.1002/mrm.22740
https://doi.org/10.1016/j.clinimag.2023.03.016
https://doi.org/10.1097/RCT.0b013e318282d935
https://doi.org/10.1002/jmri.24799
https://doi.org/10.1002/mrm.10568
https://doi.org/10.1002/mrm.25484
https://doi.org/10.1148/radiol.2493080080
https://doi.org/10.1016/j.media.2012.12.001
https://doi.org/10.1002/mrm.1910290510
https://doi.org/10.1002/mrm.24649
https://doi.org/10.1002/mrm.26598
https://doi.org/10.1002/jmri.29088
https://doi.org/10.1002/mrm.27910
https://doi.org/10.1002/nbm.v30.12
https://doi.org/10.1002/mrm.28852
https://doi.org/10.1002/nbm.v35.10
https://doi.org/10.1002/nbm.4426
https://doi.org/10.3389/fonc.2022.821586
https://doi.org/10.1016/j.compbiomed.2022.106495
https://doi.org/10.1016/j.compbiomed.2022.106495
https://doi.org/10.1002/jmri.26772
https://doi.org/10.1371/journal.pone.0194590
https://doi.org/10.1118/1.4915495
https://doi.org/10.1002/mrm.25765
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
https://doi.org/10.1002/jmri.25411
https://doi.org/10.1002/jmri.29008
https://doi.org/10.1002/jmri.27167
https://doi.org/10.3389/fonc.2025.1524634
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Basukala et al. 10.3389/fonc.2025.1524634
44. Makino Y, Ohno N, Miyati T, Hori N, Matsuura Y, Kobayashi S, et al. Tri- and
bi-exponential diffusion analyses of the kidney: effect of respiratory-controlled
acquisition on diffusion parameters. Radiol Phys Technol. (2023) 16:478–87.
doi: 10.1007/s12194-023-00734-1

45. Sigmund EE, Vivier PH, Sui D, Lamparello NA, Tantillo K, Mikheev A, et al.
Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under
Frontiers in Oncology 13
hydration and furosemide flow challenges. Radiology. (2012) 263:758–69.
doi: 10.1148/radiol.12111327

46. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR
imaging of kidneys in healthy volunteers and patients with parenchymal
diseases: initial experience. Radiology. (2005) 235:911–7. doi: 10.1148/radiol.
2353040554
frontiersin.org

https://doi.org/10.1007/s12194-023-00734-1
https://doi.org/10.1148/radiol.12111327
https://doi.org/10.1148/radiol.2353040554
https://doi.org/10.1148/radiol.2353040554
https://doi.org/10.3389/fonc.2025.1524634
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study
	1 Introduction
	2 Materials and methods
	2.1 Data analysis
	2.2 Statistical analysis

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


