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Objective: This study aims to identify potential biomarkers for Hepatoblastoma

(HB) using bioinformatics and machine learning, and to explore their underlying

mechanisms of action.

Methods: We analyzed the datasets GSE131329 and GSE133039 to perform

differential gene expression analysis. Single-sample gene set enrichment

analysis (ssGSEA) and weighted gene co-expression network analysis

(WGCNA) were utilized to identify gene modules linked to gene set activity.

Protein-protein interaction (PPI) networks were constructed to identify hub

genes, while random forest and support vector machine models were

employed to screen for key diagnostic genes. Survival and immune

infiltration analyses were conducted to assess the prognostic significance of

these genes. Additionally, the expression levels, biological functions, and

mechanisms of action of the selected genes were validated in HB cells

through relevant experimental assays.

Results: We identified 1,377 and 1,216 differentially expressed genes in datasets

GSE131329 and GSE133039, respectively. ssGSEA and WGCNA analyses

identified 234 genes significantly linked to gene set activity. PPI analysis

identified 20 core Hub genes. Machine learning highlighted three key

diagnostic genes: CDK1, CCNA2, and MAD2L1. Studies have demonstrated that

MAD2L1 is significantly overexpressed in HB and is associated with prognosis.

WGCNA revealed that MAD2L1 is enriched in gene sets related to E2F_ TARGETS

and G2M_CHECKPOINT. Experimental assays demonstrated that MAD2L1

knockdown significantly inhibits the proliferation, migration, and invasion of HB
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cell lines, and that MAD2L1 promotes cell cycle progression through the

regulation of E2F.

Conclusion: Our study identifies MAD2L1 as a novel potential biomarker for HB,

providing new strategies for early diagnosis and targeted therapy in HB.
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Introduction

Hepatoblastoma (HB) is a prevalent primary malignant liver

tumor in children, occurring more frequently in males than in

females (1), accounting for approximately 80% of pediatric liver

tumors (2). The most effective treatment for pediatric HB is surgical

resection. However, due to the often-extensive liver involvement in

children, complete surgical removal is frequently not possible.

Consequently, current clinical management primarily involves a

combination of surgical resection and chemoradiotherapy (3). In all

diagnosed patients, systemic chemotherapy and surgery can lead to

a 5-year survival rate of 80% in children (4). Despite advancements,

the prognosis for HB patients remains suboptimal, largely due to

the absence of effective early diagnostic methods. Additionally,

prolonged treatment often leads to various complications and side

effects (5, 6). Currently, clinicians primarily rely on clinical

symptoms, imaging features, and alpha-fetoprotein levels to

diagnose HB. However, AFP levels can be elevated due to

numerous conditions in pediatric patients, resulting in insufficient

sensitivity and specificity, thus highlighting the inadequacy of early

diagnostic methods (7). Moreover, HB often presents insidiously,

with complex influencing factors and limited sample sizes, leaving

its pathogenesis insufficiently elucidated. Consequently, new

reliable diagnostic methods and biomarkers beyond AFP are

needed to support timely diagnosis and optimal treatment,

thereby improving prognostic accuracy.

Recent advances in high-throughput sequencing and

microarray analysis have facilitated the identification of disease-

related biomarkers and the study of gene functions and pathways (8,

9). By integrating bioinformatics and machine learning, researchers

can effectively discover tumor biomarkers across various cancers

(10–14). Studies have shown that the mRNA that is abnormally

expressed in HB can be identified by bioinformatics methods (15–

17). Weighted Gene Co-Expression Network Analysis (WGCNA),

an unsupervised method, is widely used in bioinformatics to explore

inter-gene relationships in high-throughput data. WGCNA

constructs weighted co-expression networks to identify gene

modules that reflect specific biological processes (18).

In this study, based on bioinformatics and machine learning

methods, diagnostic and prognostic biomarkers of hepatoblastoma

were identified, and biological functions and mechanisms of action
02
of key genes were validated through in vitro experiments. In our

study, we analyzed the association between the gene set activity and

HB gene expression pattern for the first time, thereby revealing the

potential regulatory networks and molecular mechanisms.
Materials and methods

Identification of Differentially Expressed
Genes (DEGs)

We downloaded raw data from the GEO database (GSE131329

and GSE133039). GSE131329 (Affymetrix GPL6244) contains 53 HB

and 14 non-cancerous liver samples, while GSE133039 (Illumina

GPL16791) includes 31 tumors and 32 non-cancerous samples. After

the data is preprocessed (Supplementary Material), GSE131329 was

used for training and GSE133039 for validation. We used the Limma

package for microarray data and DESeq2 for sequencing data,

identifying DEGs with |Log2FC| > 1 and P < 0.05 (19, 20).
Weighted Gene Co-Expression Network
Analysis (WGCNA)

We employed single-sample gene set enrichment analysis

(ssGSEA) to calculate the enrichment scores of classical gene sets

in each sample. The gene set used was derived from the Hallmark

gene se t in the Broad Inst i tu te ’ s MSigDB database

(h.all.v2023.1.Hs.symbols.gmt). Differences between normal and

tumor samples were assessed using the Wilcoxon rank-sum test.

To enhance the sensitivity of WGCNA, we selected the top

10,000 genes with the highest variability based on the Median

Absolute Deviation (21). Hierarchical clustering was performed to

identify and remove outliers, resulting in stable outcomes visualized

in a clustering tree. We calculated network attributes at various soft

thresholds to determine the optimal threshold for constructing a

scale-free co-expression network. The adjacency and topological

overlap matrices facilitated the identification of gene modules.

Using a dynamic tree cutting method, we identified gene modules

and calculated their feature vectors. High correlations (>0.75)

among color modules prompted their merger to simplify the
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network structure (22). Finally, we analyzed the correlation between

gene expression patterns and gene module feature vectors to

determine the relationship between gene modules and gene set

enrichment scores. Gene modules with a correlation to the

enrichment score greater than 0.8 and a P-value less than 0.05

were selected for subsequent analyses.
Protein-Protein Interaction (PPI) network
construction of hub genes and enrichment
analysis

We constructed PPIs using the STRING online database (23),

setting an interaction score threshold of 0.4 for network reliability.

The PPI network was visualized using Cytoscape software (24),

where key genes were identified through Cytoscape plug-ins (25).

To determine biologically significant key genes, we calculated each

node’s degree value and selected the top 20 hub genes using the

CytoHubba plug-in. Subsequently, we performed Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis on these key genes. This analysis revealed

potential biological functions and signaling pathways. GO

analysis encompasses three areas: Biological Process, Molecular

Function, and Cellular Component, while KEGG is a recognized

database that identifies gene interactions and their roles in

biological systems.
Machine learning algorithms and ROC
curves

Random forest (RF) is an ensemble learning method that

enhances classification by constructing multiple decision trees and

aggregating their predictions. By randomly selecting data and

feature subsets, RF improves accuracy and mitigates overfitting

through majority voting (26). In this study, we optimized the

number of trees by analyzing the out-of-bag error curve, selecting

the configuration that minimized the classification error. To

evaluate feature importance, we computed the Mean Decrease in

Gini Index, which measures the contribution of each gene to

reducing classification impurity. We ranked genes based on their

importance scores and identified the top five key biomarkers for HB

classification, visualizing their relative significance through

importance plots.

Support vector machine recursive feature elimination (SVM-

RFE) is a feature selection technique that iteratively removes the

least informative features based on a trained support vector

machine (SVM) model. By recursively eliminating features with

the smallest contribution to classification performance, SVM-RFE

improves model generalization and reduces overfitting (27, 28). To

ensure robust feature selection, we applied 10-fold cross-validation

to evaluate the model performance at each iteration, plotting error

rate curves to illustrate the impact of feature count on classification

accuracy. The combination of RF and SVM-RFE allowed us to

identify a refined set of features that contribute most significantly to
Frontiers in Oncology 03
HB classification, improving both model interpretability and

predictive accuracy.
Survival analysis and immune infiltration
analysis

To explore whether key genes can be used as a prognostic biomarker

for HB, we used the GEPIA database (Gene Expression Profiling

Interactive Analysis, http://gepia.cancer-pku.cn/) to generate Kaplan-

Meier survival curves. To explore how key gene expression patterns

influence immune cell distribution in the tumor microenvironment,

we utilized the ssGSEA method to analyze the infiltration of 24

immune cell types in tumor samples (29). We compared immune

cell infiltration between high and low expression groups of key

genes to assess correlations with expression levels (30, 31).

Spearman correlation analysis and the Wilcoxon rank sum test

were conducted to detect differences in immune cell infiltration.
Clinical sample collection

This study included samples from 6 patients who underwent

radical surgery for hepatoblastoma in the pediatric surgery

department of the affiliated hospital of Qingdao University from

01/08/2018 to 30/12/2023, covering tumor tissues and adjacent

tissues. The specimens obtained during the operation were placed in

a freezing storage tube in accordance with standard methods and

stored in a refrigerator at -80°C in the department of pathology. The

study was approved by the Ethics Committee of the Affiliated

Hospital of Qingdao University (Ethics number: QYFY,

WZLL28988) and informed consent of all participating patients’

parents or guardians was obtained. The study was conducted in

accordance with the declaration of Helsinki. The tumor tissues and

adjacent tissues from the affiliated hospital of Qingdao university

for the study were accessed for our study on 07/08/2024.
Cell culture

The HuH6 and HepG2 cell lines were obtained from Wuhan

Pricella Biotechnology Co., Ltd. HuH6 cells were grown in DMEM

supplemented with 10% fetal bovine serum (FBS, Cat. No. C04001-

050, VivaCell) and 1% penicillin-streptomycin (Cat. No. C3420-

0100, VivaCell). HepG2 cells were maintained in MEM with the

same concentrations of FBS and antibiotics (Cat. No. PM150410,

Procella). Both cell lines were incubated under optimal growth

conditions at 37°C and 5% CO2.
CCK-8 assay

During logarithmic growth, cells were digested 3,000 cells per

well were seeded in 96-well plates. After adherence, 100 m0 of

medium with 10% CCK8 (Cat. No. HY-K0301, MCE) was added.
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Cells were incubated at 37°C, 5% CO2 (HuH6 for 2 hours, HepG2

for 1 hour), and optical density at 450 nm was measured. Cell

viability was assessed over 5 days.
Colony formation assay

Cells in the logarithmic growth phase were seeded into 6-well

plates at a density of 3,000 cells per well. The plates were gently

rocked in a figure-eight motion to ensure uniform cell distribution.

The plates were then incubated in a cell culture incubator at 37°C

with 5% CO2 for 14 days. After the incubation period, the medium

was aspirated, and the wells were gently washed three times with

PBS (Cat. No. PB180327, Pricella). To fix the colonies, 1 mL of 4%

paraformaldehyde (Cat. No. G1072) was added to each well, and the

cel ls were fixed for 20 minutes. After removing the

paraformaldehyde, 1 mL of 0.5% crystal violet (Cat. No. BL539A,

biosharp) solution was added to each well for 20 minutes to stain

the colonies. The crystal violet solution was then removed, and the

wells were gently rinsed with a steady flow of water. The plates were

air-dried at room temperature. To quantify colony formation,

images were captured using a flatbed scanner or under plate lights.
Transwell invasion assay

Cells in the logarithmic growth phase were digested with trypsin

and seeded at a density of 1.5×10^5 cells in a small chamber with a

specified pore size 8um. The upper chamber contained DMEM/

MEM basal medium without fetal bovine serum (FBS), while the

lower chamber was filled with complete DMEM/MEM medium

supplemented with 10% FBS and 1% penicillin-streptomycin. After

the incubation period, cells were fixed with 4% paraformaldehyde

and stained with 0.5% crystal violet to enable subsequent

observation and analysis of their invasion capacity.
Scratch wound healing assay

We employed the Jibidi Culture-Insert 4 Well in a 35 mm u-

Dish (Cat. No: 80466) to uniformly seed 2×10^5 cells in each of the

four wells. After allowing the cells to adhere, the Culture-Insert was

removed. HuH6 cell lines and HepG2 cells were photographed

under EVOS fluorescence microscopy at 0 h and 48 h to observe

changes in cell migration and repair ability.
Dual-luciferase reporter assay

Logarithmic growth cells were taken and 100 UL cell

suspensions of 3*10^4 cells/well were inoculated on an all-black

96-well cell culture plate (FCP966, Beyotime). Si-NC or Si-

MAD2L1 were transfected with siRNA-Mate plus transfection

reagent (G04026, GenePharma) 24h, and then use GP-transfect-
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Mate (G04008 Genepharma) Reporter plasmid pE2F-TA-Luc

(D4054, Beyotime) and Reporter plasmid pRL-TK (D2760,

Beyotime) was transfected for 48h. The cell culture plate was

taken out and balanced at room temperature for 10 minutes, and

100ul Dual-Lumi™ firefly luciferase detection reagent (RG088S,

Beyotime) was added to each well, and incubated at room

temperature for 10 minutes before detect ion with a

multifunctional enzyme labeler. Then 100ul Dual-Lumi™ sea

kidney luciferase assay working solution (RG088S, Beyotime) was

added to each well and incubated at room temperature for 10

minutes before detection. The relative luciferase activity was

standardized using sea kidney luciferase as the internal reference.
Flow cytometry assay

Cells were collected, and cell suspension with a final

concentration of 1x10^6 cells/ml was prepared, the supernatant

was removed by centrifugation, and 1.2ml of anhydrous ethanol

preserved at -20°C was added after washing with PBS, and then fully

mixed and fixed at -20°C overnight. The supernatant was removed

by centrifugation, washed with PBS once, and 100ul of RNase A

Reagent was added to fully suspend the cells, and the cells were

immersed in 37°C water bath for 30min. Add 400ul of PI Reagent

(50ug/ml), incubate at 4°C for 30min without light, test

immediately on the computer, and use NovoExpress software

for mapping.
Quantitative real-time PCR analysis (qRT-
PCR)

Total RNA was extracted using Trizol reagent (Cat. No. E701-

01, Vazyme). cDNA synthesis utilized the 5X ABScript mRNA

reverse transcription kit (Cat. No. RM21478) and 20X genomic

DNA removal reagent (Cat. No. RM21479, ABclonal). PCR used b-
ACTIN as the reference gene (Cat. No. N901r, CellGene) with 2X

SYBR Green PCRMaster Mix (Cat. No. RM21203, ABclonal). Gene

expression was normalized to b-ACTIN and analyzed via the 2-

DDCt method. Primer sequences: b-ACTIN (F: GAGAAAATCT

GGCACCACACC, R: GGATAGCACAGCCTGGATAGCAA);

MAD 2 L 1 ( F : A CGGACTCACCTTGCTTGTA , R :

CCAGGACCTCACCACTTTCA).
Western blotting analysis (WB)

HB tissue samples and cell lines were washed twice with PBS

and lysed on ice with RIPA buffer (Cat. No. R0010, Solarbio)

containing PMSF for 30 minutes. The lysate was centrifuged at

12,000 rpm at 4°C for 10 minutes to collect the supernatant. Tissue

protein concentration was measured using the BCA protein assay

kit (Cat. No. P0012, Beyotime). Fifty micrograms of protein were

separated via 10% SDS-PAGE and transferred to PVDF
frontiersin.or
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membranes, which were blocked with 5% skim milk at room

temperature for 1 hour. Primary antibodies against MAD2L1

(1:600, Cat. No. 15283-1-AP, Proteintech), b-ACTIN (1:10,000,

Cat. No. N901r, CellGene), b-Tubulin (1:1,500, Cat. No. E-AB-

40518, Elabscience), GAPDH (1:3000, Cat. No.AF7021,

AFFINITY), N-Cadherin Rabbit mAb (1:1000, Cat. No. A19083,

ABclonal), E-Cadherin Rabbit mAb (1:1000, Cat. No. A20798,

ABclonal), Cyclin A2 Polyclonal antibody (1:10000, Cat. No.

18202-1-AP, Proteintech), PCNA Polyclonal antibody (1:5000,

Cat. No. 10205-2-AP, Proteintech), CyclinE1(1:1000, Cat. No.

11554-1-AP, proteintech) and E2F3(1:1000, Cat. No. 27615-1-AP,

proteintech) were incubated overnight at 4°C. After rinsing with

PBST, membranes were incubated with 1:25,000 diluted goat anti-

Rabbit IgG (HRP, ab190495; Abcam) for 1 hour at room

temperature. Protein visualization was achieved using the

SuperPico ECL Chemiluminescence Kit (Cat. No. E422-01,

Vazyme), and quantitative analysis of protein bands relative to b-
actin or b-Tubulin was performed using ImageJ software.
Cell transfection

The siRNAs were transfected into cells using siRNA-Mate plus

transfection kit (GenePharma, China) according to the

manufacturer’s instructions. The gene changes were detected by

qPCR 24 hours after transfection, 48 h after transfection, WB was

used to verify the transfection efficiency. The following sequences of

siRNAs were used:

siNC: 5′-UUCUCCGAACGUGUCACGUTT-3′.
siMAD2L1-1(655):5′-CCGCCUUCGUUCAUUUACUTT-3′.
siMAD2L1-2(364):5′-GGUUGUAGUUAUCUCAAAUTT-3′.
siMAD2L1-3(260):5′-GGACUCACCUUGCUUGUAATT-3′.
siMAD2L1-4(316):5′-GGUGGAACAACUGAAAGAUTT-3′.
Statistics

Statistical analysis was performed using R software version 4.3.1

and GraphPad Pr ism 9.5 . P < 0.05 was considered

statistically significant.
Result

Difference analysis results of GSE131329
and WGCNA

Difference analysis of training group data set GSE131329

identified 1377 DEGs (Figures 1A, B). ssGSEA analysis showed

that certain classical gene sets were significantly up-regulated or

down-regulated in tumor samples (Figure 1C).

Next, WGCNA was conducted to analyze the expression

patterns of these DEGs. The clustering analysis of 67 samples

yielded satisfactory results (Figure 1D) without the need for

further optimization. Setting the soft threshold to 18 achieved a
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topological model fitting degree of 0.85, indicating a scale-free

property (Figure 1E). The connection degree distribution

histogram and logarithmic plot approximated linearity, further

validating the scale-free characteristics of our co-expression

network (Figure 1F). Clustering tree analysis revealed a high

concentration of genes in the blue module, while unclassified

genes were grouped in gray (Figure 1G). Correlation analysis

identified seven gene modules with significant inter-module

correlations (Figure 1H).

To highlight differences in gene set activity, we employed color

coding to represent enrichment scores. Samples exhibited

consistently high scores (dark red) or low scores (white),

indicating significant variations in gene set activity across samples

(Figure 1I). In the WGCNA analysis, gene set enrichment scores

served as clinical features, elucidating relationships between

modular genes and specific gene sets. We selected 558 genes from

the colored modules (blue, green, red, black, yellow, brown) for

further analysis (Figure 1J).
Difference analysis results of GSE133039
and WGCNA

A total of 1,216 differential genes were identified through the

analysis and validation of the dataset GSE133039 (Figures 2A, B).

The results of the ssGSEA analysis are presented in Figure 2C.

Initially, sample clustering analysis was performed on a dataset

comprising 63 samples. After removing one outlier, 62 samples

were retained for subsequent analyses (Figure 2D). As shown in

Figure 2E, a soft threshold of 5 resulted in a fitting degree of the

topological model reaching 0.85, indicating that the network

exhibits scale-free characteristics. The histograms and logarithmic

plots further verified that the constructed gene co-expression

network possesses scale-free properties (Figure 2F).

Gene cluster tree analysis revealed the presence of multiple gene

modules, prompting the combination of modules with a correlation

of module feature vectors greater than 0.75 (Figure 2G). Module

eigenvector correlation analysis yielded a total of 23 gene modules

along with one gray module (Figure 2H). The enrichment of the 62

samples with respect to the gene set is illustrated in Figure 2I.

Additionally, a heatmap depicting the relationships between gene

modules and gene set activity is shown in Figure 2J. For further

analysis, we selected genes from the turquoise and black modules,

totaling 1,049 genes.
PPI network construction and enrichment
analysis

The Venn diagram (Figure 3A) showed that there were 234

common genes in theWGCNA results of the training group and the

verification group. Then PPI network analysis on these genes,

visualizing the results using Cytoscape (Figure 3B). During

visualization, we excluded less connected genes to streamline the
frontiersin.org
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network (Figure 3C). We calculated the degree value of each gene

and identified the top 20 Hub genes with the highest degree using

the CytoHubba plug-in (Table 1). The Hub genes include PBK,

BUB1B, TTK, MAD2L1, CDCA8, DLGAP5, NCAPG, NUF2,
Frontiers in Oncology 06
TOP2A, ASPM, CENPK, KIF23, CDK1, KIF11, NCAPH,

CCNA2, HJURP, SKA3, KIF15, and CCNB1 (Figure 3D).

GO enrichment analysis (Figure 3E) revealed that the core

genes are significantly associated with biological processes related to
FIGURE 1

Difference Analysis and WGCNA in the GSE131329 Dataset. (A) Differential analysis volcano plot; gray indicates upregulated genes, downregulated
blue, and orange not statistically significant. (B) Cluster heat map showing gene expression differences. (C) ssGSEA results; p < 0.001 marked
***, p < 0.01 as **, p < 0.05 as *, and p > 0.05 as ns. (D) Sample clustering diagram. (E) Soft threshold determination. (F) Histograms and logarithmic
plots. (G) Gene clustering tree. (H) Module correlation heat map. (I) Sample clustering and gene set enrichment heat map. (J) Heat map of gene
module-gene set relationships.
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chromosomes and the cell cycle, including chromosome

segregation, nuclear division, and cell cycle regulation. These

findings highlight the critical role of these 20 genes in essential

cellular processes. KEGG pathway analysis indicated involvement

in pathways like the cell cycle, progesterone-mediated oocyte
Frontiers in Oncology 07
maturation, and oocyte meiosis (Figure 3F), reflecting the genes’

roles in cell cycle regulation, reproductive biology, cell aging, and

tumor suppression. Figures 3G, H illustrate that the biological

functions of these core genes focus on chromosome segregation,

mitotic sister chromatid segregation, and nuclear division,
FIGURE 2

Difference Analysis and WGCNA in the GSE133039 Dataset. (A): Differential analysis volcano plot; purple indicates upregulated genes, green
downregulated, and gray not statistically significant. (B): Cluster heat map showing gene expression differences. (C): ssGSEA results; p < 0.001
marked ***, p < 0.01 as **, p < 0.05 as *, and p > 0.05 as ns. (D): Sample clustering diagram. (E): Soft threshold determination. (F): Histograms and
logarithmic plots. (G): Gene clustering tree. (H): Module correlation heat map. (I): Sample clustering and gene set enrichment heat map. (J): Heat
map of gene module-gene set activity relationships.
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FIGURE 3

Screening and analysis results of hub gene. (A) Venn diagram. (B) PPI network analysis reveals the interaction relationship between proteins.
(C) Network chart shows the higher degree of gene network. (D) Network diagram of the top 20 Hub genes. (E) The resulting map of GO
enrichment analysis. (F) The result map of KEGG enrichment analysis. (G, H) Enrichment analysis network maps show that these Hub genes influence
multiple cell functions and potential biological roles.
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TABLE 1 Network topological characteristic of top 20 nodes in PPI network.

Gene Degree Average Shortest Betweenness Centrality Closeness Centrality Clustering Coefficient Stress Topological Coefficient

0.882513661 15902 0.60709782

0.937463472 356 0.708474576

0.937463472 356 0.708474576

0.907344633 678 0.6975

0.83922171 9192 0.626245847

0.883060109 3730 0.688114754

0.861448969 8784 0.640986717

0.953555878 266 0.716745283

0.911864407 576 0.699166667

0.937463472 356 0.708474576

0.887978142 2694 0.682048168

0.907909605 648 0.6975

0.86197779 9178 0.634846212

0.917514124 1776 0.693209877

0.917514124 1776 0.693209877

0.937463472 356 0.708474576

0.748982361 32428 0.488272921

0.86250661 20956 0.548387097

0.892896175 2032 0.684274438

0.882513661 1770 0.671531387

I Complex Subunit G; CCNB1, Cyclin B1; KIF23, Kinesin Family Member 23; KIF11, Kinesin Family Member 11;
nction Recognition Protein; MAD2L1, Mitotic Arrest Deficient 2 Like 1; CCNA2, Cyclin A2; CDCA8, Cell Division
A Topoisomerase II Alpha; NUF2, NUF2 Component of NDC80 Kinetochore Complex; ASPM, Abnormal Spindle
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Path Length

TTK 122 2.37 0.039117218 0.421940928

NCAPH 118 2.665 0.000188949 0.375234522

DLGAP5 118 2.665 0.000188949 0.375234522

NCAPG 120 2.66 0.001643118 0.37593985

CCNB1 126 2.47 0.013081708 0.4048583

KIF23 122 2.655 0.003945458 0.376647834

KIF11 124 2.475 0.029108234 0.404040404

CENPK 106 2.695 0.000136127 0.371057514

SKA3 120 2.66 0.000558842 0.37593985

KIF15 118 2.665 0.000188949 0.375234522

HJURP 122 2.595 0.005479776 0.385356455

MAD2L1 120 2.66 0.001186715 0.37593985

CCNA2 124 2.475 0.013549124 0.404040404

CDCA8 120 2.6 0.001063586 0.384615385

BUB1B 120 2.6 0.001063586 0.384615385

PBK 118 2.665 0.000188949 0.375234522

CDK1 134 2.25 0.070285848 0.444444444

TOP2A 124 2.34 0.043594258 0.427350427

NUF2 122 2.595 0.001542318 0.385356455

ASPM 122 2.625 0.006810228 0.380952381

TTK, TTK Protein Kinase; NCAPH, Non-SMC Condensin I Complex Subunit H; DLGAP5, DLG Associated Protein 5; NCAPG, Non-SMC Condensin
CENPK, Centromere Protein K; SKA3, Spindle and Kinetochore Associated Complex Subunit 3; KIF15, Kinesin Family Member 15; HJURP, Holliday Ju
Cycle Associated 8; BUB1B, BUB1; Mitotic Checkpoint Serine/Threonine; PBK, PDZ Binding Kinase B; CDK1, Cyclin Dependent Kinase 1; TOP2A, DN
Microtubule Assembly.
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underscoring their importance in cell division and genetic

material transfer.
Construct machine learning algorithm
model and ROC curve

In the GSE131329 dataset, we developed RF and SVM-RFE

models for HB using the expression matrix of 20 hub genes. The

top five diagnostic genes identified in the RF model were CDK1,
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MAD2L1, CCNA2, TOP2A, and CENPK (Figures 4A, B). The SVM-

RFEmodel, optimal with seven genes, achieved a minimum error rate

of 0.195 and a maximum accuracy of 0.805 (Figures 4C, D), selecting

CDK1, MAD2L1, CCNA2, CCNB1, KIF11, HJURP, and NCAPH. A

Venn diagram revealed three overlapping key genes: CDK1, CCNA2,

and MAD2L1 (Figure 4E). The AUC for the CDK1was 0.974

(Figure 4F), with sensitivity at 0.925, specificity at 0.95. The AUC

for CCNA2was 0.970 (Figure 4G), with sensitivity at 0.905, specificity

at 0.930. The AUC for the MAD2L1 was 0.946 (Figure 4H), with

sensitivity at 0.868, specificity at 0.915.
FIGURE 4

Machine learning algorithms screen for key genes. (A) RF identified HB biomarkers in GSE131329. (B) Top five genes from RF. (C) SVM-RFE selected
seven genes, achieving a minimum error rate of 0.195. (D) Seven genes from SVM-RFE with 0.805 accuracy. (E) Venn diagram. (F–H) ROC curve
analysis for key genes. (I) RF identified HB biomarkers in GSE133039. (J) Top five genes from RF. (K) SVM-RFE selected seven genes, with a minimum
error rate of 0.19. (L) Seven genes from SVM-RFE, achieving 0.81 accuracy. (M) Venn diagram. (N, O) ROC curve analysis for key genes.
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In the validation dataset GSE133039, the RF model again

identified CDK1, MAD2L1, CCNA2, KIF11, and CENPK as the

top five genes (Figures 4I, J). The SVM-RFE model also performed

best with seven genes, yielding an error rate of 0.19 and accuracy of

0.81 (Figures 4K, L), with selected genes including CDK1, MAD2L1,

TOP2A, PBK, TTK, KIF15, and HJURP. A Venn diagram

highlighted two co-existing key genes: CDK1 and MAD2L1

(Figure 4M). The AUC for the CDK1was 0.797 (Figure 4N), with

sensitivity at 0.709, specificity at 0. 812. The AUC for the MAD2L1

was 0.728 (Figure 4O), with sensitivity at 0.848, specificity at 0.

906.The contribution of core genes in tumor diagnosis via the RF

and SVM models is detailed in Table 2.
Validation of MAD2L1 as a biomarker of HB

CDK1 and CCNA2 have excellent performance in AUC value,

sensitivity and specificity and have been identified as biomarkers in

hepatoblastoma (32–35), so their functions and roles have been
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relatively clear. Although MAD2L1 has been studied in other types

of cancer (36–39), its role in hepatoblastoma has not been fully

explored, Moreover, MAD2L1 has good performance in AUC value,

sensitivity and specificity, indicating that it has high diagnostic

value. So MAD2L1 was selected for further functional validation to

de t e rmine i t s f e a s i b i l i t y a s a po t en t i a l b iomarke r

for hepatoblastoma.

We analyzed MAD2L1 expression in six surgically resected HB

tumor tissues and adjacent normal liver tissues. PCR results

indicated that MAD2L1 mRNA levels were significantly elevated

in HB tumors (Figure 5A), which was corroborated by Western

blotting showing increased protein levels (Figures 5B, C).

Kaplan-Meier survival analysis revealed that high MAD2L1

expression correlated with poorer disease-free survival and overall

survival in HB patients (P < 0.05) (Figures 5D, E), suggesting its

potential role in prognosis. Additionally, ssGSEA analysis of the

GSE131329 dataset showed significant increases in activated CD4 T

cells, CD56 bright natural killer cells, and other immune cells in the

high MAD2L1 expression group (Figure 5F). A similar trend was
TABLE 2 Feature importance in random forests and support vector machine algorithms.

GSE131329 GSE133039

RF SVM RF SVM

Gene Importance Average Rank Importance Average Rank

CDK1 1.7 5.7 1.7 6.2

TOP2A 1.6 13.6 1.4 1.4

MAD2L1 1.6 5.1 17.4 8.9

CCNA2 1.5 3.2 3.1 16.3

CENPK 1.3 14 2.9 17

KIF11 1.3 4.5 4.8 11.5

CDCA8 1.1 15.9 1.0 11.5

KIF15 1.1 16.6 1.0 5.5

CCNB1 1.0 6.3 1.5 13.9

NCAPG 1.0 13.7 1.2 17

BUB1B 1.0 11.9 1.1 16.6

SKA3 0.9 14.9 1.1 10.6

DLGAP5 0.9 16.2 1.0 10.6

PBK 0.9 13.2 0.9 3.6

NUF2 0.9 7.9 0.8 9.4

ASPM 0.8 14 0.8 10.2

HJURP 0.9 4.7 0.7 6

NCAPH 0.8 7.5 0.6 14.4

KIF23 0.7 10.5 0.6 14.2

TTK 0.5 16.6 0.5 5.2
RF, Random Forest; RF, Support Vector Machine.
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observed in the GSE133039 dataset (Figure 5G). These immune

cells play a key role in the anti-tumor response, influencing patient

prognosis by inhibiting tumor cell proliferation and reducing the

risk of metastasis. The results of ssGSEA analysis further suggest the

potential value of MAD2L1 as a prognostic marker in patients

with hepatoblastoma.
MAD2L1 promotes the proliferation of HB
cell lines

In this study, we investigated the effect of MAD2L1 knockdown

on the proliferation capacities of HB cell lines HuH6 and HepG2.

Using siRNA, we successfully downregulated MAD2L1 expression

at both the mRNA and protein levels, as confirmed by PCR and

Western blot analyses (Figures 6A, B). The CCK-8 assay
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(Figures 6C, D) and colony formation assay (Figures 6E, F)

revealed a significant reduction in proliferation in the MAD2L1-

siRNA group compared to the control group (P < 0.05). PCNA was

commonly used as markers of tumor cell proliferation (40, 41). As

shown in Figure 6G, MAD2L1 knockdown significantly decreased

the expression levels of proliferative marker PCNA, providing

further evidence that silencing MAD2L1 markedly inhibits the

proliferation of HuH6 and HepG2 cell lines.
MAD2L1 promotes migrative and invasive
capacities of HB cell lines

In this study, we investigated the effect of MAD2L1 knockdown

on the migration and invasion abilities of HB cell lines HuH6 and

HepG2. Transwell invasion assays demonstrated a significant
FIGURE 5

Validation of MAD2L1 as a biomarker of HB. (A) qPCR detected MAD2L1 mRNA levels in HB tumor and adjacent normal tissues. (B) WB analysis
showed MAD2L1 protein expression in HB tumors (T) vs. non-cancerous tissues (N). (C) Quantitative analysis of MAD2L1 in HB (n = 6). (D) Kaplan-
Meier analysis of MAD2L1 expression and DFS in HB patients. (E) OS analysis of MAD2L1 expression in HB patients. (F, G) MAD2L1 ssGSEA analysis of
immune cell infiltration in GSE131329 and GSE133039 datasets. *p < 0.05, **p < 0.01, ***p < 0.001.
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reduction in the invasion rate in the MAD2L1 knockdown group

compared to the control group (Figures 7A, B). Similarly, scratch

assays revealed that the migration distance was significantly

reduced in the MAD2L1 knockdown group (Figures 7C, D).

Epithelial-mesenchymal transition (EMT) markers, which play a

crucial role in malignant tumor progression and are closely

associated with aggressive behaviors such as invasion and

migration (42, 43), were also analyzed. As shown in Figure 7E,

MAD2L1 knockdown decreased N-cadherin expression (a

mesenchymal marker) and increased E-cadherin expression (an

epithelial marker) in both HuH6 and HepG2 cells. These findings

suggest that MAD2L1 knockdown significantly inhibits the

migrative and invasive capacities of HuH6 and HepG2 cell lines,

potentially by regulating the EMT process. This highlights the

critical role of MAD2L1 in hepatoblastoma progression.
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MAD2L1 promotes cell cycle progression
by regulating E2F

In the WGCNA results of dataset GSE131329, MAD2L1 is

enriched in the blue module. This module is mainly closely

associated with the following gene sets: E2F_TRANSITION,

G2M_CHECKPOINT. In WGCNA analysis of dataset

GSE133039, MAD2L1 is enriched in black modules. This module

is also mainly related to E2F_TARGETS and G2M_CHECKPOINT.

To further verify the regulatory effect of MAD2L1 on E2F, we

first used the dual-luciferase reporter assay to measure the relative

luciferase activity of hepatoblastoma cells co-transfected with

siRNA and specific luciferase reporter plasmids. The results

showed that compared with the control group, the luciferase

activity was significantly decreased after MAD2L1 was silenced
FIGURE 6

MAD2L1 promotes hepatoblastoma cell proliferation. (A, B) HuH6 and HepG2 cells were transfected with NC or four siRNAs targeting MAD2L1;
relative mRNA levels were assessed by RT-qPCR. Knockdown efficiency evaluated by Western blot. (C, D) CCK-8 assay assessed proliferation effects.
(E, F) The effect of MAD2L1 knockdown on cell proliferation was explored using a colony formation assay. (G) The effect of MAD2L1 knockdown on
PCNA expressions was detected by western blotting. *p < 0.05, **p < 0.01, ***p < 0.001, p ****<0.0001.
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(p<0.001) (Figures 8A, B), which proved that MAD2L1 activated

the transcription of the E2F family. Subsequently, Western blot was

used to detect changes in protein levels of E2F3 and its downstream

target genes (Cyclin A2 and Cyclin E1), and the results showed that

the expression levels of these proteins decreased after MAD2L1 was

silenced (Figures 8C, D). This suggests that MAD2L1 may promote

the expression of cell cycle related genes by activating transcription

of E2F3. To further investigate the potential mechanism by which

MAD2L1 promotes tumor cell proliferation, we analyzed cell cycle

distribution using flow cytometry. The results of PI staining showed

that after MAD2L1 silencing, the proportion of S-phase cells

decreased, while the proportion of G1 phase cells increased

significantly, and G1 phase block appeared (Figures 8E, F). It was

further shown that MAD2L1 promotes the cell to enter the S phase

by activating E2F3, thus speeding up the cell cycle process.
Discussion

Bioinformatics is an integrated field that combines computer

science and biology to analyze various data types (44, 45). Machine

learning identifies data patterns by simulating human learning and

employs techniques like support vector machines, random forests, and

logistic regression to enhance performance (46, 47). The integration of
Frontiers in Oncology 14
machine learning into bioinformatics frameworks has improved

prediction interpretability and reproducibility (48). To our knowledge,

the association between gene set activity and WGCNA and HB, as well

as validation of MAD2L1 in hepatoblastoma, are the first reports.

Using bioinformatics analysis and machine learning algorithms,

we finally identified three key genes with the most significant

diagnostic value: CDK1, CCNA2, and MAD2L1. CDK1 and

CCNA2 as biomarkers of HB have been verified in studies (49–51),

demonstrating the effectiveness and repeatability of our use of

machine learning combined with biological information to screen

biomarkers of HB. Our study reveals significant differential

expressions of MAD2L1 in tumors, suggesting that it may play a

distinct role in the development and progression of HB. In addition,

the results of survival analysis showed that the expression level of

MAD2L1 was significantly correlated with the prognosis of HB (p <

0.05). Immunoinfiltration analysis further revealed that the high

expression of MAD2L1 was associated with a significant increase in

the level of immune cell infiltration, suggesting that MAD2L1 may be

associated with a stronger anti-tumor immune response, which may

improve patient prognosis. These findings provide an important basis

for confirming MAD2L1 as a biomarker for the diagnosis and

prognosis of hepatoblastoma.

In our study, we used ssGSEA to assess the enrichment scores of

gene sets, combined with WGCNA methods, to explore the
FIGURE 7

MAD2L1 promotes hepatoblastoma cell migration and invasion. (A, B) Transwell assays evaluated invasion capability. (C, D) Scratch assays assessed
migration effects. (E) The expression levels of EMT markers were determined by western blotting. *p < 0.05, **p < 0.01, ***p < 0.001, p ****<0.0001.
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relationships between samples and their association with gene set

activity through cluster analysis and heat map visualization. Then

the gene modules and key genes closely related to gene sets can be

identified effectively. The quantification of gene set enrichment

activity in this study provides information for cell and tissue

function, contributing to insight into complex biological processes

and thereby revealing disease mechanisms (29, 52). WGCNA

analysis showed that MAD2L1 is mainly closely associated with

the following gene set: E2F_ TARGETS, G2M_CHECKPOINT.
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The E2F_TARGETS gene set is typically associated with cell cycle

regulation, particularly with genes regulated by E2F transcription

factors. These genes play a pivotal role in the transition from the G1

to the S phase of the cell cycle (53, 54). The G2M_CHECKPOINT

gene set is involved in regulating the progression of cells from the

G2 phase to mitosis (M phase) and serves as a crucial mechanism in

cell division and cell cycle control (55, 56). This suggests the

importance of MAD2L1 in ce l l cyc le regu la t ion in

hepatoblastoma, particularly during DNA replication and cell
FIGURE 8

MAD2L1 activates E2F transcription and regulates cell cycle regulators. (A, B) E2F transcription factor relative luciferase activity in dual-luciferase
reporter gene assay. (C, D) The effect of MAD2L1 knockdown on Cyclin A2, E2F3 and Cyclin E1 expressions was detected by western blotting.
(E, F) The effect of MAD2L1 knockdown on cell cycle was explored using a flow cytometry assay. *p < 0.05, **p < 0.01, ***p < 0.001, p ****<0.0001.
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division. This finding is not only consistent with the enrichment

results of chromosome separation and cell proliferation-related

functions in the GO analysis but also reflects the potential

importance of cell cycle-related pathways in the KEGG analysis.

The experimental results demonstrate that MAD2L1

knockdown significantly inhibits the proliferation, migration, and

invasion of HB cell lines. In addition, we confirm that MAD2L1

promotes cell cycle progression, particularly the G1/S phase

transition, by activating E2F3, thus accelerating cell proliferation.

This provides new evidence for its role in tumor progression. HB, a

highly proliferative hepatic malignancy. Our findings suggest that

this could be linked to the activation of downstream cell cycle gene

expression by MAD2L1, which enhances cell proliferation and

bypasses mitotic checkpoint abnormalities, thereby helping HB

cells maintain stability and promoting tumor growth. In

conclusion, this study confirms the pivotal role of MAD2L1 in

the proliferation and biological characteristics of cancer cells.

MAD2L1 exhibits significant potential as both a biomarker for

early diagnosis and a therapeutic target in hepatoblastoma. Its

upregulation suggests that detecting MAD2L1 expression could

serve as a non-invasive diagnostic tool, potentially improving

early detection and risk stratification when combined with

existing markers like AFP. Moreover, the development of targeted

therapies against MAD2L1, including small molecule inhibitors,

RNA interference could provide new treatment strategies,

particularly for patients with poor prognosis. Given its role in cell

cycle regulation, MAD2L1 inhibition may enhance chemotherapy

sensitivity or be leveraged in synthetic lethality approaches. To

translate these findings into clinical practice, future research should

prioritize the validation of MAD2L1-based diagnostic tests in

prospective clinical trials and assess the feasibility of targeted

therapies in preclinical drug development. Establishing MAD2L1

as a clinically actionable target could lead to personalized treatment

strategies and improve outcomes for hepatoblastoma patients.

Therefore, future studies should be combined with in vivo

experiments to observe the effect of MAD2L1and potential

therapeutic value on tumor progression in animal models. At the

same time, it is still necessary to combine larger and multi-center

data sets to further validate the findings of this study in the future.

Conclusion

This study is the first to reveal the critical role of MAD2L1 in HB.

Through bioinformatics andmachine learning analyses, along with in

vitro validation, we identified MAD2L1 as a promising biomarker,

particularly for its significant role in cell cycle regulation. Our

findings provide new insights and evidence for the early diagnosis

and mechanistic understanding of hepatoblastoma.
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